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We report on the study of the electrical current flowing through weakly coupled superlattice (SL) 
structures under an applied electric field and at very low temperature, i.e. in the tunneling regime. 
This low temperature transport is characterized by an extremely low tunneling probability between 
adjacent wells. Experimentally, I(V) curves at low temperature display a striking feature, i.e a 
plateau or null differential conductance. A theoretical model based on the evaluation of the 
scattering rates is developed in order to understand this behavior, exploring the different scattering 
mechanisms in AlGaAs alloys. The dominant interaction in our typical operating conditions is 
found to be the electron-ionized donors scattering. The existence of the plateau in the I(V) 
characteristics is physically explained by a competition between the electric field localization of 
the Wannier-Stark electron states in the weakly coupled quantum wells and the electric field 
assisted tunneling between adjacent wells. The influence of the doping concentration and profile as 
well as the presence of impurities inside the barrier are discussed. 
 
 
PACS number(s): 73.63.Hs, 72.10.-d, 85.60.Gz 

 
 
 

I.  INTRODUCTION 
Electronic transport in superlattices (SL) has 

been extensively studied since the early work of Esaki 
and Tsu1. However most studies deal with strongly 
coupled structures in order to observe high field 
domain formation2 or coherence effects such as Bloch 
oscillations3. In this paper we focus on the transport in 
very weakly coupled SL at low temperature. Only little 
work has been devoted to the microscopic 
understanding of this type of tunnel transport4, despite 
the observation of new phenomena such as phase 
transitions5 and the fact that Quantum Well Infrared 
Photodetectors (QWIPs) operate in the low coupling 
regime at low temperature. Most of the existing 
models are based on the Wentzel-Kramers-Brillouin 
(WKB) approach.  However, as we will show, this 
model fails to explain the experimental results. We 
thus developed a microscopic model of transport at 
low temperature for very weakly coupled SL, based on 
a scattering approach. This study is of a particularly 
large scope: indeed, the maturity of GaAs-based 
materials (low number of defect levels) and the 
unipolar character of QWIPs (no passivation needed) 
eliminate unwanted parasitic material effects, and thus 
only fundamental microscopic interactions are 
involved in the transport. Our model takes into account 
six interactions: electron-optical phonon, electron-
acoustical phonon, alloy disorder, interface roughness, 
ionized impurities and carrier-carrier interactions. Due 
to the very narrow ground miniband we expect that 
coherent transport6 and second order effects7 (two 

successive tunneling processes via a (virtual) state) 
stay moderate. As a consequence we investigate 
hopping transport8 between ground subbands of 
adjacent wells9. Several papers already addressed this 
regime10,11, but generally the coupling between wells 
investigated by the authors is far larger than ours and 
their model fails to explain our experimental data. Our 
model provides a full quantum description of current 
transport in weakly coupled SLs, validated by 
experiments. 

In this paper we first present (sec. II) sample 
measurements (I(V) curves and spectral response). The 
I(V) curves at low temperature exhibit in particular a 
striking null differential conductance (i.e. plateau) 
behavior. In sec. III, the usual WKB approximation is 
shown to fail in reproducing this striking feature. Our 
model, based on the calculation of different scattering 
rates, is developed in sec. IV. Section V presents the 
results of our model concerning the scattering rates and 
the resulting current as a function of the electric field. 
The dominant interaction in our experimental 
conditions is found to be the electron-ionized impurity 
scattering. The existence of the plateau in the I(V) 
characteristics is explained by a competition between 
the electric field localization of the Wannier-Stark 
electron states in the weakly coupled quantum wells 
and the electric field assisted tunneling. Finnaly, the 
influence of both the doping profile and the presence 
of defects in the barrier is presented in Section VI. 

II. EXPERIMENTS 
A. Structure 



The experiments have been done on a QWIP 
structure12 composed of forty periods with a 73Å wide 
GaAs well and a 350Å wide Al15.2Ga84.8As barrier. The 
central third of the well is silicon doped with a 
concentration of n2D=3 1011cm-2. The structure is 
sandwiched between two n-type, silicon doped 
contacts ([Si]=1018cm-3). This QWIP is obtained by 
MBE growth, and then processed into mesas of 
23.5µm lateral size. The barrier is 127meV high and 
the ground state is located approximately 40meV 
above the bottom of the GaAs conduction band. The 
doping value leads to a Fermi level 10.6meV above the 
ground state. 

 
B. Measurements 

The device was placed on the cold finger of a 
Janis helium cryostat. The temperature regulation was 
made with a 330 Lakeshore control unit. Current-
voltage measurements were carried out with a 6430 
Keithley sub-femtoampere source meter. Special care 
was dedicated to the fine control of the sample 
temperature. FIG. 1 (a) presents dark current 
measurements, which displayed a good repeatability in 
time and between pixels.  

