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ABSTRACT: Marine planktonic communities can be affected by increased temperatures associ-
ated with global climate change, as well as by increased ultraviolet B radiation (UVBR, 280−
320 nm) through stratospheric ozone layer thinning. We studied individual and combined effects
of increased temperature and UVBR on the plankton community of the Beagle Channel, southern
Patagonia, Argentina. Eight 2 m3 mesocosms were exposed to 4 treatments (with 2 replicates) dur-
ing 10 d: (1) control (natural temperature and UVBR), (2) increased UVBR (simulating a 60%
decrease in stratospheric ozone layer thickness), (3) increased temperature (+ 3°C), and (4) simul-
taneous increased temperature and UVBR (60% decrease in stratospheric ozone; + 3°C). Two dis-
tinct situations were observed with regard to phytoplankton biomass: bloom (Days 1−4) and post-
bloom (Days 5−9). Significant decreases in micro-sized diatoms (>20 µm), bacteria, chlorophyll a,
and particulate organic carbon concentrations were observed during the post-bloom in the
enhanced temperature treatments relative to natural temperature, accompanied by significant
increases in nanophytoplankton (10−20 µm, mainly prymnesiophytes). The decrease in micro-
sized diatoms in the high temperature treatment may have been caused by a physiological effect
of warming, although we do not have activity measurements to support this hypothesis. Prymne-
siophytes benefited from micro-sized diatom reduction in their competition for resources. The bac-
terial decrease under warming may have been due to a change in the dissolved organic matter
release caused by the observed change in phytoplankton composition. Overall, the rise in temper-
ature affected the structure and total biomass of the communities, while no major effect of UVBR
was observed on the plankton community.
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INTRODUCTION

Warming due to increased greenhouse gas concen-
trations in the atmosphere, and increased ultraviolet
B radiation (UVBR, 280−320 nm) through the thin-
ning of the stratospheric ozone layer (Häder et al.
2007) at high latitudes of both hemispheres, are 2 of
the main global processes with consequences for
marine planktonic organisms. Strong regional warm-
ing has already triggered changes in Patagonia’s
water temperature (Thompson & Solomon 2002), and
further warming is expected in the next few decades
(Houghton et al. 2001). Indeed, models predict an
increase of 1.7 to 3.9°C (median of 2.5°C) of the
annual temperature in the southern part of South
America by 2080−2099 (Christensen et al. 2007
[IPCC 2007]). Increasing water temperature may
have both positive and negative effects on marine
microbial communities. In this sense, the increase in
metabolic activity (e.g. primary production; Ingram
1979) might be considered a positive effect. In con-
trast, stenothermal species may not be able to toler-
ate high water temperatures (e.g. Williamson et al.
2002). In Patagonia, Giordanino et al. (2011) ob -
served that among 4 species of cyanobacteria, only 2
benefited from a 5°C increase in water temperature,
in terms of photosynthetic performance. An increase
in water temperature may also have a more general
effect on the whole microbial community, possibly
favoring small cells (i.e. pico- and nanophytoplank-
ton) over larger cells (i.e. microphytoplankton) as
shown by Morán et al. (2010) for the North Atlantic
Ocean, by Montes-Hugo et al. (2009) for the western
Antarctic Peninsula, and by Li et al. (2009) in the Arc-
tic Ocean as a result of regional warming and Arctic
waters freshening.

The thinning of the stratospheric ozone layer (i.e.
the so-called ‘ozone hole’) has been mostly docu-
mented over the Antarctic (McKenzie et al. 2007) but
is also a threat to other regions of the world such as
Patagonia and the Arctic (Manney et al. 2011).
Through the rotation of the polar vortex, Patagonia is
periodically exposed to the ozone hole and therefore
to high UVBR (Orce & Helbling 1997, Casiccia et al.
2008). In fact, Patagonia has been exposed to the
ozone hole since at least 1990 (Díaz et al. 2006).
Under the Antarctic ozone hole, a 60% decrease in
the stratospheric ozone layer thickness is commonly
observed and leads to a 510% increase in UVBR
(Booth & Madronich 1994). Because the stratospheric
ozone layer is not expected to fully recover before
2070 (McKenzie et al. 2007), it will remain a threat to
marine organisms for the next few (3–4) decades.

UVBR may have strong deleterious effects on marine
organisms such as phytoplankton, bacteria, and
microzooplankton which compose the microbial
communities (for a review of potential UVBR effects
see: Sinha & Häder 2002, Häder & Sinha 2005, Häder
et al. 2007, Llabrés et al. 2012, Ruiz-González et al.
2013). In addition to the negative effects of UVBR at
the organism level, there may be UVBR effects on the
whole microbial community through trophic interac-
tions (e.g. Mostajir et al. 1999a, Ferreyra et al. 2006).

Increases in water temperature and in UVBR may
affect the microbial community separately, synergis-
tically, or antagonistically. For example, increased
temperatures may counter the negative effects of
UVBR by increasing metabolic activities and, there-
fore, by increasing the rates of enzymatic photorepair
mechanisms (Bouchard et al. 2006). Halac et al.
(2010) observed lower UVBR-induced photoinhibi-
tion in 2 diatom species when they were exposed to a
5°C increase in water temperature. In contrast, an
increase in water temperature may increase the
stratification of the water column (Sarmiento et al.
2004), which may in turn confine microorganisms
within a shallow water column and maximize their
exposure to UVBR as observed by Moreau et al.
(2010) in early spring in the western Antarctic Penin-
sula. Few studies have investigated the combined
effects of temperature and UVBR on aquatic micro-
bial communities. Rae & Vincent (1998) observed no
synergistic effects of temperature and UVBR on sub-
arctic freshwater communities. Fouilland et al. (2013)
observed both a decrease in bacterial production and
an increase in primary production under warming in
Mediterranean coastal waters. Working on the same
experiment, Vidussi et al. (2011) observed significant
shifts in the plankton food web structure and func-
tion under warming. However, the effects of UVBR
on the microbial community were rarely significant
during their experiment. Finally, Lionard et al. (2012)
reported a positive effect of a 3°C temperature in -
crease on the abundance of diatoms in the St. Law -
rence Estuary but low effects of UVBR.

