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The growth-fragmentation equation describes a system of growing and di-
viding particles, and arises in models of cell division, protein polymerisation
and even telecommunications protocols. Several important questions about
the equation concern the asymptotic behaviour of solutions at large times:
at what rate do they converge to zero or infinity, and what does the asymp-
totic profile of the solutions look like? Does the rescaled solution converge to
its asymptotic profile at an exponential speed? These questions have tradi-
tionally been studied using analytic techniques such as entropy methods or
splitting of operators. In this work, we present a probabilistic approach to
the study of this asymptotic behaviour. We use a Feynman–Kac formula to
relate the solution of the growth-fragmentation equation to the semigroup of
a Markov process, and characterise the rate of decay or growth in terms of
this process. We then identify the spectral radius and the asymptotic profile
in terms of a related Markov process, and give a spectral interpretation in
terms of the growth-fragmentation operator and its dual. In special cases,
we obtain exponential convergence.
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1 Introduction

This work studies the asymptotic behaviour of solutions to the growth-fragmentation
equation using probabilistic methods. The growth-fragmentation arises from mathem-
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atical models of biological phenomena such as cell division [29, §4] and protein polymer-
ization [15], as well as in telecommunications [9]. The equation describes the evolution
of the density ut(x) of particles of mass x > 0 at time t ≥ 0, in a system whose dynamics
are given as follows. Each particle grows at a certain rate depending on its mass and
experiences ‘dislocation events’, again at a rate depending on its mass. At each such
event, it splits into smaller particles in such a way that the total mass is conserved.
The growth-fragmentation equation is a partial integro-differential equation and can be
expressed in the form

∂tut(x) + ∂x(c(x)ut(x)) =
∫ ∞

x
ut(y)k(y, x)dy −K(x)ut(x), (1)

where c : (0,∞) → (0,∞) is a continuous positive function specifying the growth rate,
k : (0,∞) × (0,∞) → R+ is a so-called fragmentation kernel, and the initial condition
u0 is prescribed. In words, k(y, x) represents the rate at which a particle with size x
appears as the result of the dislocation of a particle with mass y > x. More precisely,
the fragmentation kernel fulfills

k(x, y) = 0 for y > x, and
∫ x

0
yk(x, y)dy = xK(x).

The first requirement stipulates that after the dislocation of a particle, only particles
with smaller masses can arise. The second reflects the conservation of mass at dislocation
events, and gives the interpretation of K(x) as the total rate of dislocation of particles
with size x.

This equation has been studied extensively over many years. A good introduction to
growth-fragmentation equations and related equations in biology can be found in the
monographs of Perthame [29] and Engel and Nagel [12], and a major issue concerns the
asymptotic behaviour of solutions ut. Typically, one wishes to find a constant ρ ∈ R,
the spectral radius, for which e−ρtut converges, in some suitable space, to a so-called
asymptotic profile v. Ideally, we would also like to have some information about the
rate of convergence; that is, we would like to find some r > 0 with the property that
e−rt(e−ρtut − v) converges to zero.

For such questions, a key step in finding ρ is the spectral analysis of the growth-
fragmentation operator

Af(x) = c(x)f ′(x) +
∫ x

0
f(y)k(x, y)dy −K(x)f(x), x > 0, (2)

which is defined for smooth compactly supported f , say.

Indeed, observe first that the weak form of the growth-fragmentation equation (1) is
given by

d

dt
〈ut, f〉 = 〈ut,Af〉, (3)

where we use the notation 〈µ, g〉 :=
∫

g(x)µ(dx) for any measure µ and function g on the
same space, and 〈f, g〉 := 〈µ, g〉 with µ(dx) = f(x)dx when f ≥ 0 is a measurable func-
tion. Under some simple assumptions that we will specify shortly, there exists a unique
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semigroup (Tt)t≥0, defined on a certain Banach space of functions on (0,∞), whose
infinitesimal generator extends A. Then, the solutions ut of (3) have the representation

〈ut, f〉 = 〈u0, Ttf〉.

Several authors have shown the existence of a positive eigenfunction associated to the
first eigenvalue of the dual operator A∗ and established exponential convergence of the
solution to an asymptotic profile, under certain assumptions on c and K. Since the
literature is considerable, we refer only to a few works which are quite close to our as-
sumptions or approach: Cáceres et al. [7] study the case of linear growth and K bounded
by a power function, via entropy methods; Mischler and Scher [26] use a splitting tech-
nique in order to derive a Krein–Rutman theorem, which is effective when c is constant
and K is zero in some neighbourhood of 0; and Banasiak et al. [2] study a situation in
which particle sizes are bounded, and do so via an interesting connection with stochastic
semigroups. Moreover, Calvez et al. [8] investigate the dependence of the leading eigen-
value (i.e. the spectral radius), and the corresponding eigenvector on the coefficients
of the equation; and Bouguet [6] studies a conservative version of the equation using a
Markov process approach similar to ours.

The purpose of this work is to show the usefulness of stochastic methods in this
setting. We have not attempted to find the most general conditions, but rather to
demonstrate the benefits of the probabilistic approach. For the sake of simplicity and
conciseness, we shall restrict our attention to the case when the growth rate is bounded
from above by a linear function, namely

‖c‖∞ := sup
x>0

c(x)/x < ∞, (4)

and we shall shortly make some further technical assumptions on the fragmentation
kernel k. We stress that the techniques developed in this work can be adapted to
deal with other types of growth and fragmentation rates of interest which have been
considered in preceding works.

In short, we will obtain probabilistic representations of the main quantities of interest
(the semigroup Tt, the spectral radius ρ, the asymptotic profile v, and so on) in terms
of a certain Markov process with values in (0,∞). Specifically, even though (Tt)t≥0 is
not a Markovian (i.e., contraction) semigroup, the operator

Gf(x) := c(x)f ′(x) +
∫ x

0
(f(y) − f(x))

y

x
k(x, y) dy

is the infinitesimal generator of a Markovian semigroup, and this operator is closely
connected to A.

To be precise, comparing A and G allows us to express the semigroup Tt via a so-called
Feynman–Kac formula:

Ttf(x) = xEx

(

Et
f(Xt)

Xt

)

, t ≥ 0, x > 0, (5)
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where X is the Markov process with infinitesimal generator G, Px and Ex represent
respectively the probability measure and expectation under which X starts at X0 = x,
and

Et := exp

(

∫ t

0

c(Xs)

Xs

ds

)

, t ≥ 0.

Even though the formula (5) is not very explicit in general, we can use it to say quite a
lot about the behaviour of Tt as t → ∞.

In this direction, a fundamental role is played by the function Lx,y : R → (0,∞]
defined as the Laplace transform

Lx,y(q) := Ex

(

e−qH(y)EH(y), H(y) < ∞
)

, (6)

where H(y) denotes the first hitting time of y, Indeed, we identify a first quantity of
importance in the study of the large time behaviour of (Tt)t≥0, namely the spectral radius,
as

ρ := inf {q ∈ R : Lx,x(q) < 1} , (7)

where x > 0 is arbitrary. The quantity ρ is sometimes called the ‘Malthus exponent’ in
the literature on growth-fragmentation.

Next, we shall focus on the case where

Lx,x(ρ) = 1 (8)

for some (and then all) x > 0, and, for arbitrary fixed x0 > 0, set

ℓ(x) = Lx,x0
(ρ).

Then, the function
x 7→ ℓ̄(x) := xℓ(x)

can be viewed as an eigenfunction of A with eigenvalue ρ, whenever the function ℓ
is bounded. Furthermore, provided that the function q 7→ Lx,x(q) possesses a finite
right-derivative at ρ for some (and then all) x > 0, the absolutely continuous measure

ν(dx) :=
dx

ℓ̄(x)c(x)|L′
x,x(ρ)|

, x > 0, (9)

is an eigenmeasure of the dual operator A∗, with eigenvalue ρ (at least under some
further technical conditions).

Finally, one can describe the asymptotic behaviour of the fragmentation semigroup as
follows. For every x > 0 and continuous function f : (0,∞) → R with compact support,
one has

lim
t→∞

e−ρtTtf(x) = ℓ̄(x)〈ν, f〉. (10)

In certain concrete situations, we can furthermore demonstrate exponential convergence,
using classical probabilistic techniques.
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Technically, the cornerstone of our analysis is that the assumption (8) enables us to
define a remarkable martingale multiplicative functional M of X. In turn, by classical
change of probabilities, M yields another Markov process (Yt)t≥0 that is always recurrent.
Using ergodic theory for recurrent Markov processes then readily leads to the large time
asymptotic behaviour of the growth-fragmentation semigroup mentioned above.