-3 -2 -1 0 1 2 3
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

4K-10K-20K

40K

30K

50K

D
ar

k 
cu

rr
en

t d
en

si
ty

 (
A

 c
m

-2
) 

Bias (V)

60K

(a)

 

12 14 16 18 20 22
0.0

0.2

0.4

0.6

0.8

1.0

15.5 15.6 15.7 15.8 15.9 16.0
0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 s
pe

ct
ra

l r
es

po
ns

e

wavelength (µm)

(b)

 wavelength (µm) N
or

m
al

iz
ed

 s
pe

ct
ra

l r
es

po
ns

e

V=2V

V=1V

 

FIG. 1(a) Dark current density as a function of the 
applied bias for T=4K, 10K, 20K, 30K, 40K, 50K and 
60K. (b) Spectral response at T=10K for V=1.5V, inset 
spectral response for different bias voltages from 
V=1V to V=2V by step of 0.2V, in the 15.5µm-16µm 
range. 

 

For T>25K, the current increases monotonously 
with the temperature. This regime has been extensively 
studied and is well understood, see for instance ref 13. 
Below 25K, however, the current is independent on the 
temperature, which is the sign of the tunneling regime. 
The low temperature I(V) curve displays three 
different parts: 

• First, an ohmic regime (0V→0.5V) where the 
current increases linearly with the bias. 

• Second, a plateau regime (0.5V→1.5V) where 
the dependence of the current with the bias is 
surprisingly low. This plateau is attributed to 
the transport between the ground states of two 
adjacent wells. The main goal of this paper is 
to explain the very low dependence of the 
current with the bias in this plateau regime.  

• The high bias regime (V >1.5V) where the 
current increases very rapidly. This rise is the 
sign of a change in the transport mechanism. 
The origin can be attributed to impact 
ionization14 in the vicinity of the contact or to 
transport from the ground state to the 
continuum in the center of the structure. In the 
following we will not address this high bias 
part of the I(V) curve, since this transport 
mechanism has already been largely 
investigated in a previous paper15. 

One should notice that the I(V) curves present a 
slight asymmetry: we will address this effect in section 
V. Neither hysteresis, nor saw tooth pattern16 have 
been observed in our I(V) curves. 

 
The spectral response was measured by a Bruker 

Equinox 55 Fourier Transfrom InfraRed spectrometer 
(FTIR) in which the signal is amplified by a Femto – 
DLPCA 200 amplifier. The measurements are 
presented in FIG. 1 (b). The QWIP displays a spectral 
response peaked at 14.5µm, with a full width at half 
maximum (FWHM) of 2µm. The inset of FIG. 1 (b) 
shows the variations of the spectral response with the 
applied bias in the high wavelength part of the 
spectrum. This point will be further discussed in 
section III B. 

III. WKB MODELLING 
 
Tunnel transport in QWIP is generally described using 
the WKB approximation5,16,17, which relies on two 
assumptions: (i) The variation of the potential barrier is 
small compared to the electron wavelength. (ii) The 
tunneling probability from the final state is negligible. 
The WKB expression, which gives the tunneling 
probability of a particule of energy E  through a 
potential barrier U(x) between points a and b,  is given 
by the expression (50.9) from the Landau-Lifchitz 
book18 : 
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where m* the effective mass of the electron in GaAs, 
h  the reduced Planck constant and 



( ) ( )( )xUEmxp −= *2  is the electron momentum . 

Such an approximation leads to the following 
expression for the current density:  
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where e is the elementary charge, E1 is the ground state 

energy, 

1

)exp(1)(
−








 −
+=

Tk

EE
Ef

b

fw
FD the Fermi 

Dirac population factor, kb the Boltzmann constant, T 
the temperature, fwE  the Fermi level in a well, F the 

electric field, Lb the barrier width, 1−
WKBτ  is the inverse 

of the time for which an electron succeeds in crossing 

the barrier. Following Gomez5 1−
WKBτ  could be written 
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is the WKB probability that the electron tunnels 
through the trapezoidal barrier. Here Vb is the barrier 
height and mb* the effective mass in the barrier. 
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FIG. 2. Experimental and theoretical (WKB) current 
density as a function of the applied bias. 

 
FIG 2 shows a comparison between WKB 

prediction and the experimental results. Clearly, WKB 
approximation fails to reproduce the I(V) plateau. This 
result is consistent with the probability P in Eq.(2) 
being a strict monotonic function of the applied bias V. 

This discrepancy is however unexpected since WKB 
approximation generally yields a good agreement with 
experience for similar devices5. 
The reason of this discrepancy is the following. In Ref 
18, it is clearly stated that WKB approximation is valid 
if one neglects the reflected wave from the final state 
(x>b) (see the discussion below expression 50.2 in ref 
18). This can be easily explained in simple terms. In 
the WKB approximation, the potential barrier between 
points a and b is split into thin slices {xi, xi+1} of 
thickness ∆. If one neglects the reflected waves in the 
potential barrier (i.e. condition ii), the particle 
wavefunction between xi and xi+1 is: 

( ) x
ii
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eAx h
−=ψ so that the probability Di of the 

wave to reach xi+1 from xi is ∆−= h

ip
2

i eD if the 

variation of p(x) is small over ∆ (condition i). The 
probability of the particule to tunnel through the 
potential barrier is thus: 
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As clearly stated in the reference 18, this is valid if the 
electron wave function is delocalized for x>b, but not 
if the wavefunction is localized for x<b, in which case 
the reflected wave from b to a is of course not 
negligible. Consequently, the WKB approximation 
cannot take into account the effect of scattering in the 
neighbouring wells, which is the main coupling 
mechanism for transporting the electrons from well to 
well in this hopping regime. 