With our current level of knowledge, it is not possi-
ble to accurately predict the outcome of the com-
bined increase in water temperature and UVBR
which threatens Patagonia because of trophic inter-
actions and the physical and optical dynamics of the
marine environment. The microbial community is at
the base of the marine food web and plays a crucial
role in marine ecosystems. Its structure, from the
microbial loop to the herbivorous food web (Legendre
& Rassoulzadegan 1995), will determine the fate and
allocation of carbon within the planktonic food web,
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as well as the transfer of carbon towards higher
trophic level predators and export (Legendre &
Rivkin 2002). In addition, its structure has an impact
on the role of the marine community in terms of CO2

dynamics (i.e. the biological pump) as shown by
Schloss et al. (2007) and Moreau et al. (2012, 2013).
There is therefore a great need to consider the whole
microbial community when studying the combined
effects of increases in water temperature and UVBR.
In this context, the goal of this study was to test for
single and combined effects of increased tempera-
ture and UVBR on the planktonic community of the
Beagle Channel in Southern Patagonia using a meso-
cosm approach.

MATERIALS AND METHODS

Experimental set up

The experiment was conducted in Ushuaia, Tierra
del Fuego Province (54° 49’ S, 68° 19’ W, Southern
Patagonia, Argentina, Fig. 1), during the summer
2008: from 10 February (Day 0), to 19 February
(Day 9). The mesocosms were filled with sub-surface

(~5 m depth) water from the Beagle Channel, a sub-
Antarctic coastal marine environment that connects
the Atlantic and Pacific oceans. Experiments were
run in 8 stainless steel land-based mesocosms (2 m3,
1.7 m deep and 1.2 m diameter) that were set up for
the present experiment.

Four treatments were applied in duplicate: (1) nat-
ural temperature and natural UVBR (‘control’), (2)
high temperature (+3°C) and natural UVBR (‘high
temperature’), (3) natural temperature and high
UVBR (simulating a 60% decrease in stratospheric
ozone layer thickness; ‘high UVBR’; Díaz et al. 2006),
and (4) simultaneous high temperature and high
UVBR (simulating a 60% decrease in stratospheric
ozone layer thickness and +3°C; ‘high tempera-
ture+UVBR’). The treatments were chosen to mimic
the worst, but realistic, conditions for, respectively,
the presence of the ozone hole above Patagonia and
the increase in temperature expected by 2100 (Chris-
tensen et al. 2007 [IPCC 2007]).

All mesocosms were exposed to the natural inci-
dent irradiance except for the high UVBR and high
temperature+UVBR treatments, in which natural
irradiance was supplemented with UVBR lamps. For
these 2 treatments, a set of 4 UVB lamps (UVB fluo-
rescent tubes, Philips TL40W-12RS) was fixed at
20 cm above the surface of each mesocosm. A set of
4 dummy lamps was added to the other mesocosms 
in order to obtain similar shading conditions for all
treatments. In addition, ultraviolet C radiation (UVCR,
<280 nm) was removed by wrapping the UVB tubes
with acetate films (SABIC polymer shapes, cat. Nr.
70600605; Díaz et al. 2006). The films were changed
every day because of the potential acetate degrada-
tion. The UVB lamps were switched on for 5 h (11:45
to 17:45 h) centered at local noon (~15:15 h) from 12
February (Day 2) to 19 February (Day 9). During the
experiment, incident irradiance (photosynthetically
active radiation, PAR, 400− 700 nm; ultraviolet A radi-
ation, UVAR, 320−400 nm, and UVBR) was moni-
tored at 15 min intervals using a ground radiometer
(GUV-541; Biospherical Instruments). The wave-
lengths considered were 305 and 313 nm (UVBR);
320, 340, and 380 nm (UVAR), and 400−700 nm in the
PAR range. In addition, irradiance profiles within the
mesocosms at the selected wavelengths (i.e. 305, 313,
320, 340, 380, and 400−700 nm) for the UVBR, UVAR,
and PAR were obtained every day at local noon
(~15:15 h) with a profiling radiometer (PUV-542T;
Biospherical Instruments). After each profile, the
PUV was rinsed first with nanopure water and subse-
quently with seawater from the next mesocosm to be
sampled, to avoid contamination among the experi-
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mental units. A 3°C increase in temperature (2100
trend, Christensen et al. 2007 [IPCC 2007]) was
applied to the high temperature and high tempera-
ture+UVBR treatments 1 d before the experiment,
and temperature in the mesocosms was then main-
tained constant from 10 February (Day 0) to 19 Feb-
ruary (Day 9). Temperature in the mesocosms was
controlled using a N480D electronic controller placed
1 m below the water surface, and data were recorded
every 60 s. The mesocosm temperature was changed
or maintained with external heat exchangers made of
fiberglass outside and of a series of stainless steel
tubes inside. These external heat exchangers allowed
heat exchanges between mesocosm water and an
alternate warm−cool external water source as de -
scribed by Thyssen et al. (2011).

Before filling the mesocosms with seawater, they
were rinsed successively with a chlorinated solution
and fresh water. On Day 0, the mesocosms were
filled with seawater from the Beagle Channel filtered
through a 300 µm Nitex net to exclude large zoo-
plankton. Seawater was poured into a single con-
tainer that distributed seawater homogenously
among the 8 mesocosms. The container was previ-
ously rinsed with a chlorinated solution and with
fresh water. To initiate a phytoplankton bloom, a 1 l
solution of 8.088 g KNO3, 0.6805 g KH2PO4 and a
20.35 ml solution of 30 g l−1 NaSiO3 was prepared
and 0.125 ml of this solution was added to each meso-
cosm (on Day 1) to increase nitrogen, phosphorus,
and silicium concentrations by 5, 0.31 and 0.39 µM,
respectively. Seawater within the mesocosms was
continuously mixed from the bottom to the surface
with a pump at a turnover rate of 1000 l h−1. To
ensure that mixing was performed correctly, vertical
profiles of water column properties (pH, dissolved
oxygen, temperature, and salinity; data not shown)
were measured 3 times a day with a U-10 HORIBA
multiparameter probe. These profiles confirmed the
homogeneity of the water column. At night, the
mesocosm openings were sealed with plastic covers
to avoid external contamination. One of the control
mesocosms presented technical difficulties and the
results are not presented here.

Sampling and sample analyses

Unless specified otherwise, all water samples were
collected through water outlets, located at the bottom
of the mesocosms, every day at 17:45 h after the lamp
increased UVBR exposure. Because of the continu-
ous mixing of the mesocosms, water samples were

considered as representative of the whole water
 column. For the analysis of pigment concentrations
by high performance liquid chromatography (HPLC),
400 to 600 ml of mesocosm water were filtered onto
25 mm diameter Whatman GF/F glass fiber filters
once or twice a day (8:00 and 17:45 h). Filters were
wrapped in aluminum foil, frozen in liquid nitrogen,
and stored at −80°C until analysis within 1 mo after
the end of the experiment. Concentrations of major
phytoplankton pigments were determined using a
Thermo Fisher HPLC system following the method 
of Zapata et al. (2000). The relative contribution of
major algal groups to total chlorophyll a (chl a) was
estimated using the CHEMTAX 195 program devel-
oped by Mackey et al. (1996). The initial matrix of
accessory pigments to chl a ratios is presented in
Table 1 and includes algal groups identified by
microscopy during this study as well as pigment-
based types of phytoplankton from Jeffrey & Wright
(2006).