The formulas above may seem somewhat cryptic, but could nonetheless be useful
in applications, for instance as the basis of a Monte Carlo method for computing the
spectral radius and its corresponding eigenfunction and dual eigenmeasure. There are
well-established algorithms for efficiently simulating Markov processes, and the process
X which appears here falls within the even nicer class of ‘piecewise deterministic’ Markov
processes. This simulation is probably less costly than numerical estimation of the
leading eigenvalue and corresponding eigenfunctions of A and its dual, at least when the
spectral gap is small or absent.

The remainder of this article is organised as follows. In section 2, we make precise
the relationship between the operators A and G, and derive the Feynman–Kac formula
(5). Along the way, this establishes the existence and uniqueness of solutions to (3). In
section 3, we identify the spectral radius ρ and give some simple bounds for this quantity.
Under the assumption (8), we give in section 4 a martingale M for the process X, and
apply it in order to show that the function ℓ̄ is an eigenfunction of A with eigenvalue
ρ. We then use the martingale M, in section 5, to transform X into another Markov
process Y , by a classical change of measure. The key point is that the process Y is
always recurrent, and this leads to our main result, Theorem 5.3, which comes from the
ergodic theory of positive recurrent Markov processes. In this section, we also show
that ν is an eigenmeasure of A∗. Finally, in section 6, we specialise our results to the
case where the growth rate is linear, that is c(x) = ax, and give more explicit results,
including criteria for exponential convergence to the asymptotic profile. We also study
in some detail a special case where the strongest form of convergence does not hold.

2 Feynman-Kac representation of the semigroup

Our main task in this section is to derive a representation of the semigroup Tt solving the
growth-fragmentation equation, using a Feynman–Kac formula. We begin by introducing
some notation and listing the assumptions which will be required for our results.

We write Cb for the Banach space of continuous and bounded functions
f : (0,∞) → R, endowed with the supremum norm ‖·‖∞. It will be further convenient to
set
f̄(x) = xf(x) for every f ∈ Cb and x > 0, and define C̄b = {f̄ : f ∈ Cb}. Analog-
ously, we set f(x) = x−1f(x).

Recall our assumption (4) that the growth rate c is continuous and is bounded from
above by a linear function, that is, in our notation, c ∈ Cb. We further set

k̄(x, y) :=
y

x
k(x, y),
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and assume that

x 7→ k̄(x, ·) is a continuous bounded map from (0,∞) to L1(dy). (11)

Recall furthermore that the operator A is defined by (2); in fact, it will be more
convenient for us to consider

Āf(x) =
1

x
Af̄(x),

which can be written as

Āf(x) = c(x)f ′(x) +
∫ x

0
(f(y) − f(x)) k̄(x, y)dy + c(x)f(x). (12)

We view Ā as an operator on Cb whose domain D(Ā) contains the space of bounded
continuously differentiable functions f such that cf ′ bounded. Equivalently, A is seen as
an operator on C̄b with domain D(A) = {f̄ : f ∈ D(Ā)}. The following lemma, ensuring
the existence and uniqueness of semigroups T̄t and Tt with infinitesimal generators Ā
and A respectively, relies on standard arguments.

Lemma 2.1. Under the assumptions above, we have:

(i) There exists a unique positive strongly continuous semigroup (T̄t)t≥0 on Cb whose
infinitesimal generator coincides with Ā on the space of bounded continuously dif-
ferentiable functions f with cf ′ bounded.

(ii) As a consequence, the identity

Ttf̄(x) = xT̄tf(x), f ∈ Cb and x > 0

defines the unique positive strongly continuous semigroup (Tt)t≥0 on C̄b with infin-
itesimal generator A.

Proof. Recall that c ∈ Cb and consider first the operator Ãf := Āf − ‖c‖∞f , that is,

Ãf(x) = c(x)f ′(x) +
∫ x

0
(f(y) − f(x)) k̄(x, y)dy − (‖c‖∞ − c(x))f(x),

which is defined for f bounded and continuously differentiable with cf ′ bounded. Plainly
‖c‖∞ − c ≥ 0, and we may view Ã as the infinitesimal generator of a (sub-stochastic,
i.e., killed) Markov process X̃ on (0,∞). More precisely, it follows from our assumptions
(in particular, recall that by (11), the jump kernel k̄ is bounded) that the martingale
problem for Ã is well-posed; this can be shown quite simply using [13, Theorem 8.3.3],
for instance. The transition probabilities of X̃ yield a positive contraction semigroup on
Cb, say (T̃t)t≥0, that has infinitesimal generator Ã. Then T̄tf := exp(t‖c‖∞)T̃tf defines
a positive strongly continuous semigroup on Cb with infinitesimal generator Ā.

Conversely, if (T̄t)t≥0 is a positive strongly continuous semigroup on Cb with infinites-
imal generator Ā, then

d

dt
T̄t1 = T̄tĀ1 ≤ ‖c‖∞T̄t1,
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where 1 is the constant function with value 1. It follows that ‖T̄tf‖∞ ≤ exp(t‖c‖∞)‖f‖∞

for all t ≥ 0 and f ∈ Cb, and T̃t := exp(t‖c‖∞)T̄t defines a positive strongly continuous
semigroup on Cb with infinitesimal generator Ã. The well-posedness of the martingale
problem for Ã ensures the uniqueness of (T̃t)t≥0, and thus of (T̄t)t≥0.

The second assertion follows from a well-known and easy to check formula for multi-
plicative transformation of semigroups.

Although neither (Tt)t≥0 or (T̄t)t≥0 is a contraction semigroup, they both bear a simple
relation to a certain Markov process with state space (0,∞), which we now introduce.
The operator

Gf(x) := Āf(x) − c(x)f(x) = c(x)f ′(x) +
∫ x

0
(f(y) − f(x))k̄(x, y) dy, (13)

with domain D(G) = D(Ā) is indeed the infinitesimal generator of a conservative (un-
killed) Markov process X = (Xt)t≥0, and in fact, it is easy to check, again using [13,
Theorem 8.3.3], that the martingale problem

f(Xt) −
∫ t

0
Gf(Xs)ds is a martingale for every C1 function f with compact support

is well-posed. In particular, the law of X is characterized by G. We write Px for the law
of X started from x > 0, and Ex for the corresponding mathematical expectation.

The process X belongs to the class of piecewise deterministic Markov processes in-
troduced by Davis [10], meaning that any path t 7→ Xt follows the deterministic flow
dx(t) = c(x(t))dt, up to a random time at which it makes its first (random) jump. Note
further that, since

∫ 1

0

dx

c(x)
=
∫ ∞

1

dx

c(x)
= ∞,

X can neither enter from 0 nor reach 0 or ∞ in finite time. Finally, it is readily checked
that X has the Feller property, in the sense that its transition probabilities depend
continuously on the starting point. For the sake of simplicity, we also assume that X
is irreducible; this means that, for every starting point x > 0, the probability that the
Markov process started from x hits a given target point y > 0 is strictly positive. Because
X is piecewise deterministic and has only downwards jumps, this can be ensured by a
simple non-degeneracy assumption on the fragmentation kernel k.

Lemma 2.1(ii) and equation (13) prompt us to consider the exponential functional

Et := exp
(
∫ t

0
c(Xs)ds

)

, t ≥ 0.

We note the uniform bound Et ≤ exp(t‖c‖∞), and also observe, from the decomposition
of the trajectory of X at its jump times, that there is the identity

Et =
Xt

X0

∏

0<s≤t

Xs−

Xs

.
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The point in introducing the elementary transformation and notation above is that
it yields a Feynman-Kac representation of the growth-fragmentation semigroup, which
appeared as equation (5) in the introduction:

Lemma 2.2. The growth-fragmentation semigroup (Tt)t≥0 can be expressed in the form

Ttf(x) = xEx
(

Etf(Xt)
)

= xEx

(

Et
f(Xt)

Xt

)

, f ∈ C̄b.