IV. SCATTERING APPROACH 
 

We thus chose to develop a scattering approach 
of transport in multi Quantum Wells (MQW). 
Scattering methods have already been used to model 
the quantum transport in heterostructures for resonant 
tunnel diodes19, MQW structures20,21 and more recently 
in Quantum Cascade Lasers22,23 (QCLs). But only little 
work has been devoted to applying this method to 
weakly coupled SLs24, mainly because of the difficulty 
to deal with the low coupling effects.  

The high quality of the GaAs material, grown by 
Molecular Beam Epitaxy (MBE), allows us to evaluate 
a scattering rate and a current from microscopic 
Hamiltonians, since no uncontrolled or detrimental 
material defects (deep levels, hopping on defects,…) 
prevail. Our model includes the six main interactions 
observed in GaAs-based materials: optical phonon, 
acoustical phonon, alloy disorder, interface roughness, 
ionized impurities and interactions between carriers 
(see appendix A to F for details on the scattering rate 
evaluation). No a priori hypothesis is made concerning 
the magnitude of each process. However, we assume 
that the GaAs material grown by MBE is of high 
enough quality to disregard scattering due to 
dislocations. We also assume that no neutral impurities 
are involved in the transport mechanism.  

 



It is important to understand that the tunnel 
transport between ground states is a very inefficient 
mechanism in the weakly coupled Quantum wells 
(QW) considered here. Indeed, we can assume that a 
MQW is a stack of doped planes with a typical doping 
of 3⋅1011cm-2. Considering that the current density in 
the plateau regime is  10-6 A.cm-2, (see FIG. 1a) we can 
conclude that the typical scattering rate is given by: 

mstensome
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ne ≈≈= −
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(3) 
 

This means that an electron is scattered from 
one well to the next every ten milliseconds. This time 
should be compared to the intra-well scattering time 
which is less than one picosecond20,25 within the 
conduction band, (ten orders of magnitude smaller). 
Consequently we are dealing with very unlikely events. 

Our model is based on the evaluation of the 

inter-well scattering times 1−Γ  using the Fermi Golden 
Rule (FGR). The tunnel transport between ground 
states is rather simple to model since it only couples 

two dimensional (2D) levels. The time 1−Γ  is included 
in the current expression: 
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where 
2

*

hπ
m

is the 2D density of states (DOS). The use 

of an equilibrium population factor is motivated by the 
fact that the inter-well scattering rate is several orders 
of magnitude lower than the intra-well rate, which 
leads to a thermalized subband for each well26. Our 
model includes the direct current (J+, the electron 
relaxes from the upper well to the lower one) and the 
reverse current4 (J-, the electron flows up the 
structure), see FIG.  3. In this Wannier-stark approach, 
the current writes: 
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FIG.  3. Band profile of the QWIP under an electric 
field of 3 kV.cm-1. 
 

The expression of the scattering rate given by 
the FGR is: 

 

∑ −=Γ
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 In this expression i and f point out the initial 

and final states, fi /ε the associated energy and Ĥ  the 

perturbation Hamiltonian. The wave functions are 
evaluated in the envelope function formalism27 
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growth. The wavefunctions zk fi /
ξ  are evaluated using 

a two band kp method in a two wells structure28. The 
energy associated with this level 
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m
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+=ε with Ei the energy of the ground 

state. Non-parabolicity for the in-plane dispersion is 
neglected in the current calculation. Indeed the 
exchanged energies remain very low compared with 
the inverse of the coefficient of non-parabolicity of 

GaAs (
*2

)1(
22

m

k
EE

h=+ α , 161.0 −= eVα )29. The 

wave functions and the ground state energies are 
evaluated for each value of the electric field, so that 
Stark effects are taken into account in our model. The 
electric field is denominated by F and the period of the 
superlattice is Ld. The periodicity allows us to replace 
the fi EE − quantity by .deFL  