For the analyses of nutrients (nitrate plus nitrite
and phosphate), 2 replicate 60 ml samples were
taken in each mesocosm every day at 08:00 h. Sam-
ples were filtered onto precombusted Whatman
GF/F filters and kept frozen at −20°C until analysis
within a month after the end of the experiment. The
analysis of nutrients was performed using a Bran
Luebbe Auto Analyzer 3 system following the
method of Grasshof et al. (1983).

For the analysis of the particulate organic carbon
and nitrogen concentrations (POC and PON, respec-
tively), duplicate 1 to 2 l samples were filtered onto
pre-combusted GF/F filters and stored at −20°C until
analysis with a CHN elemental analyzer (Costech
4010) within 1 mo after the end of the experiment.

For flow cytometry, water aliquots were put into
4.5 ml cryovials, fixed with glutaraldehyde (final con-
centration 0.2%) and kept frozen at −80°C until
analysis within 1 mo after the end of the experiment.
Samples were analyzed for phytoplankton and bac-
terial abundances using an EPICS® ALTRA™ flow
cytometer (Beckman Coulter®) according to Moreau
et al. (2010). Picophytoplankton (<2 µm), small nano -
phytoplankton (2−10 µm), and large nanophyto-
plankton (10−20 µm) were discriminated. Bacteria
with high and low nucleic acid content (HNA and
LNA subgroups, respectively) were discriminated
(Lebaron et al. 2001). Total free bacterial abundance
was used to describe the bacterial community distri-
bution, and the proportion of HNA cells (%HNA) was
calculated to determine the importance of the HNA
and LNA sub-populations in the whole community
(Gasol et al. 1999, Gasol & Giorgio 2000, Vaqué et al.
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2001). The carbon content of microorganisms
was calculated using different conversion fac-
tors for the different size classes: 220 fg C µm−3

for nanophytoplankton (Tarran et al. 2006),
1.5 pg C cell−1 for picophytoplankton, and 12 fg
C cell−1 for bacteria (Zubkov et al. 2000a,b).

Samples for the identification and enumera-
tion of phytoplankton and microzooplankton
were fixed in Lugol’s solution at 2% final v/v
concentrations in 300 ml glass amber bottles
and kept at 4°C. Organisms were identified to
the lowest possible taxonomic level and enu-
merated for Days 1 to 8 (phytoplankton) and for
Days 2, 4, 6, and 8 (microzooplankton), using
an inverted microscope according to the proce-
dures described by Utermöhl (1958). Microphy-
toplankton included all chain-forming diatoms
(e.g. Chaetoceros spp., Skeletonema spp.,
Pseudo-nitzschia spp.) and those single cells
>20 µm. Cell biovolumes were calculated using
the geometric shapes proposed by Hillebrand
et al. (1999) and corrected to account for cell
shrinkage caused by fixation of samples (Mon-
tagnes et al. 1994). Cell carbon content was cal-
culated with 2 different C to volume (V) ratios
depending on algal groups: pg C cell−1 = 0.288
V0.811 for diatoms and pg C cell−1 = 0.216 V0.939

for all other algal groups (Menden-Deuer &
Lessard 2000). Cell carbon content of microzoo-
plankton was calculated from the C:V ratio of
Putt & Stoecker (1989), where C:V = 0.19 pg
µm−3 for ciliates and using the carbon conver-
sion factor of 220 fg C µm−3 for heterotrophic
flagellates (Børsheim & Bratbak 1987). It is
worth noting that the fixation of samples with
Lugol’s solution may cause an underestimation
of coccolithophorids in micros copy. However,
as described below, the tendencies in the abun-
dance of prymnesiophytes observed under the
microscope were additionally confirmed by
other techniques such as flow cytometry and
HPLC.

To test the significance of the observed differ-
ences between treatments, repeated measures
ANOVA tests were run. If differences between
treatments were found, post-hoc Tukey tests
were performed. If normality and/or homo -
scedasticity were not verified, data were nor-
malized with a ranked transformation (i.e. chl a,
%HNA, pico- and nanophytoplankon). For
these variables, Friedman repeated measures
ANOVA tests on ranks were run. The daily
doses of UVBR and UVAR were calculated from
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Orce & Helbling (1997) as: UVBR = 59.5 × E305 + 4.1 ×
E320 and UVAR = 87.4 × E340 − 2.4 × E380, with E305,
E320, E340, and E380 the incident irradiance at 305, 320,
340, and 380 nm, respectively. For the analysis of op-
tical data, the depth of penetration of 10% of the inci-
dent light was calculated from the Beer’s- Lambert
law as Z10% = 2.3/Kd(λ) (Kirk 1994). The Z10% depth
was used as the limit of the photoactive layer (i.e. the
depth at which the effects of UVBR cease; Neale et al.
2003). Finally, the mean irradiance from the surface
of the mesocosm to the depth of penetration of 10% of
the incident light (Z10%) was calculated as in Vasseur
et al. (2003). Average ±SD are reported throughout.

RESULTS

Irradiance, temperature, chl a, and nutrient, PON,
and POC concentrations

The daily natural dose of UVBR, UVAR, and PAR
averaged 50.3 ± 11.8, 796.3 ± 130.6, and 7587.3 ±
1767.4 kJ m−2 d−1. The stratospheric ozone layer
thickness averaged 281.8 ± 17.7 Dobson Units (DU),
with a minimum of 255 DU. In addition, the UVBR:
UVAR ratio was significantly correlated to the thick-
ness of the stratospheric ozone (r2 = 0.699, p < 0.01).
Within 2 h before and after local noon (~15:15 h), the
incident UVBR at the surface of the normal UVBR
mesocosms averaged 171.9 ± 105.47 µW cm−2 s−1. At