Proof. Recall from Dynkin’s formula that for every f ∈ D(Ā),

f(Xt) −
∫ t

0
Gf(Xs)ds , t ≥ 0

is a Px-martingale for every x > 0. Since (Et)t≥0 is a process of bounded variation with
dEt = c(Xt)Etdt, the integration by parts formula of stochastic calculus [30, Corollary 2
to Theorem II.22] shows that

Etf(Xt) −
∫ t

0
EsGf(Xs)ds−

∫ t

0
c(Xs)Esf(Xs)ds = Etf(Xt) −

∫ t

0
EsĀf(Xs)ds

is a local martingale. Plainly, this local martingale remains bounded on any finite time
interval, and is therefore a true martingale, by [30, Theorem I.51]. We deduce, by taking
expectations and using Fubini’s theorem, that

Ex(Etf(Xt)) − f(x) =
∫ t

0
Ex(EsĀf(Xs)) ds

holds. Recalling Lemma 2.1(i), this yields the identity T̄tf(x) = Ex(Etf(Xt)), and we
conclude the proof with Lemma 2.1(ii).

We mention that the Feynman-Kac representation of the growth-fragmentation
semigroup given in Lemma 2.2 can also be viewed as a ‘many-to-one formula’ in the
setting of branching particle systems (see, for instance, section 1.3 in [35]). Informally,
the growth-fragmentation equation describes the evolution of the intensity of a stochastic
system of branching particles that grow at rate c and split randomly according to k. In
this setting, the Markov process (Xt)t≥0 with generator G arises by following the tra-
jectory of a distinguished particle in the system, such that after each dislocation event
involving the distinguished particle, the new distinguished particle is selected amongst
the new particles according to a size-biased sampling. This particle is referred to as the
‘tagged fragment’ in certain cases of the growth-fragmentation equation, and we will
make this connection more explicit in section 6.

In order to study the long time asymptotic behaviour of the growth-fragmentation
semigroup, we seek to understand how Ex[Etf(Xt)/Xt] behaves as t → ∞. We shall
tackle this issue in the rest of this work by adapting ideas and techniques of ergodicity
for general nonnegative operators, which have been developed mainly in the discrete
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time setting in the literature; see Nummelin [27] and Seneta [33] for a comprehensive
introduction. We shall rely heavily on the fact that the piecewise deterministic Markov
process X has no positive jumps, and as a consequence, the probability that the process
hits any given single point is positive (points are ‘non-polar’.) This enables us to apply
the regenerative property of the process at the sequence of times when it returns to its
starting point.

3 The spectral radius

Our goal now is to use our knowledge of the Markov process X in order to find the
parameter ρ which governs the decay or growth of solutions to the growth-fragmentation
equations.

We introduce
H(x) := inf {t > 0 : Xt = x} ,

the first hitting time of x > 0 by X. We stress that, when X starts from X0 = x, H(x)
is the first instant (possibly infinite) at which X returns for the first time to x. Given
x, y > 0, the Laplace transform

Lx,y(q) := Ex

(

e−qH(y)EH(y), H(y) < ∞
)

, q ∈ R,

will play a crucial role in our analysis. We first state a few elementary facts which will
be useful in the sequel.

Since X is irreducible, we have Px(H(y) < ∞) > 0. Moreover, EH(y) > 0 on the event
H(y) < ∞, from which it follows that Lx,y(q) ∈ (0,∞]. The function Lx,y : R → (0,∞]
is convex, non-increasing, and right-continuous at the boundary point of its domain (by
monotone convergence). Furthermore, we have e−qtEt ≤ 1 for every q > ‖c‖∞, and then
Lx,y(q) < 1; indeed,

lim
q→−∞

Lx,y(q) = ∞ and lim
q→+∞

Lx,y(q) = 0.

The next result is crucial for the identification of the spectral radius.

Proposition 3.1. Let q ∈ R with Lx0,x0
(q) < 1 for some x0 > 0. Then Lx,x(q) < 1 for

all x > 0.

Proof. Let x 6= x0 and observe first from the strong Markov property applied at the first
hitting time H(x), that

1 > Ex0
(EH(x0)e

−qH(x0), H(x0) < ∞)

≥ Ex0
(EH(x0)e

−qH(x0), H(x) < H(x0) < ∞)

= Ex0
(EH(x)e

−qH(x), H(x) < H(x0))Ex(EH(x0)e
−qH(x0), H(x0) < ∞)

= Ex0
(EH(x)e

−qH(x), H(x) < H(x0))Lx,x0
(q).
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Since Px0
(H(x) < H(x0)) > 0, because X is irreductible, this entails that

0 < Ex0
(EH(x)e

−qH(x), H(x) < H(x0)) < ∞ and 0 < Lx,x0
(q) < ∞.

Next, we work under Px0
and write 0 = R0 < H(x0) = R1 < · · · for the sequence of

return times at x0. Using the regeneration at those times, we get

Lx0,x(q) =
∞
∑

n=0

Ex0
(EH(x)e

−qH(x), Rn < H(x) < Rn+1)

=
∞
∑

n=0

Ex0
(ERn

e−qRn , Rn < H(x))Ex0
(EH(x)e

−qH(x), H(x) < R1)

= Ex0
(EH(x)e

−qH(x), H(x) < H(x0))
∞
∑

n=0

Ex0
(EH(x0)e

−qH(x0), H(x0) < H(x))n

Plainly,

Ex0
(EH(x0)e

−qH(x0), H(x0) < H(x)) ≤ Ex0
(EH(x0)e

−qH(x0), H(x0) < ∞) < 1,

and summing the geometric series, we get

Lx0,x(q) =
Ex0

(EH(x)e
−qH(x), H(x) < H(x0))

1 − Ex0
(EH(x0)e−qH(x0), H(x0) < H(x))

<
Ex0

(EH(x)e
−qH(x), H(x) < H(x0))

Ex0
(EH(x0)e−qH(x0), H(x) < H(x0) < ∞)

=
1

Lx,x0
(q)

,

where the last equality follows from the strong Markov property applied at time H(x)
(and we stress that the ratio in the middle is positive and finite.) Hence, we have

Lx0,x(q)Lx,x0
(q) < 1. (14)

We next perform a similar calculation, but now under Px. Using regeneration at
return times at x as above, we see that

Lx,x0
(q) = Ex(EH(x0)e

−qH(x0), H(x0) < H(x))
∞
∑

n=0

Ex(EH(x)e
−qH(x), H(x) < H(x0))n.

Since we know that Lx,x0
(q) < ∞, the geometric series above converges, so

Ex(EH(x)e
−qH(x), H(x) < H(x0)) < 1,

and

Lx,x0
(q) =

Ex(EH(x0)e
−qH(x0), H(x0) < H(x))

1 − Ex(EH(x)e−qH(x), H(x) < H(x0))
.

Multiplying by Lx0,x(q) and using (14), we deduce that

1 − Ex(EH(x)e
−qH(x), H(x) < H(x0)) > Ex(EH(x0)e

−qH(x0), H(x0) < H(x))Lx0,x(q)

= Ex(EH(x)e
−qH(x), H(x0) < H(x) < ∞),

where again the last equality is seen from the strong Markov property. It follows that
Ex(EH(x)e

−qH(x), H(x) < ∞) = Lx,x(q) < 1.
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We next fix some arbitrary point x0 > 0, and introduce a fundamental quantity.

Definition 3.2. We call

ρ := inf{q ∈ R : Lx0,x0
(q) < 1}

the spectral radius of the growth-fragmentation operator A.

We stress that Proposition 3.1 shows in particular that the spectral radius ρ does not
depend on the choice of x0. We next justify the terminology by observing that, if q < ρ,
then ∫ ∞

0
e−qtTtf(x)dt = ∞

for all x > 0 and all continuous functions f : (0,∞) → R+ with f 6≡ 0, whereas, if q > ρ,
then there exists a function f which is everywhere positive, and such that

∫ ∞

0
e−qtTtf(x)dt < ∞

for all x > 0. The following result actually provides a slightly stronger statement.

Proposition 3.3. Let q ∈ R.

(i) If Lx,x(q) ≥ 1, then for every f : (0,∞) → [0,∞) continuous with f 6≡ 0, we have

∫ ∞

0
e−qtTtf(x)dt = ∞.

(ii) If Lx,x(q) < 1, then there exists a function f : (0,∞) → (0,∞] with

lim
t→0

e−qtTtf(x) = 0.