In order to compare the theoretical J(F) curve 
with the experimental J(V), we assume that the electric 
field on the structure is homogeneous. It is well known 
that the electric field distribution leads, for a given 
bias, to a higher electric field in the vicinity of the 
contact than in the center of the structure30,31. Typically 
the difference between the homogeneous electric field 
and the “real” electric field is about a few ten %32. 
Nevertheless, the higher the number of periods, the 



lower the associated correction. Our structure contains 
forty periods and this "mean field" approach should be 
adequate. There are two main consequences to this 
homogeneous electric field hypothesis: first we neglect 
all contact effects33 and then we assume that no electric 
field domain13,34 exists in the QWIP. To justify the last 
point, we used the high wavelength part of the FTIR 
measurement (Fig. 1 (b)), (assuming that the electric 
field profile is the same with and without photon flux). 
In the high wavelength part of the spectrum, the 
photon energy is lower than the bound-to-extended 
state transition energy, so that the electron does not 
have enough energy to be excited directly into the 
continuum. In fact, the electron is rather subject to 
tunneling assisted by photon and electric field, through 
the triangular part of the barrier35. This tunneling 
probability depends on the electric field value. Thus, 
the translation of the photocurrent spectrum with the 
bias reflects the field reigning on each quantum well, 
which allows us to conclude that the bias is effectively 
applied on the QWIP. 

Because of the large barrier involved in our 
structure, quantum wells are very weakly coupled and 
the miniband width is in the nano-eV range15, whereas 
the potential drop per period is some tens of meV. 
Electrons are thus highly localized and their 
wavefunctions are consistently described by their 
unperturbed quantum well wavefunctions. 
Consequently our approach is based on a hopping 
mechanism from one well to the next one. This is an 
important difference with the paper of Castellano15 et 
al in which the I(V) plateau is attributed to a saturation 
of the electronic velocity in a very narrow miniband 
(Esaki-Tsu approach). 

 
V. RESULTS 

A. Parameters used for modeling 
A temperature of 10 K is used. The other 

parameters used for the evaluation of the scattering 
rates are given in the following table:  

 
TABLE 1. Interaction parameters used for 

simulation (see Appendices A to F) 
Parameter unit value 

m*20 kg 0.067.m0  

sr εε ≈ 13, 48 A2s4m-3kg-1 12.9 0ε  

∞ε 48 A2s4m-3kg-1 10.9 0ε  

LOwh 48 meV 36.6 

ρ 19 Kg.m-3 5320 

cs
19 ms-1 5220 

Dc
19 eV 12 

∆ 21,53,36,37 nm 0.3 

ξ 21,53,36,37 nm 6.5 

∆ V=VAlAs-VGaAs
21 eV 0.836 

a48 nm 0.565 

Vb=∆ V.x13 eV 0.128  

with m0 the free electron mass and 0ε the vacuum 

permittivity. 
B. Scattering rates 
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FIG. 4. Product of the scattering rates, for Ki=0, by the 
population factor of the arrival level, as a function of 
the bias for the six considered processes. 

 
FIG. 4 shows the product 

))(1(),( fFDfFE ε−×Γ  of the scattering rates, for a 

null initial wave vector (Ki=0), by the population 
factor of the arrival level, as a function of the bias. One 
of the main results of this graph is the fact that at low 
field (V<2V) the dominant interaction is the one 
between the electrons and the ionized donors. In the 
plateau regime (0.5V<V<1.5V), this interaction is at 
least one order of magnitude higher than the others. At 
higher bias (V>2V), other interactions such as LO 
phonon and alloy disorder also become important. 
Concerning LO phonon, we have to underline that this 
effect will not happen in a higher wavelength QWIP 
because of smaller exchanged energy. 

One should also notice that for very low bias 
(V<0.5V) the product of the scattering rate by the 
population factor is increasing, which is the 
consequence of the ))(1( fFDf ε−  factor. Electron-

electron interactions do not show this behavior because 
this factor was not included, due to the difficulty to 
evaluate the energy of the arrival states23. 

The FIG. 4 shows that a plateau is theoretically 
obtained in the scattering rates vs bias, which will lead 
to a constant current in this range. One might wonder 
what the physical origin of this plateau is. In fact, the 
plateau regime results from the competition between 
two different effects of the electric field. On the one 
hand, as described above, an increase of the electric 
field tends to enhance the wave function in the 
neighbouring well, see FIG. 5 (c), enhancing the 
scattering and thus the electrical current. On the other 
hand, the increase of the electric field tends to localize 
the wave function in each well (Wannier-Stark effect2), 
see FIG. 5 (b), leading to a decrease of the electrical 



current, i.e. a negative differential resistance (see FIG. 
5).  

C. Level broadening 
When the electric field is very low in the structure, the 
electron wavefunctions, which are unperturbed in our 
first order perturbation theory, tend to be degenerate 
and delocalized. This leads to an unrealistic infinite 
conductivity as it is well known in transport theory38. 
Rott et al.39 and Wacker40 have already demonstrated 
that for Wannier-Stark hopping a 1/Fn law is expected 
at low field, where the n value depends on the 
considered Hamiltonian. To correctly describe the 
ohmic regime it is of course necessary to take into 
account the decoherence effects on the transport 
mechanism. The question of the decoherence may be 
treated using a non equilibrium Green’s function 
method, but this method is highly computationally 
demanding41. Other teams have also tried to include 
decoherence using the density matrix formalism, see 
the work of Iotti et al.42, Callebaut et al.43 and more 
recently Gordon et al.44. In order to take this effect into 
account while keeping a simple first order calculation, 
the easiest way is to introduce a lifetime broadening38. 