the surface of the increased UVBR mesocosms, the in-
cident UVBR around local noon averaged 877.4 ±
394.3 µW cm−2 s−1 and corresponded to 510.2% of the
UVBR irradiance in the normal UVBR treatments
(Fig. 2). Moreover, the mean UVBR irradiance at
305 nm from the surface of the mesocosm to the depth
of penetration of 10% of the incident light (Z10%) was
5 ± 0.8 µW cm−2 for the high UVBR treatments and 0.8
± 0.4 µW cm−2 for the normal UVBR treatments. The
mean UVBR irradiance at 305 nm from the surface to
Z10% was significantly higher in the high UVBR treat-
ments from Day 2 to Day 9 (p < 0.01) relative to the
normal UVBR treatments. In contrast, no significant
differences were observed in the diffuse attenuation
coefficient between the increased and normal UVBR
treatments at 305 nm, with Kd of 3.29 ± 0.3 m−1 for the
increased UVBR treatments and Kd of 3.45 ± 0.97 m−1

for the normal UVBR treatments. Because no differ-
ences in Kd were observed between treatments, no
significant differences in the Z10% depths were ob -
served between the normal and high UVBR treat-
ments at 305 nm. The water temperature inside the
low temperature treatments was, on average, 12.05 ±
0.26°C from Day 1 to Day 9 of the experiment. In the
elevated temperature treatments, water temperature
was, on average, 14.92 ± 0.18°C from Day 1 to Day 9.

Chl a was low at the beginning of the experiment
and showed no difference between treatments, with
an average chl a of 1.6 ± 0.12 µg l−1 on Day 0 (Fig. 3a).
Following the addition of nutrients in the mesocosms,
chl a increased regularly from Day 1 to Day 4 when it
reached a maximum of 9.8 ± 0.7 µg l−1, averaged
among all mesocosms. The increase in chl a was con-
sidered as the bloom phase between Days 0 and 4.
During the post-bloom phase from Days 5 to 9, chl a
declined in all mesocosms, although this decrease
was significantly faster in the high temperature treat-
ments with significant differences between the high
and low temperature treatments on Days 5, 6, and 7
(Fig. 3, p < 0.01). On Day 9, chl a had decreased in all
mesocosms to an average final value of 4.2 ± 0.3 µg l−1.

Initial nitrite plus nitrate and phosphate concentra-
tions were 2.7 ± 1.5 and 0.5 ± 0.1 µM, respectively
(Fig. 3b,c). Nutrients were added to the mesocosms
on Day 1, and concentrations on Day 2 were 7.8 ± 0.6
and 0.8 ± 0.04 µM for nitrite plus nitrate and phos-
phate, respectively. After Day 2, and along with the
observed increase in chl a, both nitrite and nitrate
and phosphate decreased regularly to reach minimal
concentrations of 0.9 ± 0.2 and 0.3 ± 0.06 µM on
Day 5, respectively. Throughout the whole experi-
ment, there were no significant differences in nutri-
ent concentrations among the 4 treatments.
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Fig. 2. Incident ultraviolet B radiation (average ± SD UVBR,
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decrease in stratospheric ozone layer thickness); and (4)
high temperature+ UVBR: simultaneous high temperature 

and high UVBR



Moreau et al.: Temperature and UVB effects on plankton 

Both PON and POC concentrations increased dur-
ing the bloom phase from initial concentrations of
41.9 ± 0.8 and 257.1 ± 6.7 µg l−1, respectively, to max-
imal concentrations of 113.1 ± 13.3 and 618.1 ± 89.3
µg l−1 reached on Day 5, 1 d after the chl a maximum
(Fig. 4a,b). After reaching these maximal concentra-
tions, PON decreased regularly during the post-

bloom phase, while POC concentrations stayed high
from Day 5 to Day 8 before they also decreased on
Day 9. There were no differences in the accumula-
tion of PON between the treatments. In contrast,
POC concentrations were markedly lower in the high
temperature treatments during the post-bloom,
showing a similar trend to chl a (Fig. 4b). However,
this difference was only significant on Day 6 (p <
0.05).

Structure and dynamics of phytoplankton

Fig. 5a−c shows abundances of picophytoplankton
(<2 µm) and small (2−10 µm) and large (10−20 µm)
nanophytoplankton throughout the experiment. Pico -
phytoplankton bloomed very early in the experiment,
increasing in abundance from average initial con-
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centrations of 4.1 ± 1.3 × 103 cells ml−1 on Day 0 to
maximal concentrations of 13.5 ± 5.1 × 103 cells ml−1

on Day 2 (Fig. 5a). After Day 4 and to the end of the
experiment, picophytoplankton abundance stayed
low (with an average abundance of 3.1 ± 2.5 × 103

cells ml−1). There were no significant differences
in the abundance of picophytoplankton between
treatments.

Small nanophytoplankton was mainly composed of
coccolithophorids resembling Emiliania huxleyi and
other prymnesiophytes, of prasinophytes (Pyrami-
monas-like), of cryptophytes, and of other unidenti-
fied flagellates. The initial abundance of small
nanophytoplankton on Day 0 was 1.25 ± 0.05 × 103

cells ml−1 on average. Their abundance then in -
creased in all treatments up to Day 5, when it
reached an average concentration of 7.7 ± 2.1 × 103

cells ml−1 (Fig. 5b). After Day 5, small nanophyto-
plankton decreased to the end of the experiment in
all the treatments except for the control treatment, in
which it kept increasing. Overall, the abundance of
small nanophytoplankton was lower in the high tem-

perature treatments compared to the normal temper-
ature treatments during the post-bloom, although
that difference was not significant (p > 0.05).

Large nanophytoplankton was mainly composed 
of small diatoms of the genus Thalassiosira and un -
determined prymnesiophytes. Their initial abun-
dance was 0.67 ± 0.02 × 103 cells ml−1 on average and
increased up to Day 4, reaching an average concen-
tration of 7 ± 1.1 × 103 cells ml−1 (Fig. 5c). After Day 4,
their abundance followed a plateau-like phase in all
treatments. For the last 2 d of the experiment, their
abundance was significantly higher (p < 0.05 and p <
0.01 for Days 8 and 9, respectively) in the high tem-
perature (with an average abundance of 12.2 ± 2.1 ×
103 cells ml−1) than in the low temperature treatments
(with an average abundance of 5.5 ± 1.4 × 103 cells
ml−1). This increase in large nanophytoplankton
abundance was linked to the gradual replacement of
diatoms by prymnesiophytes in the high temperature
treatments (see below). Neither the pico- nor the
nanophytoplankton followed the evolution of chl a
illustrated in Fig. 3a.
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Microphytoplankton was mainly composed of
diatoms; dinoflagellates contributed to less than 1%
of the total microphytoplankton carbon biomass (data
not shown). Diatoms, which contributed to ~98% of
the microphytoplankton carbon biomass, were com-
posed of 2 main taxa, viz. Thalassiosira spp. (average
diameter 25 µm) and Asterionellopsis glacialis, with
an average contribution of 64.1 and 8.2% of the total
microphytoplankton carbon biomass, respectively.
The abundance of micro-sized diatoms throughout
the experiment is presented in Fig. 5d. The abun-
dance of micro-sized diatoms increased from the
beginning of the experiment up to Day 4, after which
it started to decrease with a trend similar to that of

chl a (Fig. 3a). During the post-bloom phase of the
experiment, there was a significant difference in the
abundance of micro-sized diatoms between the natu-
ral and high temperature treatments (i.e. on Days 5,
6, and 8; p < 0.01), which is also similar to the
observed chl a trend and consistent with the CHEM-
TAX results presented below.