Proof. (i) Recall from Lemma 2.2 that

∫ ∞

0
e−qtTtf(x)dt = xEx

(
∫ ∞

0
e−qtEtf(Xt)dt

)

.

Decomposing [0,∞) according to the return times of X at its starting point and applying
the regeneration property just as in the proof of Proposition 3.1, we easily find that the
quantity above equals

xEx

(

∫ H(x)

0
e−qtEtf(Xt)dt

)

∞
∑

n=0

Ex

(

e−qH(x)EH(x), H(x) < ∞
)n
.

Now the first term above is positive since f ≥ 0, f 6≡ 0 and X is irreducible, and the
series diverges because Ex

(

e−qH(x)EH(x), H(x) < ∞
)

= Lx,x(q) ≥ 1.

(ii) We take f(y) = yLy,x(q) and observe from the Markov property and Lemma 2.2
that then

e−qtTtf(x) = xEx
(

e−qR(t)ER(t), R(t) < ∞
)

,

11



where R(t) denotes the first return time of X to x after time t. We use the notation θ·

for the usual shift operator; that is, (Xs, s ≥ 0)◦θt = (Xs+t, s ≥ 0). As before, we denote
the sequence of return times of X to its starting point by R0 = 0 < R1 < · · · . With
this notation, we have that R(t) = Rn+1 if and only if Rn ≤ t and H(x) ◦ θRn

> t−Rn.
Regeneration at the return times then enables us to express e−qtTtf(x) as

x
∞
∑

n=0

∫

[0,t]
Ex

(

e−qRnERn
, Rn ∈ ds

)

Ex

(

e−qH(x)EH(x), t− s < H(x) < ∞
)

=: x
∫

[0,t]
U q(x, ds)ϕx(t− s),

On the one hand, we observe, again by regeneration, that the total mass of the
measure U q(x, ·) is given by

U q(x, [0,∞)) =
∞
∑

n=0

Ex

(

e−qRnERn
, Rn < ∞

)

=
∞
∑

n=0

Lx,x(q)
n < ∞,

On the other hand, since

Ex

(

e−qH(x)EH(x), H(x) < ∞
)

= Lx,x(q) < ∞,

we know that limt→∞ ϕx(t) = 0. Hence, for every s ≥ 0, we have limt→∞ ϕx(t− s) = 0,
and since 0 ≤ ϕx(t− s) ≤ Lx,x(q) and the measure U q(x, ·) is finite, we can conclude the
proof by dominated convergence.

We now conclude this section by describing the following elementary bounds for the
spectral radius.

Proposition 3.4. (i) It always holds that ρ ≤ ‖c‖∞.

(ii) It holds that ρ > 0 whenever X is recurrent; furthermore, if X is positive recurrent
with stationary law π, then

ρ ≥ 〈π, c〉.

Proof. (i) This follows from the elementary observations preceding Definition 3.2.

(ii) If X is recurrent, then Px(H(x) < ∞) = 1 and Lx,x(0) = Ex(EH(x)) ∈ (1,∞]. This
forces ρ > 0, since Lx,x(ρ) ≤ 1 by right-continuity of Lx,x. Furthermore, we may apply
the regeneration property at the n-th return time of X to x0, say Rn, and observe that

Ex0

(

e−qRnERn

)

= Lx0,x0
(q)n

converges to 0 as n → ∞ for every q > ρ. By the ergodic theorem for positive recurrent
Markov processes [20, Theorem 20.20],

ln ERn
=
∫ Rn

0
c(Xs)ds ∼ 〈π, c〉Rn as n → ∞, Px0

-a.s.,

and we then see from Fatou’s Lemma that limn→∞ Ex0

(

e−qRnERn

)

= ∞, as long as

q < 〈π, c〉. This entails our last claim.

12



4 A martingale multiplicative functional

In short, the purpose of this section is to construct a remarkable martingale which we
will then use to transform the Markov process X. We shall obtain a recurrent Markov
process Y which in turn will enable us to reduce the analysis of the asymptotic behaviour
of Tt to results from ergodic theory. This requires the following assumption to hold:

Lx0,x0
(ρ) = 1. (15)

Note that, by the right-continuity of Lx,x, we always have Lx0,x0
(ρ) ≤ 1.

We start with some simple observations relating (15) to the value of Lx0,x0
at the left

endpoint of its domain.

Lemma 4.1. Define q∗ := inf{q ∈ R : Lx0,x0
(q) < ∞}. Then:

(i) Condition (15) holds if and only if Lx0,x0
(q∗) ∈ [1,∞].

(ii) If Lx0,x0
(q∗) ∈ (1,∞], then Lx0,x0

possesses a finite right-derivative at ρ and

Ex0

(

H(x0)e
−ρH(x0)EH(x0), H(x0) < ∞

)

= −L′
x0,x0

(ρ) < ∞.

Proof. Recall that q∗ ≤ ‖c‖∞ and that Lx0,x0
is convex and decreasing. We have

lim
q→∞

Lx0,x0
(q) = 0 and lim

q→q∗+
Lx0,x0

(q) = Lx0,x0
(q∗)

by dominated convergence for the first limit, and by monotone convergence for the
second. This yields our first claim. For the second, it suffices to observe that if
Lx0,x0

(q∗) > 1, then ρ > q∗ and thus, by convexity, the right derivative of Lx0,x0
at

ρ is finite.

We assume throughout the rest of this section that (15) holds, and describe some
remarkable properties of the function (x, y) 7→ Lx,y(ρ) which follow from this assumption.

Lemma 4.2. Assume that (15) holds for some x0 > 0. Then

(i) Lx,x(ρ) = 1 for all x > 0, i.e., (15) actually holds with x0 replaced by any x > 0.

(ii) For all x, y > 0, we have
Lx,y(ρ)Ly,x(ρ) = 1.

(iii) For all x, y, z > 0, there is the identity

Lx,y(ρ)Ly,z(ρ) = Lx,z(ρ).

Proof. (i) Indeed, the strict inequality Lx,x(ρ) < 1 is ruled out by Proposition 3.1. On
the other hand, we always have Lx,x(ρ) ≤ 1 by the right-continuity of Lx,x, since, again
by Proposition 3.1, ρ = inf{q ∈ R : Lx,x(q) < 1}.

13



(ii) Using the regeneration at return times at x just as in the proof of Proposition
3.1, we easily get

Lx,y(ρ) =
Ex(EH(y)e

−ρH(y), H(y) < H(x))

1 − Ex(EH(x)e−ρH(x), H(x) < H(y))

=
Ex(EH(y)e

−ρH(y), H(y) < H(x))

Ex(EH(x)e−ρH(x), H(y) < H(x) < ∞)
=

1

Ly,x(ρ)
,

where the last equality follows from the strong Markov property applied at time H(y).

(iii) Finally, recall that X has no positive jumps, so for every x < y < z, we have
H(y) < H(z), Px-a.s. on the event H(z) < ∞, and the strong Markov property readily
yields (iii) in that case. Using (ii), it is then easy to deduce that (iii) holds in full
generality, no matter the relative positions of x, y and z.

Corollary 4.3. The function (x, y) 7→ Lx,y(ρ) is continuous on (0,∞) in each of the
variables x and y.

Proof. We only need to check that limy→x Lx,y(ρ) = 1. If this holds, then Lemma 4.2(iii)
then entails the continuity of z 7→ Lx,z(ρ) and we can conclude from Lemma 4.2(ii) that
x 7→ Lx,y(ρ) is also continuous.

In this direction, observe first that X has no positive jumps and follows a positive
flow velocity between its jump times. Thus, Px-a.s., on the event H(x) < ∞, there
exists a unique instant J ∈ (0, H(x)) such that Xt > x for 0 < t < J and Xt < x
for J < t < H(x). Further, X is continuous at times 0 and H(x). In particular, we
have Px-a.s. that limy→x+H(y) = 0 whereas limy→x−H(y) = H(x), and actually, the
following limits

lim
y→x+

e−ρH(y)EH(y)1{H(y)<∞} = 1,

lim
y→x−

e−ρH(y)EH(y)1{H(y)<∞} = e−ρH(x)EH(x)1{H(x)<∞},

hold Px-a.s. We observe that the Px-expectation of the last quantity is Lx,x(ρ) = 1 (by
Lemma 4.2(i)), and deduce from Fatou’s lemma that

lim inf
y→x

Lx,y(ρ) ≥ 1.