Following a Wannier-Stark approach2, the 
delocalized part of the wave functions magnitude is 

given by  






 ∆

deFL
J

2
0

1 , with J1 the first order Bessel 

function (see FIG. 5 (b)). The current density is 
proportional to the part of carrier wave function 
delocalized in the next well. So the associated current 

is 
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approach the role of the electric field is to localize the 

wave function when the field is higher than 0∆ . 
When 0F →  , this latter expression diverges as 
explained above. To take into account the level 
broadening due to intrawell scattering, we introduce a 

imaginary part τ
hi  to the transition energy45 which 

leads to an effective field τ
h

ieFLLeF ddeff += . It 

may be easily shown that it is also equivalent to 
introducing a coherence length for the electron wave 
function. The value of the dephasing time τ has been 
taken equal to the intrawell scattering time (scattering 
between two states of the same subband and the same 

well) Hz13101.1
1 ×=
τ  and has been obtained with 

the same scattering method. Such a value is consistent 
with previous theoretical20  and experimental25  results. 
This value is also very close to the broadening energy 
(50fs) extracted from our spectral measurements. The 
expression of the current is thus: 
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Using the fact that eFLd>> 0∆ , and
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From this latter expression, it is clear that the diverging 
effect of the Wannier-Stark delocalisation is smoothed 
out by the dephasing time τ.  
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FIG. 5 (a) The current variation for an increasing 
electric field is the result of a competition between the 
enhanced probability of the electron to be in the 
neighbouring well (enhancing scattering), and an 
enhanced Wannier-Stark localisation of the electrons 
in their well. For very low fields, the dephasing time 



(equivalently the coherence length) of the electrons 
localize the electron in the wells. (b) Effect of the 
electric field on the downstream wave function, the 
arrow shows the effect of the localization on the wave 
function. (c) Effect of the electric field on the upstream 
wave function, the arrow shows the effect of the 
barrier lowering on the wave function. 

D. Theoretical dark current 
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FIG. 6. Current density as a function of the bias for the 
six processes considered. 

 
FIG. 6 shows the predicted current as a function 

of the electric field for the six interactions. The 
theoretical curve taking into account the 6 mechanisms 
(full line) can be compared with the experimental 
curve (squares). Our model is able to reproduce the 
null differential conductance behavior. We can observe 
that on the plateau regime the agreement between 
theory and measurement is quite good, typically a 
factor three. Because of the quadratic dependence with 
the doping of the current due to ionized donors (see 
Appendix E) this factor three may result of an 
uncertainty of “only” 70% on the doping value. Other 
effects such as uncertainty on aluminum concentration 
or segregation of aluminum and silicon may also be 
involved in this difference.  
VI. INFLUENCE OF THE DOPING DENSITY 

AND PROFILE 
 
One of the main advantages of our microscopic 

approach is that we can describe the effects linked to 
the doping density and profile. Such effects are 
expected to be quite important since we have 
demonstrated that the electron-ionized donors 
interaction dominates the plateau regime. We 
underline that our model gives a quadratic dependence 
of the current with the doping density: 

)(nneJ Γp  (8) 

with an explicit sum over the number of electrons 
(equal to the doping) and one implicit sum included in 
the scattering rate over all the scattering centers. 
To experimentally validate this dependence of the 
current as a function of the doping magnitude we have 
grown two series of samples which only differ by the 
magnitude of the doping. The first structure is very 
close to the previous sample with a well (barrier) width 
of 7.2 nm (34 nm), the aluminium content in the 

barrier is 15% and a Si doping in the central part of the 
well. The sheet densities are repectively 1×1011cm-2 
(component B1) and 2×1011cm-2 (component B2). The 
structure includes sixty periods. FIG. 7 presents the 
associated dark current. The ratio of the two plateau 
magnitudes is 4.6, whereas 4 was expected. Similar 
results have been obtained in a second structure 
(Lw=8nm, Lb=40nm, %Al=13%, forty periods and a 
doping of 2×1011cm-2 and 4×1011cm-2), where a ratio 
very close to 4 was effectively measured. 
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FIG. 7 Dark current as a function of the applied bias 
for component B1 (doping level of 1×1011cm-2 ) and B2 

(doping level of 2×1011cm-2 ). 
 

There is a clear added value relatively to the 
Esaki Tsu-like15 model which is independent of the 
doping. Even more, the current is not only sensitive to 
the doping value, but also to its position. 

This last part will study effects such as 
segregation or the influence of impurities inside the 
barrier, since those two parameters are difficult to 
control precisely and may have significant effect on 
the current. 