HPLC pigment and CHEMTAX analyses are con-
sistent with the above results, with diatoms largely
dominating phytoplankton biomass in all treatments
from Day 0 to Day 4 with ca. 50% of the phytoplank-
ton biomass (Fig. 6). Euglenophytes and prasino-
phytes were the second and third groups, represent-
ing 10 to 25% of the biomass at the beginning of the
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experiment. Over the course of the experiment, how-
ever, euglenophytes progressively disappeared in all
treatments while prasinophytes remained stable. On
Day 0, prymnesiophytes only represented ca. 4% of
the biomass. An increase in prymnesiophyte pigment
biomass was observed during the chlorophyll post-
bloom phase. This increase was slight in mesocosms
at normal temperature, with prymnesiophytes repre-
senting ~20% of the pigment biomass (Fig. 6a,b).
However, this chlorophyll post-bloom increase was
larger in the high temperature treatments (Fig. 6c,d),
and prymnesiophytes progressively replaced dia -
toms and dominated the phytoplankton biomass with
ca. 80% of the biomass on Day 7.

Dynamics of bacteria

The average bacterial abundance was 2.09 ± 0.15 ×
106 cells ml−1 on Day 0, then it regularly decreased in
all mesocosms to an average abundance of 1.17 ±
0.12 × 106 cells ml−1 on Day 3 (Fig. 7a). From Day 3 up
to Day 7, the bacterial abundances increased in all
mesocosms to an average of 2.56 ± 0.33 × 106 cells
ml−1. After this, bacterial abundance kept increasing
in the normal temperature treatments to a maximum
abundance of 3.06 ± 0.17 × 106 cells ml−1 on Day 9,
while it decreased in the high temperature treat-
ments to a final abundance of 1.83 ± 0.18 × 106 cells
ml−1 on Day 9. Clear and significant differences were
observed between the normal and high temperature
treatments on Days 8 and 9 (p < 0.01).

In all mesocosms, %HNA was relatively low at the
beginning of the experiment (with an average of 50.2
± 1.1%; Fig. 7b). %HNA stayed low until Day 3, after
which it increased regularly in all mesocosms to
reach a maximum of 71.5 ± 2.4% on Day 8. This
increase was consistent with the increase in bacterial
abundance observed during the experiment. Inter-
estingly, %HNA decreased slightly towards the end
of the experiment on Day 9 following the observed
decrease in bacterial abundance (Fig. 7a,b). Through-
out the experiment, %HNA was significantly higher
in the high temperature treatments only on Days 3
and 4 (p < 0.01).

Dynamics of heterotrophic flagellates and ciliates

Microzooplankton biomass consisted mainly of 1
species of heterotrophic flagellate (Ebria tripartita,
20−30 µm), and of small (<20 µm) and large (>20 µm)
unidentifiable ciliates. They contributed to 9, 24, and

66%, respectively, of the microzooplankton carbon
biomass. This represents a rather small contribution
of heterotrophic flagellates to the total microzoo-
plankton biomass and abundance. This could have
been due to conservation problems or difficulties in
the counting of heterotrophic flagellates, and more
particularly with the small (<20 µm) heterotrophic
flagellates which may have been confused with other
small autotrophic flagellates. Hence, small heterotro-
phic flagellates may have been present in greater
numbers than reported here.

Except in the high UVBR treatment, total microzoo-
plankton abundance increased from Day 2 to Day 6
to an average abundance of 133.8 ± 98 cells ml−1 on
Day 6 and decreased between Days 6 and 8 to an
average final abundance of 27.5 ± 15.6 cells ml−1

(Fig. 8a). The abundance of the small ciliates fol-
lowed the same pattern, increasing from the begin-
ning of the experiment to Day 6 before decreasing to
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Day 8 in all treatments except in the high UVBR
treatment (Fig. 8b). Except for Day 6, when small cil-
iates were significantly less abundant in the high
UVBR treatment compared to the control (p < 0.05),
there were no significant differences in total micro-

zooplankton and small ciliate abundances among
treatments.

In the high temperature treatments, the large  ciliate
abundance followed the same pattern (i.e. increasing
from Day 2 to Day 6 before decreasing to Day 8,
Fig. 8c). In contrast, the abundance of the large cili-
ates increased regularly from Day 2 to Day 8 in the
control and the high UVBR treatment, although this
increase was more pronounced in the high UVBR
treatment than in the control. Finally, the abundance
of the large ciliates presented an important differ-
ence between the normal and high temperature
treatments on Day 6, although this difference was
only significant between the high temperature and
high UVBR treatments (p < 0.05).

DISCUSSION

It should be stressed that our results were obtained
from a mesocosm experiment and cannot be fully,
and without precautions, extrapolated to nature.
Mesocosms are large outdoor enclosures, but scaling
problems appear when trying to extrapolate results
to the natural environment (Petersen et al. 2003). In
addition, the increase in temperature that was ap -
plied in the present experiment is likely to occur on a
much longer time scale (by ~2100) than in our study.
In the course of global change, eurythermal organ-
isms are likely to adapt to higher water temperatures,
while stenothermal species should not tolerate these
expected higher temperatures (Williamson et al.
2002). This should result in a modification of the com-
position and structure of marine ecosystems that can-
not be predicted with our current state of knowledge.
In contrast, the increase in UVBR that was used in the
present study is already occurring due to the thin-
ning of the stratospheric ozone layer (Casiccia et al.
2008) and will continue to be a threat to marine eco-
systems until the ozone hole fully recovers towards
2070 (McKenzie et al. 2007). Despite these uncertain-
ties, mesocosm experiments provide a valuable strat-
egy for the understanding of short-term effects and to
derive biological parameters that can be used to
model future global change-induced modifications
on marine ecosystems.