On the other hand, recall that K(x) =
∫ x

0 k̄(x, y)dy is the total rate of jumps at
location x. An easy consequence of the fact that X follows the flow velocity given by
dx(t) = c(x(t))dt between its jumps, is that the probability under Py of the event Λx

that X has no jump before hitting x > y is given by

Py(Λx) = exp

(

−
∫ x

y

K(z)

c(z)
dz

)

,
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a quantity which converges to 1 as y → x−. Moreover, the time h(x) at which the flow
velocity started from y reaches the point x is given by

h(y, x) =
∫ x

y

1

c(s)
ds,

a quantity which converges to 0 as y → x−. Using Ly,x(ρ) ≥ e−ρh(y,x)Py(Λx), we deduce
that lim infy→x− Ly,x(ρ) ≥ 1, and then, thanks to Lemma 4.2(ii) that

lim sup
y→x−

Lx,y(ρ) ≤ 1,

from which it follows that limy→x− Lx,y(ρ) = 1 and, by the Lemma 4.2(iii), that also
limy→x− Ly,x(ρ) = 1.

Finally, working now under Px and, just as above, denoting by Λy the event that X
makes no jumps before hitting y, we obtain by monotone convergence that

lim
y→x+

Ex

[

e−ρH(x)EH(x)1Λy
1{H(x)<∞}

]

= Lx,x(ρ) = 1.

If we write h(x, y) for the hitting time of y by the flow velocity x(·) started from x,

and observe that
∫ h(x,y)

0 c(x(s))ds = ln(y/x), we obtain by the Markov property at time
h(x, y) that

Ex

[

e−ρH(x)EH(x)1Λy
1{H(x)<∞}

]

= e−ρh(x,y) y

x
Ly,x(ρ).

Since limy→x+ h(x, y) = 0, we conclude, using again Lemma 4.2(ii) for the second equality
below, that

lim
y→x+

Ly,x(ρ) = 1 = lim
y→x+

Lx,y(ρ),

and the proof is complete.

Once again, we recall our standing assumption that (15) holds. The following function
will be crucial for our analysis:

ℓ(x) = Lx,x0
(ρ) , x > 0.

Note from Lemma 4.2(iii) that, for any y0 > 0 and x > 0, Lx,y0
(ρ) = ℓ(x)Lx0,y0

(ρ), and
so replacing x0 by y0 would only affect the function ℓ by a constant factor. Further, we
know from Corollary 4.3 that ℓ is continuous and positive on (0,∞); in particular, it
remains bounded away from 0 and from ∞ on compact subsets of (0,∞).

We then introduce the multiplicative functional

Mt := e−ρtEt
ℓ(Xt)

ℓ(X0)
, t ≥ 0.

The qualifier multiplicative stems from the identity Mt+s = Ms ◦ θt × Mt, where θt
denotes the usual shift operator. Our strategy in the sequel shall be to make a change of
measure with respect to this multiplicative functional. The following result is therefore
very important for our goal.
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Theorem 4.4. For every x > 0, the multiplicative functional (Mt)t≥0 is a Px-martingale
with respect to the natural filtration (Ft)t≥0 of X.

Proof. Without loss of generality, we shall work under Px0
. We also define the random

variables R0 = 0 < R1 := H(x0) < R2 < · · · to be the sequence of return times to the
point x0, and recall from the regenerative property at these return times that for every
n ≥ 0, conditionally on Rn < ∞, the ratio

e−ρRn+1ERn+1

e−ρRnERn

= exp

(

∫ Rn+1

Rn

(c(Xs) − ρ)ds

)

is independent of FRn
and has the same law as EH(x0)e

−ρH(x0) under Px0
. We see from

(15) that Ex0

(

ERn
e−ρRn , Rn < ∞

)

= 1 for every n ≥ 0, and it then follows from the
Markov property that there is the identity

Ex0
(MRn

, Rn < ∞ | Ft) = Ex0

(

e−ρRnERn
, Rn < ∞ | Ft

)

= e−ρ(t∧Rn)Et∧Rn
ℓ(Xt∧Rn

)

= Mt∧Rn
.

As a consequence, the stopped process (Mt∧Rn
)t≥0 is a martingale.

Further, if we introduce the tilted probability measure

Qn = 1Rn<∞e−ρRnERn
Px0

= 1Rn<∞MRn
Px0

,

then we see by the regeneration property at the return times and the fact that M is a
multiplicative functional, that under Qn, the variables R1, R2 − R1, . . . , Rn − Rn−1 are
i.i.d. with law

Qn(H(x0) ∈ ds) = Px0
(e−ρH(x0)EH(x0), H(x0) ∈ ds) , s ∈ (0,∞).

We stress that this distribution does not depend on n, and in particular, for every t > 0,
we have

Ex0
(MRn

, Rn ≤ t) = Qn(Rn ≤ t) −→ 0 as n → ∞.

To complete the proof, it now suffices to write for every t ≥ s ≥ 0

Ms∧Rn
= Ex0

(Mt∧Rn
| Fs)

= Ex0
(Mt, Rn > t | Fs) + Ex0

(MRn
, Rn ≤ t | Fs),

and we conclude by letting n → ∞ that Ms = Ex0
(Mt | Fs).

We point out that the continuity of ℓ (which is a special case of Corollary 4.3) could
also be established from Theorem 4.4 and classical regularity properties of martingales.
We conclude this section by the following easy consequence of Theorem 4.4. Under
rather mild assumptions, we identify the function ℓ̄(x) = xℓ(x) as an eigenfunction of
the growth-fragmentation operator A, with eigenvalue given by the spectral radius ρ.
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Corollary 4.5. (i) The function ℓ belongs to the extended domain of the infinitesimal
generator G of X with Gℓ = (ρ− c)ℓ, in the sense that the process

ℓ(Xt) −
∫ t

0
(ρ− c(Xs)) ℓ(Xs)ds (16)

is a martingale under Px for every x > 0.

(ii) If ℓ is bounded on (0,∞), then ℓ̄ ∈ D(A) and Aℓ̄ = ρℓ̄.

Proof of Corollary 4.5. (i) Indeed, it suffices to write

ℓ(Xt) = ℓ(x)Mte
ρt exp

(

−
∫ t

0
c(Xs)ds

)

and apply stochastic integration by parts. We obtain

ℓ(Xt) = ℓ(x) + ℓ(x)
∫ t

0
eρsEsdMs +

∫ t

0
(ρ− c(Xs)) ℓ(Xs)ds.

On the time interval [0, t], the integrand eρsEs in the stochastic integral is bounded by a
constant, and this entails that the process in (16) is a martingale, by [30, Theorem I.51].

(ii) Recall that we already know that ℓ is continuous, so if further ℓ is bounded,
then ℓ ∈ Cb. Then also (ρ − c)ℓ ∈ Cb, and, by taking expectations in (16) and using
the Feller property of X, (i) entails that ℓ belongs to the domain of the infinitesimal
generator G, that is ℓ ∈ D(Ā) or equivalently ℓ̄ ∈ D(A), with Gℓ = (ρ − c)ℓ. Since
Gf(x) = x−1Af̄(x) − c(x)f(x), we conclude that A(ℓ̄) = ρℓ̄.

In order to apply Corollary 4.5(ii), we need explicit conditions ensuring that ℓ is
bounded, and in this direction we record the following result.

Lemma 4.6. Assume that

lim sup
x→0+

c(x) < ρ and lim sup
x→∞

c(x) < ρ.

Then ℓ ∈ Cb.

Proof. Under the assumptions of the statement, there exists ρ′ < ρ such that the set
{x > 0 : c(x) ≥ ρ′} is a compact subset of (0,∞); assume that it is contained in [a, b],
for some 0 < a < x0 < b. Now, since ℓ is continuous, it is certainly bounded on [a, b].
Moreover, if 0 < x < a, then e−ρH(a)EH(a) ≤ e−(ρ−ρ′)H(a) ≤ 1. So Lx,a(ρ) ≤ 1, and by
Lemma 4.2(iii), ℓ remains bounded on (0, a).