A. Doping position 
We have first theoretically studied the 

dependence of the current as a function of the position 
of these impurities. We have scanned the position of an 
ideal delta doping (1Ǻ) trough the well and plot the 
associated current in FIG. 8. The electron sheet density 
is kept constant through the scan. In our model, we 
expect the current to decrease while driving the doping 
layer away from the wavefunction maximum, since the 
scattering overlap integrals are strongly reduced. This 
behavior is clearly observed in FIG. 8. Let us note that, 
because of the applied electric field of 10kV.cm-1, the 
maximum of the curve is not at the center of the well, 
but shifted of nearly 15 Ǻ in the direction of the 
electric field.  
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FIG. 8. Dark current density (full line) as a function of 
the doping position in the well, under an electric field 
of 10 kVcm-l. The dotted line is the current value for 
the same electric field but without ionized impurities. 
Thus it may be possible to reduce the dark current by 
shifting the doping position from the center of the well 
to an other position. To confirm this prediction, we 
have grown two samples (Lw=6.8nm, Lb=39nm, 
%Al=15%, 40 periods, sheet density 3×1011cm-2). The 
doping is respectively in the central third of the well 
(component C1) and on the last third (grating side) of 
the well (C2).  
We have plotted on FIG. 9, the magnitude of the dark 
current as a function of the temperature under a bias of 
-1.5V. Using X ray diffraction and spectral 
measurements we have measured that the structure C2 
presents a lower confinement (transition energies 
respectively of 88.3 meV for C1 and 87.4 meV for 
C2). Consequently at high temperature (T> 35 K), this 
sample presents a higher thermoionic dark current due 
to a more efficient thermal activation of the electron. 
At low temperature however, in spite of its lower 
confinement, this C2 structure displays a less 
important tunnel current, which results from the fact 
that the interwell hopping scattering rate has been 
effectively reduced, as expected fro our theory. 
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FIG. 9 Dark current as a function of the temperature, 
under a voltage bias of -1.5V, for the component C1 
and C2. The grey pattern indicates the doping position 
into the well. 
 

B. Segregation and I(V) asymmetry 
Since our model takes into account the doping 

profile, it can also be used to predict the effect of 
doping segregation46. The segregation length is a 
function of the growth temperature47 and partial 
pressure of the different deposited elements. As a 
realistic approximation31, we assumed that our doping 
distribution is an asymmetric trapezoid. This trapezoid 
is composed of three zones, see the inset of FIG.  10. 

The first zone of length L1 represents the 
segregation in the direction opposite to the growth. 
This segregation is quite low and thus the segregation 
length (L1) is taken equal to 5 Ǻ.  

The second zone corresponds to the nominal 
place of doping. 

The last zone corresponds to a segregation in the 
direction of the growth, and consequently shows a 
higher segregation length (L2). For our typical growth 
temperature the segregation length is in the range 25-
50Ǻ, as reported by Wasilewski et al47. 

The volume doping density has been chosen 
such that, whatever the values of the segregation 
lengths, the sheet density remains unchanged. 
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FIG.  10. Theoretical dark current density, as a 
function of the electric field, for different values of 
segregation lengths (L1 and L2). Inset: doping profile in 
a quantum well. 

 
We observe that the segregation reduces the 

dark current (FIG.  10). This is explained by the fact 
that the segregation tends to move the doping away 
from the center of the well.  

The asymmetry of the I(V) curves is often 
attributed to the doping segregation. Rather than 
changing the polarity of the applied field in our 
simulation (which implies to re-evaluate all wave 
functions and energy values), we changed the direction 
of segregation, L1 becoming L2 and vice versa.  

Using our segregated profile (L1=5Ǻ, L2=50Ǻ), 
our model predicts a ratio of I+ (current under positive 
bias) over I- (current under negative bias of 1.3, for a 
bias of 1V (on the plateau). The experimental value of 
this ratio is included in the 1.5-1.6 range, leading to a 
difference between experimental and theoretical value 
of 20%.  

As expected, the segregation introduces an 
asymmetry with the bias polarity. The quantitative 



agreement is acceptable if we consider the hypothesis 
made on the doping profile shape. 

C. Importance of the growth method. 
As we have shown that the ionized impurities 

play a major role in the value of the dark current, it is 
important to study the influence of the growth method. 
Indeed, because of the high reactivity of the 
aluminum54, non desired impurities can be present in 
the barrier. Impurities such as carbon, oxygen, silicon, 
sulfur, tellurium and germanium can be incorporated 
with a concentration which is dependent on the growth 
method. With MBE the residual concentration is below 
SIMS resolution,54 typically ~some 1014cm-3. With 
Metal Organic Chemical Vapor Phase Epitaxy 
(MOVPE) this concentration is typically one order of 
magnitude higher. As shown in FIG. 11, the presence 
of these impurities in the barrier, added to the nominal 
doping, has no influence for MBE, and is also 
negligible in the MOVPE case. Such a result is very 
important for the QWIP designer, since both methods 
can be used without major impact on the device 
performances. 
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FIG. 11. Dark current density as a function of the 
concentration of undesired ionized impurities in the 
barrier under an electric field of 10kVcm-1. The two 
rectangles highlight the typical range of concentration 
for MBE (leaned pattern) and for MOVPE (horizontal 
pattern) 