Temperature effects on the Beagle Channel
 microbial community

Temperature had a negative effect on total chl a
(Fig. 3a) and on the abundance of the micro-sized
diatom fraction (Fig. 5d) and bacteria (Fig. 7a) dur-
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ing the post-bloom phase. In contrast, during the
same period, temperature had a positive effect on
the abundance of large nanophytoplankton (mainly
prymnesiophytes, Fig. 5c). No effects of temperature
were observed on the remainder of the plankton
community. We discuss the possible reasons for
the temperature effects observed on the plankton
community.

The negative effects of temperature on the abun-
dance of micro-sized diatoms did not appear to be
caused by a cascading trophic effect, because the ini-
tial abundance of the most abundant mesozooplank-
ton copepod (Oithona similis) observed in the meso-
cosms was only 3 ind. l−1 (G. Aguirre pers. comm.).
This suggests that copepods did not control the bio-
mass of micro-sized diatoms. In addition, it is proba-
ble that the growth of O. similis was not significant
enough to influence its grazing impact through the
duration of the experiment (Sabatini & Kiorboe 1994).
Instead, we hypothesize that the differences ob -
served between temperature treatments on micro-
sized diatom abundance could have been caused by
physiological responses. Temperature affects phyto-
plankton physiology and primary production via bio-
chemical reactions (Cloern 1978). The decrease of
micro-sized diatoms observed here contradicts the
results of Montagnes & Franklin (2001), who showed
that the growth rates of 8 diatom species responded
linearly to an increase in temperature (between 9
and 25°C) and the observations of Lionard et al.
(2012), who reported a positive effect of a 3°C tem-
perature increase on the abundance of diatoms in the
St. Lawrence Estuary. Conceivably, diatoms from
southern Patagonia, which is a sub-polar ecosystem,
are less likely adapted to, and do not benefit from, an
increase in temperature.

Due to luxury uptake, diatoms do not necessarily
assimilate all the nutrients they incorporate. Diatoms
may accumulate nutrients within cells (e.g. vacuoles)
and not use them readily (Dortch 1990, Bagwell 2009).
Even though we observed no differences in nutrient
concentrations between treatments, diatoms may
have similar nutrient uptake rates between treat-
ments but may have assimilated them at slower rates
under warming conditions. Indeed, Lomas & Gilbert
(2000), Berges et al. (2002), and Bagwell (2009)
showed that the activity of the nitrate- reductase
enzyme is lower for diatoms under high tempera-
tures. Hence, the nitrate-reductase enzyme could be
the key biological factor responsible for these ob -
served differences in diatom biomass under different
temperatures. Unfortunately, for our study, we do not
have activity measurements that could support this

hypothesis, so it should only be considered as a pos-
sible effect of temperature on phytoplankton.

This physiological effect may have benefited the
large nanophytoplankton (here prymnesiophytes) in
their competition for nutrients, and more particularly
for nitrate (Brown et al. 2004). This hypothesis could
also explain the higher biomass of the large nano -
phytoplankton observed in the high temperature
compared to the normal temperature treatments dur-
ing the post-bloom. Hare et al. (2007) also observed a
shift in the phytoplankton community of the Bering
Sea under warming, with the community being dom-
inated by diatoms and nanophytoplankton in the low
and high temperature treatments, respectively. They
also attributed this change to a physiological effect of
temperature on diatoms, possibly to the reduced
activity of nitrate reductase under warming. Using in
situ bottle incubation in the sub-Arctic Pacific, Noiri
et al. (2005) also observed that diatoms were domi-
nant at temperatures below 13°C and that nanophy-
toplankton was dominant at 18°C. They attributed
these differences to different optimum temperatures
of different phytoplankton groups and various meta-
bolic functions. Using a large data set, Morán et al.
(2010) also showed that the contribution of small
phytoplankton cells (picophytoplankton) to the total
phytoplankton biomass increases with temperature
in the eastern and western North Atlantic Ocean.
Finally, this result is also similar to the decrease in chl
a observed under warming in the Arctic by Lara et al.
(2013), and during which the abundance of large
cells such as diatoms and dinoflagellates decreased
with increasing temperature (A. Coello-Camba pers.
comm.).

Elevated temperature also had a negative effect on
bacterial abundance at the end of the experiment
(i.e. on Days 8 and 9). A probable hypothesis for this
effect is that the observed change in phytoplankton
community composition altered the qualitative/
quantitative composition of the dissolved organic
matter (DOM) released, which may have been less
suitable for the bacteria present within the meso-
cosms. For example, the chemical composition of
diatom-derived DOM supports higher levels of bac-
terial richness, evenness, and phylogenetic diversity
than DOM derived from cyanobacteria (Landa et al.
2013). Another hypothesis for the lower bacterial
abundance under high temperature treatments could
be related to the activity of heterotrophic flagellates
<20 µm, which may have been important in this
study. During a mesocosm experiment, Vidussi et al.
(2011) and Fouilland et al. (2013) noticed a decrease
in both the abundance and the production of bacteria
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under warming conditions. They attributed this ob -
servation to a stronger grazing control by hetero -
trophic flagellates and ciliates. During the present
experiment, the biomass and abundance of hetero-
trophic flagellates and small ciliates were not af -
fected by temperature. Nevertheless, Vaqué et al.
(2009) observed that bacterivorous grazing rates
increased under warming conditions in Antarctica.
Hence, it is possible that, despite the lack of differ-
ences in the biomass and abundance of heterotrophic
flagellates and small ciliates observed under warm-
ing conditions, these organisms grazed more actively
on bacteria.

UVBR effects on the Beagle Channel microbial
community

Contrasting with the warming treatment, no over-
all UVBR effects on the Beagle Channel microbial
community were observed during our experiment.
The lack of a general UVBR effect on a planktonic
microbial community studied under a mesocosm
experiment goes against previously reported UVBR
effects on the Beagle Channel community (Hernando
et al. 2006, Longhi et al. 2006, Roy et al. 2006) and
communities from other locations (e.g. Mostajir et al.
1999a,b, Chatila et al. 2001, Ferreyra et al. 2006).
Other studies reported a more important effect of
temperature than UVBR on planktonic communities
(Vidussi et al. 2011, Fouilland et al. 2013). Below, we
first reject some possible reasons why we did not
observe UVBR effects on the planktonic community,
i.e. weak UVBR intensities and higher photoprotec-
tive pigments concentrations. Then we discuss the
possible reasons for this lack of an overall UVBR
effect in the present study.