Similarly, if now x > b and H(a, b) := inf{t > 0 : Xt ∈ [a, b]} denotes the first
entrance time in [a, b], then again e−ρH(a,b)EH(a,b) ≤ e−(ρ−ρ′)H(a) ≤ 1. By the strong
Markov property applied at time H(a, b), we conclude that ℓ(x) ≤ max[a,b] ℓ, so ℓ remains
bounded on (b,∞).
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5 Applying ergodic theory for Markov processes

We still assume that (15) holds throughout this section. Having established the existence
of the martingale multiplicative functional M, we use this to ‘tilt’ the initial probability
measure Px. In other words, we introduce a new probability measure Qx, defined by the
following formula for every A ∈ Ft:

Qx(A) = Ex[1AMt].

Since Px is a probability law on the space of càdlàg paths, the same holds for Qx;
and it is convenient to denote by Y = (Yt)t≥0 a process with distribution Qx. For
clarity, let us point out that its finite-dimensional distributions are given as follows. Let
0 ≤ t1 < · · · < tn ≤ t, and F : Rn → R. Then

Qx[F (Yt1, . . . , Ytn)] = Ex[MtF (Xt1 , . . . , Xtn)], x > 0.

(Note that, whenever it will not cause confusion, we will use Qx not just for the prob-
ability measure, but also for expectations under this measure.) In fact, Y is not just a
stochastic process, but a Markov process, and we can specify its distribution in detail,
as follows.

Lemma 5.1. Let x > 0.

(i) Under the measure Qx, Y = (Yt)t≥0 is a strong Markov process. The domain of
its extended infinitesimal generator GY contains Dℓ(G) := {g : gℓ ∈ D(G)}, and is
given by

GY g(x) =
1

ℓ(x)
G(gℓ)(x) + (c(x) − ρ)g(x) (17)

in the sense that, for every x > 0 and g ∈ Dℓ(G),

g(Yt) −
∫ t

0
GY g(Ys) ds is a local martingale under Qx. (18)

Its semigroup (T Yt )t≥0, defined on the Banach space

Cℓb := {g : (0,∞) → (0,∞) : gℓ ∈ Cb}

with norm ‖g‖ = ‖gℓ‖∞, is given by

T Yt g(x) := Qx[g(Yt)] = Ex(Mtg(Xt)) =
1

ℓ(x)
Ex

(

e−ρtEtℓ(Xt)g(Xt)
)

.

(ii) Y is point recurrent.

Proof. (i) It is well-known that transformations based on multiplicative functionals pre-
serve the (strong) Markov property; we refer to [31, §III.19] for a readable account of a
slightly simpler case, or [34, §62] for a technical discussion. We can thus view Qx as the
law of a Markov process (Yt)t≥0 with values in (0,∞), whose semigroup is given by T Yt .
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We now prove (18) for every x > 0. Indeed, we know that f(Xt) −
∫ t

0 Gf(Xs)ds is a
Px-martingale, so by stochastic calculus,

e−ρtEtf(Xt) −
∫ t

0
e−ρsEs (Gf(Xs) + (c(Xs) − ρ)f(Xs)) ds

is a Px-local martingale. Multiplying by ℓ(x), this shows that

Mtg(Xt) −
∫ t

0

Ms

ℓ(Xs)
(Gf(Xs) + (c(Xs) − ρ)f(Xs)) ds

is a Px-local martingale. Further, since M is a Px-martingale, stochastic integration by
parts shows that for every locally bounded function h,

Mt

∫ t

0
h(Xs)ds−

∫ t

0
Msh(Xs)ds

is again Px-local martingale. Putting the pieces together, we get that

Mt

(

g(Xt) −
∫ t

0

Gf(Xs) + (c(Xs) − ρ)f(Xs)

ℓ(Xs)
ds

)

is a Px-local martingale, that is, equivalently, (18) holds.

(ii) Write HY (x) = inf{t > 0 : Yt = x} for first hitting time of x by the process Y .
Then:

Qx(HY (x) < ∞) = lim
t→∞

Qx(HY (x) ≤ t)

= lim
t→∞

Ex (Mt, H(x) ≤ t)

= lim
t→∞

Ex

(

MH(x), H(x) ≤ t
)

= Ex

(

MH(x), H(x) < ∞
)

= 1,

where at the third equality, we used the optional sampling theorem [31, Theorem II.77.5]
for the martingale M.

We next specify classical formulas for invariant measures and stationary distributions
of point-recurrent Markov processes, in the case of the process Y .

Corollary 5.2. (i) The occupation measure m0 of the excursion of Y away from x0

defined by

〈m0, f〉 := Qx0

(

∫ HY (x0)

0
f(Ys)ds

)

, f ∈ Cc,

where HY (x) = inf{t > 0 : Yt = x} denotes the first hitting time of x by the process
Y , is the unique (up on a constant factor) invariant measure for Y . Further m0 is
absolutely continuous with respect to the Lebesgue measure, with a locally integrable
and everywhere positive density given by

q(x0, y)

c(y)q(y, x0)
, y > 0,

where q(x, y) := Qx(HY (y) < HY (x)).
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(ii) (Yt)t≥0 is positive recurrent if and only if the function Lx,x has a finite right-
derivative at ρ, that is,

−L′
x,x(ρ) = Ex

(

H(x)e−ρH(x)EH(x), H(x) < ∞
)

< ∞ (19)

for some (and then all) x > 0. In that case, its stationary law, that is m0 normal-
ized to be a probability measure, has the density

1

c(y)|L′
y,y(ρ)|

, y > 0.

We recall that Lemma 4.1(ii) provides a sufficient condition in terms of the function
Lx0,x0

that ensures that (19) holds.

Proof. (i) Indeed, it is well-known that the mean occupation measure of an excursion of
Y yields an invariant measure of Y ; see, for instance, Getoor [14, §7]. Moreover, since
Y is irreducible and recurrent, its invariant measure is unique up to multiplication by a
constant; see [19, Theorem 1].

The absolute continuity assertion is deduced from the fact that Y is piecewise de-
terministic, and more precisely follows the deterministic flow dy(t) = c(y(t))dt between
its jump times. Specifically, one has then

∫ HY (x0)

0
f(Ys)ds =

∫ ∞

0
f(y)

N(y)

c(y)
dy,

where N(y) = Card{t ∈ [0, HY (x0)) : Yt = y} is the number of visits to y of the
excursion of Y away from x0. In the notation of the statement, it is readily checked that
Qx0

(N(y)) = q(x0, y)/q(y, x0), and this yields the expression for the density.

(ii) Using the formula for m0, the probability tilting, and the martingale property of
M, we have

〈m0, 1〉 =
∫ ∞

0
(1 − Qx0

(HY (x0) ≤ t))dt

=
∫ ∞

0
(1 − Ex0

(Mt, H(x0) ≤ t))dt

=
∫ ∞

0

(

1 − Ex0

(

MH(x0), H(x0) ≤ t
))

dt

=
∫ ∞

0
Ex0

(

MH(x0), t < H(x0) < ∞
)

dt

= Ex0

(

H(x0)MH(x0), H(x0) < ∞
)

.

This proves the first assertion (eventually replacing x0 by x, which only affects the
invariant measure by a constant factor).

The second assertion follows then from uniqueness of the stationary distribution and
the fact that the maps y 7→ q(x0, y) and y 7→ q(y, x0) both have limit 1 as y tends to x0.
This claim can be proved much in the same way as Corollary 4.3, and the full details
are left to the reader.
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We also point at the following alternative expressions for the occupation measure m0:

〈m0, f〉 = Ex0

(

e−ρH(x0)EH(x0)

∫ H(x0)

0
f(Xs)ds,H(x0) < ∞

)

= Ex0

(

∫ H(x0)

0
e−ρsEsℓ(Xs)f(Xs)ds,H(x0) < ∞

)

,

which follow readily from the probability tilting and the martingale property of M.

We now state our main result about the asymptotic behaviour of growth-fragmentation
semigroups.

Theorem 5.3. Assume that (15) and (19) hold, so that Y is positive recurrent. Let

ν(dy) :=
m0(dy)

ℓ̄(y)〈m0, 1〉
=

dy

c(y)ℓ̄(y)|L′
y,y(ρ)|

, y > 0.

Then for every continuous function f with compact support, we have

lim
t→∞

e−ρtTtf(x) = ℓ̄(x)
∫ ∞

0
f(y)ν(dy).