VII. CONCLUSION 
 

We have studied the electronic transport under 
dark condition of weakly coupled QWs at very low 
temperature, i.e. in the tunneling regime. The I(V) 
curves exhibit a plateau region, where the current 
displays a very low dependence with respect to the 
applied electric field. We have checked that this does 
not originate from electric field domain effects. We 
have shown that the usual WKB approximation is 
unable to reproduce this striking plateau regime. 
Consequently we developed a full quantum scattering 
approach of the transport, based on the Fermi golden 
rule and taking into account all the main interactions 
met in AlGaAs heterostructures. Our model suggests 
that the plateau regime is due to a competition between 
two mechanisms when the electric field is enhanced in 

the QWs: a decrease of the current due to the electric 
field localization of the carriers (Wannier-Stark effect) 
and an increase due to a higher scattering probability 
due to an increasing tunnel effect. We conclude that 
the electron-ionized donors interaction is the dominant 
one and obtain a good agreement between theory and 
experiment for the plateau value. We have applied our 
model to predict the influence of the doping density 
and profile on the dark current. We showed that our 
model is able to reproduce the I(V) curves asymmetry, 
at low bias, by the use of a segregated doping profile. 
We also demonstrated the very low effect of the choice 
of the growth method on the dark current. This work 
may promote the development of new doping profiles 
for QWIP operating in the low photon flux regime. 
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APPENDIX A: ELECTRON-LONGITUDINAL 
OPTICAL (LO) PHONON 

The typical value of the energy drop per period 
(10 to 35 meV in the plateau regime), remains lower 
than the GaAs LO phonon energy (36meV). 
Consequently there is a very low probability that this 
mechanism is the main one, at least for F<10kV.cm-1. 
Moreover the very low operating temperature is not 
favorable to this type of scattering.  
The Hamiltonian describing the interaction between 
electron and longitudinal phonon can be written as 
19,20 hcbeqH

q
q

rqi

phonone
+=∑ +

−

rr

)(
/

α , where q is the 

momentum of the phonon, )(qα describes the strength 

of the interaction and 
+

qb  the phonon creation 

operator. In the particular case of optical phonon 
)(qα is linked to the Frölich interaction48 , where the 

electric field due to the dipole of the GaAs doublet 
interacts with an electron: 
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with 
sp εεε

111 −=
∞

. Here LOwh is the energy of the 

optical phonon is GaAs, Ω  the volume of the 
sample, ∞ε and sε  are respectively the dielectric 

constant at infinite and null frequency and q0 the 
inverse of the screening length. Such an Hamiltonian 
considers only bulk phonons. Readers interested in 
other types of phonons (surface phonon for example) 
could read ref 49 and 50. The matrix element is equal 
to: 
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Here we can define the form factor related to this 

interaction 
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zeqF ξξ= . Now this 

expression can be included in the FGR  giving: 
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By evaluating the integral over Kf one finds23:  
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and 

)cos(2222 θfifi KKKKQ −+=  (A5) 
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In such an expression, the Bose Einstein factor which 
describes the population of phonons is taken equal to 
unity. This choice is justified by the fact that 
temperature is very low, which implies that no optical 
phonon absorption is possible. 
 

APPENDIX B: ELECTRON-LONGITUDINAL 
ACOUSTICAL (AC) PHONON 

As for optical phonons, the very low 
temperature is again not favorable to the interaction 
between acoustical phonons and electrons. However, 
because of their lower energy, our model needs to 
include both emission and absorption of acoustical 
phonons. 
The considered Hamiltonian is a classical electron-
bulk acoustical phonon interaction, based on Debye 

dispersion i.e.  hcbeqH
q

q
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where Dc is the acoustic deformation potential, Ω  the 
volume of the sample, ρ  the density and cs the sound 

velocity, q the phonon wave vector and 
+

qb the phonon 

creation operator. We define 
s

c
AC c

D

.2

2
2

ρ
α h

= 19 for an 

easier reading. The matrix element associated with this 
interaction can be written as: 
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The form factor associated to this interaction is defined 

by the following expression 
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Finally the transition rate is given by 23   
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and 
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and 
22 Qqqz −=  (B7) 

 
Here nBE is the Bose Einstein distribution. In the case 
of absorption, this 1+nBE factor is replaced by nBE. 
 

APPENDIX C: ALLOY DISORDER (AL) 
In Al xGa1-xAs alloy the presence of aluminium in 
substitution of the gallium induces scattering, because 
of the different atomic potential of the two atoms. It is 
quite hard to evaluate a priori the magnitude of this 
interaction. Such a scattering is usually treated by a 
potential proportional to the deformation. 