In this experiment, the shading effect at the surface
of the mesocosms was very low, as the control meso-
cosms received 78 and 86% of the natural irradiance
for 305 and 313 nm, respectively. Moreover, the addi-
tion of UVBR in the increased UVBR mesocosms was
realistic and corresponded to a ~510% increase in
UVBR relative to that received at the surface of the
normal UVBR mesocosms. This is consistent with the
results of radiation amplification factors given by
Booth & Madronich (1994) for an ozone layer destruc-
tion of 60%. We compared the UVBR irradiance of
the present study with other experiments where
UVBR effects were observed (Longhi et al. 2006, Roy
et al. 2006). The maximal natural UVBR irradiance
(at 305 nm) measured at Ushuaia by Longhi et al.
(2006) and Roy et al. (2006) was 3 µW cm−2 s−1,

whereas during the present study, the average natu-
ral irradiance at 305 nm was 2.67 ± 1.1 µW cm−2 s−1

(within 2 h before and after local noon). As for the
present study, Longhi et al. (2006) and Roy et al.
(2006) also simulated a 60% decrease in ozone layer
thickness to study the effects of UVBR on the plank-
tonic community. Therefore, UVBR irradiance used
in the present study is comparable to that of the stud-
ies by Longhi et al. (2006) and Roy et al. (2006) and
differences in UVBR cannot explain why there was
no overall effect of UVBR on the planktonic commu-
nity. Beagle Channel waters are characterized by a
seasonal turbidity pattern, with clear waters in winter
and more turbidity during summer (Venerus et al.
2005). Given the season of our experiment (summer),
some UVBR could have been absorbed by the parti-
cles and the dissolved materials in the water column.
However, the average depth of penetration of 1% of
the UVBR in the present study (1.37 ± 0.07 m) is sim-
ilar to the average depth of penetration of 1% of the
UVBR (1.63 ± 0.72 m) reported by Longhi et al. (2006)
for mesocosm studies that found significant UVBR
effects on the planktonic communities in 3 locations
at different latitudes: Rimouski (Canada), Ubatuba
(Brazil), and Ushuaia (Argentina). Therefore, the
attenuation of UVBR in the mesocosms cannot
explain the lack of observed UVBR effects during our
study. Hernando et al. (2002, 2011) found that the
phytoplankton community produced photoprotective
pigments such as mycosporine-like amino acids
(MAAs) or antioxidants prior to their UVBR exposure
experiments. This allowed the community to reduce
the negative effects of UVBR. However, in the pres-
ent experiment, no significant differences in MAA
concentrations were observed between treatments
(M. Hernando pers. obs.) and photoprotective pig-
ments cannot explain the lack of UVBR effects on the
planktonic community.

It is possible that the planktonic communities stud-
ied here were more resistant to UVBR due to the tim-
ing of the experiment (i.e. mid-austral summer, after
the recovery of the ozone concentrations in the
Southern Hemisphere). Compared to our study, the
studies of Longhi et al. (2006) and Roy et al. (2006)
were performed during the spring and, therefore,
during the period of maximal exposure to the ozone
hole. In addition, Helbling et al. (2001) observed
lower UVBR effects when the phytoplankton com-
munity of Patagonia was composed of smaller cells,
and Villafañe et al. (2004) observed lower photoinhi-
bition of primary production in Patagonia before and
after the phytoplankton bloom (2 periods dominated
by small phytoplankton cells, i.e. pico- and nanophy-
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toplankton) than during the bloom (dominated by
larger phytoplankton cells, i.e. micro-sized diatoms).
In this sense, intense micro-sized diatom blooms
occur during austral spring (September−November)
in the Beagle Channel, while assemblages domi-
nated by small phytoflagellates are observed towards
the end of austral summer (Almandoz et al. 2011).
During this study, phytoplankton was dominated by
pico- and nanophytoplankton in terms of abundance,
which may explain the lack of observed UVBR
effects on the phytoplankton.

Although no overall effect of UVBR was observed,
some particular effects, or tendencies, were ob -
served. The abundance of small ciliates was signifi-
cantly lower in the enhanced UVBR treatment com-
pared to the control on Day 6. Although the
abundance of bacteria was lower under enhanced
UVBR than in the control on Days 7, 8, and 9, differ-
ences were not significant. The small nanophyto-
plankton was significantly less abundant under
enhanced UVBR than in the control at the end of the
experiment (Days 6 to 9). These tendencies could
indicate that if the experiment had lasted longer,
UVBR might have had detectable effects on the
plankton community and more particularly on its het-
erotrophic components. Indeed, several other studies
(Mostajir et al. 1999b, Ferreyra et al. 2006, Vidussi et
al. 2011, Llabrés et al. 2012) found that UVBR usually
had a greater direct effect on heterotrophs than on
autotrophic communities. In particular, because of
their small volume and because some lack pigmenta-
tion, bacteria are considered among the most sensi-
tive organisms to UVBR (Ruiz-González et al. 2013).

Finally, because we observed no overall UVBR
effect on the microbial community, our results show
that temperature and UVBR did not act synergisti-
cally or antagonistically in the present experiment.
This is consistent with the study of Rae & Vincent
(1998), who observed no synergistic effects of tem-
perature and UVBR on subarctic freshwater commu-
nities. It is also consistent with the studies of Fouil-
land et al. (2013) and Vidussi et al. (2011), who
observed significant effects of temperature on the
abundance and the metabolic rates of the planktonic
communities but no synergistic effects of tempera-
ture and UVBR. Finally, Lionard et al. (2012) also
reported a greater effect of temperature than UVBR
in structuring phytoplankton communities in the St.
Lawrence Estuary. However, as discussed, if our
experiment had lasted longer and UVBR effects had
become detectable, synergistic or antagonistic
effects of temperature and UVBR might have been
observed.

Microbial food-web carbon dynamics

The total biomass of phytoplankton, bacterioplank-
ton, and microzooplankton in carbon units is pre-
sented in Fig. 9a for Days 2, 4, 6, and 8 (i.e. days when
simultaneous data were available) for the 4 treat-
ments. The total plankton biomass was significantly
lower (p < 0.01) in the high temperature treatments
relative to the normal temperature treatments at the
maximum of the bloom phase (Day 4) and during the
post-bloom (Days 6 and 8). This lower biomass of the
microbial community under the high temperature
treatments was mainly due to the significantly lower
phytoplankton carbon contribution, and particularly
that of diatoms, observed in the high temperature
treatments, as previously described. This is in agree-
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ment with the results of Hare et al. (2007) who also
observed an overall lower biomass of phytoplankton
resulting from a shift in the community size structure
from a dominance by diatoms under low temperature
to a dominance by nanophytoplankton under warm-
ing. As previously stated, bacterial biomass was also
significantly lower in these high temperature treat-
ments during the post-bloom (Days 8 and 9, Fig. 7),
but its impact on the total biomass of the microbial
community was low. In addition, the biomass of total
microzooplankton was not different between treat-
ments, as previously mentioned.