Remark 5.4. We stress that the convergence in Theorem 5.3 can often be significantly
strengthened. More precisely, when Y is positive recurrent, it is often possible to show
by a classical coupling argument, that the weak convergence

Qx0
(Yt ∈ dy) =⇒

dy

c(y)|L′
y,y(ρ)|

actually holds in the total variation sense. Further, when there is a spectral gap, the
convergence takes place exponentially fast. See, for instance, [17, 22, 23, 24, 25] for
general results in this field. It should be plain from the proof below that these properties
can then be transferred to the fragmentation semigroup. We will go into more detail on
this topic in the next section, in the special case when the growth rate c is linear.

Proof (of Theorem 5.3). The Feynman-Kac solution to the growth-fragmentation equa-
tion given in Lemma 2.2 can be now expressed in terms of (Yt)t≥0 as

Ttf(x) = eρtℓ̄(x)Qx

(

f(Yt)/ℓ̄(Yt)
)

.

Recall from Corollary 5.2(ii) that Y is positive recurrent whenever (19) holds, and we
conclude that

lim
t→∞

e−ρtTtf(x) = ℓ̄(x)
∫ ∞

0

f(y)

ℓ̄(y)
×

1

c(y)|L′
y,y(ρ)|

dy = ℓ̄(x)〈ν, f〉.
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Remark 5.5. In the same vein, it might be interesting to point at a similar application
of the ratio limit theorem for point recurrent Markov processes (see, for instance, [20,
Corollary 20.8] for a statement of this theorem in discrete time) which holds also in the
null recurrent case. Specifically, assume (15) holds. Then, for every f, g ∈ Cc with g ≥ 0
and g 6≡ 0, and every x > 0, we have

lim
t→∞

∫ t
0 e

−ρsTsf(x) ds
∫ t

0 e
−ρsTsg(x) ds

=
〈m0, f/ℓ̄〉

〈m0, g/ℓ̄〉
.

We now conclude this section by observing that the asymptotic profile ν is an eigen-
measure with eigenvalue ρ of the growth-fragmentation operator A, at least under some
mild assumptions. In this direction, recall that Af̄(x) = xĀf(x), where f̄(x) = xf(x)
and f ∈ D(Ā).

Proposition 5.6. Assume (19) holds and that ℓ is bounded away from 0 on (0,∞).
Then ν is an eigenmeasure of the dual operator A∗ of A, with eigenvalue ρ, that is
〈ν,Af̄〉 = ρ〈ν, f̄〉 for every f ∈ D(Ā).

Proof. Setting ν̄(dy) = yν(dy), we need to check that 〈ν̄, Āf〉 = ρ〈ν̄, f〉 for every func-
tion f ∈ D(Ā). Because ν is proportional to m/ℓ̄, it suffices to prove the identity with
m/ℓ replacing ν̄. Further, Āf = Gf + cf , where G is the infinitesimal generator of X.
So we have to verify that

〈m/ℓ,Gf + cf − ρf〉 = 0 for every f ∈ D(G) = D(Ā).

That is, using the notation GY , defined in (17), for the generator of Y , we must show

〈m,GY (f/ℓ)〉 = 0 for every f ∈ D(G). (20)

If we set g = f/ℓ, then the process given earlier in (18) is a Qx-local martingale.
Moreover, it remains so when stopped at HY (x). If we assume that ℓ is bounded away
from 0 on (0,∞), then both g and GY g are bounded. Recall further that the occupation
measure m0 of the excursion of Y away from 0 is finite, since thanks to Corollary 5.2,
(19) ensures that Y is positive recurrent. We deduce from the optional sampling theorem
that

Qx0

(

∫ HY (x0)

0
GY g(Ys)ds

)

= 0,

that is, by definition of m0, (20) holds.

For the sake of completeness, we mention the following simple result which ensures
that ℓ remains bounded away from 0 on (0,∞). We omit the proof, since it is a straight-
forward modification of that of Lemma 4.6.

Lemma 5.7. Assume that

lim inf
x→0+

c(x) > ρ and lim inf
x→∞

c(x) > ρ.

Then inf(0,∞) ℓ > 0.
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6 The case of linear growth rate

We shall now discuss in detail the simple case when the function c is linear, namely

c(x) = ax , x > 0,

for some a > 0. We stress that is equivalent to requesting that the identity function is
an eigenfunction of A with eigenvalue a,

We first consider the case in which X is recurrent. Then, Px0
(H(x0) < ∞) = 1, and

we see that (15) holds with ρ = a. Hence Et ≡ eat and the semigroup Tt representing
the solution to the growth-fragmentation equation (3) is simply given by

Ttf(x) = xeatEx[f(Xt)/Xt], f ∈ C̄c, x > 0.

Even more, ℓ(x) ≡ 1, and the martingale multiplicative functional is trivial, namely
Mt ≡ 1, and so we have Y = X. As a consequence, if X is also positive recurrent and
thus possesses a (unique) stationary distribution, say σ, then we have the convergence

lim
t→∞

e−atTtf(x) = x〈ν, f〉, with ν(dy) = y−1σ(dy) (21)

for all continuous f with compact support, as we showed in Theorem 5.3.

In this case, the main difficulty is therefore to provide explicit criteria, in terms
of k, to ensure that X is positive recurrent, or even exponentially ergodic. There is
a wealth of literature concerning such conditions, with the main technique being the
application of so-called Foster–Lyapunov criteria. A good introduction to the field may
be found in Hairer [17], and the classic monograph of Meyn and Tweedie [22] gives a
thorough grounding in the discrete-time setting. The basic notions have been applied
and extended many times; as a sample, [25] discusses storage models and queues, [1]
looks at the example of kinetic Fokker-Planck equations, and [18] studies stochastic delay
equations and the stochastic Navier–Stokes equations.

Recently, Bouguet [6] made a study of the conservative growth-fragmentation equa-
tion, which is closely related to our equation (1). Among several interesting results, he
studied the asymptotic behaviour of solutions by means of Foster–Lyapunov techniques.
Some of the key assumptions in [6] are as follows:

Assumption 6.1. (i) K(x) > 0 and c(x) > 0 for all x > 0.

(ii) There exist constants β0, β∞, γ0, γ∞ such that

K(x) ∼ β0x
γ0 as x → 0 and K(x) ∼ β∞x

γ∞ as x → ∞. (22)

(iii) If we define

Mx(s) :=
1

K(x)

∫ x

0
(y/x)s k̄(x, y) dy and M(s) := sup

x>0
Mx(s),

then there exist A > 0 such that M(A) < 1, and B > 0 such that M(−B) < ∞.
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Of course, some restrictions on the exponents in point (ii) are imposed by our as-
sumptions (4) and (11), and these will be made explicit below.

The methods of Bouguet are natural to apply in our situation, and the arguments
carry over with minimal modifications. We therefore present in the following result a
sufficient criterion for exponential ergodicity, which is the strongest case; weaker as-
sumptions can be made in order to show only ergodicity, and we refer to [6] for more
details.

For the result below, recall that by the Riesz representation theorem, for every x > 0,
there exists a family of measures (µxt )t≥0 with the property that 〈µxt , f〉 = Ttf(x) for
any continuous, compactly supported function f : (0,∞) → R. Moreover, the measures
yx−1e−atµxt (dy) are probability measures. Finally, we recall the definition of the total
variation distance between two probability measures P and Q on (0,∞) as being given
by

dTV(P,Q) =
1

2
sup{|P (B) −Q(B)| : B ⊂ (0,∞), B Borel set}.

This discussion permits us to state the following result:

Proposition 6.2. Suppose c(x) = ax for some a > 0 and that Assumption 6.1 is in
place. Furthermore, assume that γ∞ = 0 and a/β∞ < (1 − M(A))/A, and that either
γ0 > 0 or else γ0 = 0 and a/β0 < (M(−B) −1)/B. Let V : (0,∞) → (0,∞) be a smooth
function such that V (x) = x−B for x ≤ 1 and V (x) = xA for x ≥ 2.

Then, the Markov process X has a unique stationary distribution σ. There exist two
constants ε > 0 and C < ∞ such that, for every x > 0, the semigroup Tt giving the
solution of the growth-fragmentation (3) has the following asymptotic behaviour:

dTV

(

e−at y

x
µxt (dy), σ(dy)

)

≤ C(1 + V (x))e−εt .