)(. rxVV δ∆= 21 where V∆  is the band offset 
between GaAs and AlAs. Generally, the calculation 
consists in defining a statistical correlation function 
between the aluminium atoms positions , following the 
Nordheim rule51: 
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where 0Ω is the size of the primitive cell. We can now 

evaluate the mean value of the matrix element 
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and so 
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We define the associated form factor 
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To conclude, the expression of the scattering rate is 
given by: 
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which is equal to 
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APPENDIX D: INTERFACE ROUGHNESS (IR) 
Because of the wide barriers and the small 

number of interfaces we do not expect this process to 
be dominant. This is a main difference between QWIP 
and Quantum Cascade Detector52 (QCD) or QCL. In 
the latter, wells are highly coupled and barriers are 
quite thin, making interface roughness a non negligible 
interaction at low temperature22. The treatment for 
interface roughness21,53 is very close from the one 
made for alloy disorder: Unuma21 makes the remark 
that interface roughness is the sheet equivalent of the 
alloy disorder. As for alloy disorder we start by 
defining a linear potential with the perturbation: 
 

)()()( rFzzVrV ibIR −∆= δ , 
(D1) 
 

where Vb is the band offset between GaAs and AlxGa1-

xAs, ∆  is the magnitude of the interface defects and 
F(r) is the spatial distribution of defects. The delta 
function underlines the local character of this 
interaction. Most often F(r) is chosen to follow a 
Gaussian correlation function: 
 

)
'

exp()'().(
2

2

ξ
rr

rFrF
−

−=  
(D2) 
 

with ξ  the correlation length. The matrix element is 
now given by 
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and the very simple form factor can be written: 
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In the case of multiple interface the form factor is 

summed over all interface positions (zi). 
Considering 

the elastic character of the interaction 
 

)(
*2

2

22
fiij EE

m
KK −+=

h ,
 

(D6) 
 

the exchanged wave vector fi KKQ −=  becomes: 
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To finish, the scattering rate is: 
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APPENDIX E: IONIZED IMPURITIES (II) 
Scattering by ionized impurities is involved in 

two different ways in QWIP: first, through the doping 
which is generally localized in the well. Then the high 
reactivity of the aluminum in the barrier leads to the 
inclusion of undesirable impurities (mostly carbon) in 
the barrier. Concentration of residual impurities is 
highly dependent of the growth method54. As shown in 
Sec. VI-C, our model can conclude on the importance 
of residual impurities. It is also able to take into 
account the segregation of the doping, which leads to 
asymmetric I(V) curves with bias polarity.  

In the following we assume that impurities are 
completely ionized, even at low temperature. The 
Coulombian Hamiltonian is: 
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V is Fourier transformed39 

Q

eee
QV

ii rriQzzQ

Q
r

")"(

0

2

2
)(

−−−

∑=
εε .

 
(E2) 
 
 

Thus the matrix element is given by 
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We can also define the associated form factor 
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The scattering rate is obtained by summing over all 
positions of the doping (zii) : 
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In order to take into account the screening of the 
interaction, we used a Thomas-Fermi approach with a 

constant screening length48 
Tk

ne
q

brε

2
2

0 = , n the 

volumic doping and rε  the permittivity of the 
materials. It leads to an effective wave vector39,55 

2
0

2 qqqeff += . Note that unlike the previous 

process (LO, AC, AL, IR), Coulombian interactions 
will lead to a quadratic dependence with the doping. 

APPENDIX F: ELECTRON ELECTRON (EE) 
Electron-electron interaction is certainly the 

most difficult interaction to understand. To deal with 
it, some authors use Green function formalism56,57. 
Only little work has been devoted to the treatment of 
this interaction using the envelop formalism, we could 
quote works of Smet58, Harrison23 and Kinsler59. This 
lack is the consequence of the very time consuming 
numerical treatment. All theoretical difficulties in the 
treatment of this interaction are due to the two bodies 
type of this interaction. Initial states will be noted as 

i  and j , and the final states as f  and g . The 

interaction potential is, as for ionized impurities, the 
Coulombian potential, so the matrix element can be 
written 
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After having Fourier transformed the potential and 
defined the form factor by: 
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the matrix element Mee becomes 
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This expression could be injected in the FGR to obtain 
the expression of the scattering rate: 
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This expression depends on the kinetic energy of 

the two initial states i  and j . In order to use the 

scattering rate of the process in the same way as the 
previous ones, we sum this expression over all j initial 
states. 
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where 
 

))(1))((1)((,, gFDfFDjFDgfj fffP εεε −−=  

(F6) 
 

is the population factor of the different states which 
appear in the expression. Because it is very difficult to 

obtain separately fε  and gε , the expression is 

simplified into )(),,(,, jFDfjgfj fkkkP ε= . This 

approximation allows us to obtain an upper limit of the 
scattering rate, which is not an issue if this interaction 
is not the main one. Kinsler et al59 have however 
proposed a solution to avoid this approximation. To 
finish the expression of the scattering rate is given by 
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with α  and θ  two angles. The expression of qxy is the 
following one 
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(F8) 
with 
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and 
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For a more detailed calculation one should read 
Harrison‘s book23. 
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