Besides this overall lower biomass of the microbial
community under elevated temperature, the system
also evolved towards a more heterotrophic food web.
Indeed, the ratio between the biomass of phyto-
plankton and the biomass of heterotrophs (bacteria
and microzooplankton) was significantly lower in the
elevated temperature treatments during the post
bloom (i.e. on Days 6 and 8 although this was only
significant on Day 6; p < 0.05, Fig. 9b). This implies
that temperature had an overall effect on the struc-
ture of the community which may have implications
for food-web dynamics and carbon cycling and set-
tling. Consistent with our results, in 3 successive
mesocosm experiments investigating the effects of
temperature on pelagic food webs, Müren et al.
(2005) observed that the autotroph:heterotroph bio-
mass ratio decreased 5-fold when the temperature
was raised from 5 to 10°C. In such a heterotrophic
system, the respiration of the community would be
higher than in the normal temperature treatments as
observed by Müren et al. (2005). Lara et al. (2013)
also observed that the activity and biomass of hetero-
trophs in the Arctic Ocean increased under warming,
while the biomass of phototrophs decreased. Holding
et al. (2013) suggested that the metabolism of plank-
tonic communities in the Arctic switches from auto-
trophy to heterotrophy at a temperature threshold of
5°C. This was probably the case in the present exper-
iment where the oxygen concentration and the
fugacity of CO2 (fCO2) within the mesocosms were,
respectively, lower and higher in the high tempera-
ture treatments (data not shown, X. Wang pers.
comm.) although this was only significant for Days 2
and 6 for O2 (p < 0.05) and Days 2, 4, 6, and 8 for fCO2

(p < 0.01).
In addition, the total carbon biomass of the commu-

nity in the elevated temperature treatments was
lower at the end (Day 8) than at the beginning of the
experiment (Day 2), which represents a loss of carbon
from the system. We discuss below the possible fate
of this carbon under elevated temperatures. First, this

carbon could have been lost by bacterial respiration
through microbial food-web interactions (exudation
by phytoplankton, assimilation by bacteria and their
respiration). As previously mentioned and as sug-
gested by in situ O2 and fCO2 values, respiration was
probably higher in the elevated temperature treat-
ments compared to the normal temperature ones,
and this is consistent with the carbon loss observed
under warming. This carbon loss could also be linked
to the transformation of POC into dissolved organic
carbon (DOC; Mopper & Degens 1979). In fact, we
observed that POC was significantly lower in the ele-
vated temperature treatments during the post-bloom
(Fig. 4). However, we do not have DOC values for the
present study so we cannot confirm this hypothesis.
Another possibility would be that this carbon was
transferred via predation of bacteria to the smaller
heterotrophic flagellate size fraction, which, as previ-
ously mentioned, may have been under-estimated in
the present study. Finally, this carbon may have sed-
imented to the bottom of the mesocosms in the form
of dead cells or aggregated particulate matter and
feces. Although we did not measure sedimentation, it
is unlikely that sedimentation was higher under
 elevated temperature since Müren et al. (2005) ob -
served a decrease in the organic carbon sedimenta-
tion when temperature was elevated from 5 to
10°C probably because of the increased respiration
losses and the biodegradation of organic carbon by
bacteria.

Finally, most of the treatment effects that occurred
in the present experiment were observed during the
post-bloom. This is a common result of mesocosm
experiments. For example, Mostajir et al. (1999a)
observed that the abundances of nanophytoplankton
and ciliates (15−35 µm) decreased by 63 and 66%
under the effect of UVBR. Due to the decrease in pre-
dation, the abundances of smaller cells increased (by
50, 40, and 300% for bacteria, picophytoplankton,
and heterotrophic flagellates, respectively). Ferreyra
et al. (2006) observed a similar cascading trophic
effect in another mesocosm experiment. In both of
these experiments, the effects of UVBR were ob -
served towards the end of the experiment, during the
stationary phase or the post bloom. Vidussi et al.
(2011) observed significant shifts in the plankton,
food-web structure and function under warming in
Mediterranean coastal waters. Working on the same
mesocosm experiment, both a decrease in bacterial
production and an increase in primary production
under warming were reported by Fouilland et al.
(2013). In these 2 studies, the effects of temperature
became significant midway through the experiment.
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In a review of 10 mesocosm experiments on the
effects of UVBR on plankton organisms, Belzile et al.
(2006) underlined that bloom conditions are gener-
ally observed in mesocosm experiments, with chl a
increasing up to 25-fold. However, they noticed that
the bloom lasted only a few days when no nutrients
were added. Therefore, adding nutrients probably
delayed the response of the planktonic community to
the treatments in the present and in other mesocosm
experiments. In fact, we believe that the effects of
nutrient enrichment can be so strong that the effects
of other forcing factors (e.g. UVBR) are hidden dur-
ing the bloom. This may explain why no response
of the planktonic community was detected during
the bloom and why the few UVBR effects and the
strong temperature effects that were observed in
the present study occurred towards the end of the
experiment.

CONCLUSION

Because no major UVBR effects were observed,
whereas warming had a profound effect on the
microbial community, our results show that these 2
stressors did not act synergistically or antagonisti-
cally in the present experiment. The lack of a major
UVBR effect might be related to the timing of the
experiment (i.e. mid-austral summer, after the recov-
ery of the ozone concentrations in the Southern
Hemisphere). In this sense, the planktonic communi-
ties present at that time might have been already
adapted/resistant to UVBR. In addition, UVBR effects
might have become detectable if the experiment had
lasted longer. In contrast, temperature had an overall
impact on the total biomass and the structure of the
microbial community, favoring the lower trophic lev-
els such as nanophytoplankton (mainly prymnesio-
phytes here) and bacteria. Although the reasons for
these impacts of temperature on the components of
the microbial community remain hypothetical, they
might have implications on whole food-web dynam-
ics and carbon cycling. For example, a modification
of the structure and/or composition of the microbial
community towards a microbial food web composed
of small cells may have consequences on carbon
fluxes within the marine food web (Legendre &
Rivkin 2002) and on the fate of carbon within the
water column (e.g. carbon sedimentation to the deep
ocean layers, Legendre & Rassoulzadegan 1996). Our
results provide new evidence for a clear impact of
increasing temperature on the planktonic food web
for the sub-Antarctic region.
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