Proof. We summarise the main points of the proof, which Bouguet [6] gives in greater
detail. The idea is to show that the Markov process X is exponentially ergodic, using
the results of [25, Theorem 6.1]. Thus, in the terminology of that work, we need to show
that compact subsets of (0,∞) are petite for X, that V is a norm-like function, and that
there exist α, δ > 0 such that

GV (x) ≤ −αV (x) + δ. (23)

The petiteness of compact sets is shown in [6, p. 6], and requires nothing more than
the fact that, on compact subsets of (0,∞), c is bounded away from zero and infinity
and K is bounded away from infinity. The condition that V be norm-like entails that
V (x) → ∞ as x → 0 or x → ∞, which is plainly true, as well as that it is in the domain
of the generator.

The condition (23) requires the more stringent conditions on the asymptotic exponents
and the existence of values A and B. We briefly describe the argument. For x ≥ 2, we
have

GV (x) ≤
{

aA −K(x)
(

1 −Mx(A) −Mx(−B)x−(A+B) −Rx−A
)}

V (x),
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where R = minx∈[1,2] V (x) > 0; and for x ≤ 1, we have

GV (x) ≤
{

−aB +K(x)
(

Mx(−B) − 1
)}

V (x)

In the case x ≥ 2, the term within braces is equal to aA−K(x)(1−M(A)+o(1)), and
as x → ∞, this converges to a negative constant precisely when a/β∞ < (1 −M(A))/A.
Similarly, in the case x ≤ 1, the term in braces is bounded by a negative constant
when x is close enough to zero, provided the conditions of the theorem hold. Since
V is bounded on compact subsets of (0,∞), this implies that (23) holds, and so [25,
Theorem 6.1] completes the proof.

Remark 6.3. The reader who compares our result to [6] will notice that many cases
in the latter work are not accommodated by our assumptions. The most significant
difference is that, in [6], the fragmentation rate K may be unbounded. Giving a version
of Proposition 6.2 in this case would involve only a minor adaptation of the proof, but
several earlier results of this work, such as the identification of the eigenmeasure ν of
A∗ in Proposition 5.6, would become significantly more difficult. Since our main goal in
this article is to point out connections with spectral theory, we prefer not to stray too
far from the situation where such results may be proved.

We shall next discuss the situation when X is transient, in which we observe different
asymptotic behaviour. In this part, we shall focus on the case where the fragmentation
kernel is homogeneous, in the sense that

k̄(x, y) = y−1π(log(y/x)) for some function π ∈ L1
+((−∞, 0)).

Then the operator G is given by

Gf(x) = axf ′(x) +
∫ x

0
(f(y) − f(x))π(log(y/x))y−1 dy, f ∈ D(Ā).

Our analysis will hinge on the observation that G can be related to the generator of a
Lévy process, as we shall shortly make clear.

The growth-fragmentation equation given by the corresponding operator A was stud-
ied in [16, 11, 4], among others. Indeed, the process X corresponds to the so-called
‘tagged fragment’ in a random particle model, as we briefly described in [4, §6]. Ho-
mogeneous growth-fragmentation equations are often studied via a ‘cumulant function’
κ, which is defined as follows. For θ ∈ R, we define hθ : (0,∞) → R by hθ(x) = xθ,
and then hθ is an eigenfunction of (an extension of) A with eigenvalue κ(θ); that is,
Ahθ = κ(θ)hθ. The function κ can be given explicitly as

κ(θ) = aθ +
∫ 1

0
(yθ−1 − 1)π(log y)y−1 dy, θ ∈ R,

and it is smooth and strictly convex. Our basic assumption, for the remainder of this
section, is that there exists some θ0 6= 1, lying in the interior of the domain of κ, with
the property that κ′(θ0) = 0. Observe that in particular, κ(θ0) = minθ∈R κ(θ).
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We now look more closely at X, and introduce the following auxiliary process, which
is a Lévy process; for further background on this class of processes, we refer to [3, 21, 32].
Consider a Lévy process ξ composed of a compound Poisson process with negative jumps
plus a drift a > 0, and such that ξ has an absolutely continuous Lévy measure with
density π. Let ψ represent the Laplace exponent of this Lévy process, which means
that E[eθξt | ξ0 = 0] = etψ(θ). This function is smooth and strictly convex, with Lévy–
Khintchine representation as follows:

ψ(θ) = aθ +
∫ 0

−∞
(eθu − 1)π(u) du = aθ +

∫ 1

0
(uθ − 1)π(log u)u−1 du, θ ∈ R.

It is related to κ via the equation ψ(θ) = κ(θ + 1) − κ(1), from which we see that θ0

satisfies ψ′(θ0 −1) = 0. The existence of θ0 implies that ψ′(0) = E[ξ1 | ξ0 = 0] 6= 0, which
means that either limt→∞ ξt = ∞ or limt→∞ ξt = −∞. In particular, ξ is a transient
process.

By comparing G with the generator of a Lévy process [32, Theorem 31.5], X may be
identified as

Xt = eξt , t ≥ 0,

and so X is also transient.

A natural component of our analysis in this situation is the inverse function Φ of ψ,
defined by Φ(q) = sup{θ ∈ R : ψ(θ) = q}. It appears in the following expression, in
which τ(0) = inf{t > 0 : ξt = 0}:

E[e−qτ(0); τ(0) < ∞ | ξ0 = 0] = 1 −
1

Φ′(q)
.

This formula can be found, for instance, in Lemma 2(i) of Pardo et al. [28].

From this, we can calculate the spectral radius of the growth-fragmentation equation
associated with G. Since the return time of ξ to its starting point is equal to that of X,
we calculate, using the inverse function theorem,

Lx0,x0
(q) = 1 −

1

Φ′(q − a)
= 1 − ψ′(Φ(q − a)).

This implies that ρ = κ(θ0) = a+ψ(θ0 − 1) < a, so that contrary to the situation where
X is recurrent, here the spectral radius is strictly less than the drift coefficient a.

Moreover,

−L′
x0,x0

(q) =
ψ′′(Φ(q − a))

ψ′(Φ(q − a))
,

and as q ↓ ρ, we obtain, by the strict convexity of ψ, that −L′
x0,x0

(ρ) = ∞. Thus, we
are in a situation where the process Y is null recurrent.

We now study the function ℓ in more detail. In order to compute it explicitly, we re-
call (from [21, §3.3], for instance) that the process (e(θ0−1)ξt−tψ(θ0−1))t≥0 is a non-negative
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martingale. Since limt→∞ ξt/t = ψ′(0) 6= 0 almost surely (see [21, Exercise 7.2]), the mar-
tingale converges almost surely to 0 as t → ∞. We obtain the following explicit formula
for ℓ, applying in the third equality the optional sampling theorem [31, Theorem II.77.5]
at H(log x0).

ℓ(x) = Lx,x0
(ρ) = E[e−(ρ−a)H(log x0);H(log x0) < ∞ | ξ0 = log x]

= E[e(θ0−1) log(x0)−ψ(θ0−1)H(log x0);H(log x0) < ∞ | ξ0 = log x]e−(θ0−1) log(x0)

= e(θ0−1)(log x−logx0)

= (x/x0)θ0−1.

Furthermore, we can calculate directly from (17) that the generator of Y is given by

GY g(x) = axg′(x) +
∫ x

0

(

g(y) − g(x)
)

(y/x)θ0−1π(log(y/x))
dy

y
.

In other words, we have the representation Yt = exp(ηt), where η is a Lévy process whose
Laplace exponent is given by θ 7→ ψ(θ + θ0 − 1) − ψ(θ0 − 1). This Lévy process has the
property that E[η1 | η0 = 0] = 0, which implies that η is recurrent (see, for instance, [32,
Remark 37.9].)

Finally, we wish to study the asymptotic behaviour of the semigroup Tt, or equival-
ently, the measures µxt introduced earlier. The semigroup can be identified explicitly in
terms of our Lévy process η as:

Ttf(x) = eρtℓ̄(x)Qx

[

f(Yt)/ℓ̄(Yt)
]

= eκ(θ0)txθ0E
[

f(eηt)e−θ0ηt | η0 = ln x
]

.

The asymptotics of this semigroup could be studied using Remark 5.5. However, more
precise information can be obtained by applying instead a local central limit theorem
for η (see [5, Theorem 8.7.1].) In this way, one recovers the formula

Ttf(x) ∼
xθ0etκ(θ0)

√

2πtκ′′(θ0))

∫ ∞

0
f(y)y−(θ0+1) dy, as t → ∞,

for f continuous and compactly supported, which was stated as [4, Corollary 3.4], under
different assumptions.
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