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A global existence and uniqueness result for a
stochastic Allen–Cahn equation with
constraint

C. Bauzeta, E. Bonettib, G. Bonfantic*† , F. Lebona and G. Valletd

This paper addresses the analysis of a time noise-driven Allen–Cahn equation modelling the evolution of damage in 
continuum media in the presence of stochastic dynamics. The nonlinear character of the equation is mainly due to a mul-
tivoque maximal monotone operator representing a constraint on the damage variable, which is forced to take physically 
admissible values. By a Yosida approximation and a time-discretization procedure, we prove a result of global-in-
time existence and uniqueness of the solution to the stochastic problem. 

Keywords: nonlinear parabolic equations; stochastic PDEs; existence and uniqueness

1. Introduction

We are interested in the following stochastic problem:8̂<
:̂

duC .� ��u/ dt D .ws.u/C f / dtC h.u/dW in � � D � .0, T/ (1.1a)

u.!, x, t D 0/ D u0.x/ ! 2 �, x 2 D, (1.1b)

ru.n D 0 in � � @D � .0, T/, (1.1c)

where � 2 @IŒ0,1�.u/, T > 0, W D fWt ,Ft , 0 6 t 6 Tg is a standard adapted continuous Brownian motion defined on the classical Wiener
space .�,F ,P /, D is a smooth bounded domain of Rd with d > 1, n is the outward unit normal vector to @D, and u0 is a given initial
condition. Note that Equation (1.1a) can also be written in the following way:

ws.u/C f � @t

�
u �

Z t

0
h.u/dW

�
C�u 2 @IŒ0,1�.u/ in � � D � .0, T/,

where the stochastic integral is understood in the sense of Itô.

Remark 1.1
The sub-differential @IŒ0,1� represents a physical constraint on u, which is forced to take values in the interval Œ0, 1�. More precisely, we
have IŒ0,1� : R! R [ fC1g defined by the following:

IŒ0,1�.x/ D

�
0 if x 2 Œ0, 1�,
C1 else.

For any x 2 Œ0, 1�, it results that (see, e.g., [1])

@IŒ0,1�.x/ D

8<
:
f0g if x 2�0, 1Œ,
R� if x D 0,
RC if x D 1.
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We assume the following hypotheses:

H1: u0 2 H1.D/.
H2: 0 6 u0.x/ 6 1 for almost all x 2 D.
H3: h : R! R is a Lipschitz-continuous function such that h.0/ D h.1/ D 0.
H4: ws : R! Œ0,C1/ is a Lipschitz-continuous function with, for convenience, ws.0/ D 0.
H5: f 2 N 2

w

�
0, T , L2.D/

�
‡.

1.1. General notations

For the sake of clarity, let us make precise some useful notations:

� Q D D � .0, T/.
� Ch and Ls stand for the Lipschitz constants of h and ws, respectively.
� x.y the usual scalar product of x and y in Rd .
� V D H1.D/ and identify H D L2.D/ with its dual space H0, so that V ,! H ,! V0 with dense and compact injections. Note that
.V , H, V 0/ is a so-called Hilbert triplet .

� D.D/ D C1c .D/ and D 0.D/ the space of distributions on D.
� jj.jj the usual norm in L2.D/.
� EŒ.� the expectation, that is, the integral over�with respect to the probability measure P .

1.2. The model

Equation (1.1a) is known as an Allen–Cahn-type equation, and it is used to describe several physical phenomena, like phase transi-
tions. Here, we deal with the analysis of this equation, having in mind the evolution of damage in continuum media. More precisely,
we assume that u represents a damage parameter, that is, the local proportion of active cohesive bonds in the micro-structure of the
material. In this direction, the function f on the right hand side of (1.1a) stands for an external source of damage (mechanical or chemi-
cal). With this interpretation, we include in the model a constraint forcing u to take values in the interval Œ0, 1�, so that u D 1 means that
the material is completely undamaged, u D 0 that it is completely damaged, while u 2 .0, 1/ describes an intermediate situation. The
physical constraint is ensured by the presence of a sub-differential graph, that is, a multivoque maximal monotone operator. In addi-
tion, we include in the equation a multiplicative time noise where the noise diffusion coefficient h depends on the damage parameter
itself. From a physical point of view, the presence of a random process reflects the fact that the phenomenon of damage is related to
microscopic changes in the structure and configuration of the material lattice as a consequence of breaking bonds and the formation
of cavities and voids. These phenomena are clearly related to stochastic processes occurring at a microscopic level (as it is introduced
in Ising materials), which we aim to take into account in a macroscopic description.

The literature on the deterministic Allen–Cahn equation is very rich, also including the presence of non-smooth (monotone) opera-
tors (see, among the others, [3–7]). For the stochastic case, we refer to fairly recent results [8,9], and the references therein. We underline
that in these contributions, the sub-differential operator was replaced by smooth nonlinearities (possibly with a prescribed growth
condition), as double-well potentials. However, we invite the reader interested in stochastic partial differential inclusions in a rather
general situation to consult [10–12] and [13] concerning transition semigroup and invariant measures.

As an equation describing a phase transition process (as damage), (1.1a) may be recovered as a balance law referring to the theory
introduced by Frémond [14]. Such a theory relies on a generalized version of the principle of virtual powers where micro-forces and
micro-motions responsible for the phase transition are included. Concerning this approach, we quote the papers [15–19] where volume
and surface damage models are deduced and analytically investigated. According to Frémond’s theory, we now detail the derivation of
system (1.1).

To this aim, we introduce as state variables of the model the damage parameter u and its gradient ru. Thus, the free energy
functional reads

‰.u,ru/ D Ows.u/C
1

2
jruj2 C IŒ0,1�.u/, (1.2)

where the indicator function of the interval Œ0, 1� restricts the domain of the free energy to the (physically) admissible values for u.
Moreover, the function Ows is related to the internal cohesion of the material, and it may depend on the damage parameter itself:
Denoting by ws :D � Ow0s , we may suppose that ws is a positive function, vanishing once u D 0 (the cohesion is null in the case of
complete damage). Then, we introduce the dissipation of the system by a pseudo-potential of dissipation à la Moreau. As a dissipative
variable, we consider the time derivative of z D u �

R t
0 h.u/dW . Thus, the resulting dissipation functional is as follows:

ˆ.zt/ D
1

2
jztj

2. (1.3)

‡For a given separable Hilbert space X, we denote by N 2
w.0, T , X/ the space of the predictable X-valued processes endowed with the norm jj�jj2N 2

w.0,T ,X/
:D

E
hR T

0 jj�jj
2
X dt

i
(see DA PRATO-ZABCZYK [2] p. 94).
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Note that, once h D 0, we recover exactly the choice used for deterministic damage models (rate-dependent), like, for example, in
[15, 16, 19].

Neglecting acceleration effects, the generalized principle of virtual powers (in the case when no macroscopic displacements are
considered) leads to the balance law:

B � div H D f , (1.4)

supplemented by a natural boundary condition H � n D 0. B and H are microscopic forces and stresses acting in the material specified
by the following constitutive laws:

B D
@‰

@u
C
@ˆ

@zt
, H D

@‰

@ru
. (1.5)

Hence, (1.1a) and (1.1c) easily follow combining (1.2)–(1.3) with (1.4)–(1.5).

1.3. Goal of the study and outline of the paper

First of all, let us introduce the concept of solution we are interested in for Problem (1.1).

Definition 1
Any pair .u, �/with u belonging toN 2

w

�
0, T , H1.D/

�
\L1

�
0, T , L2

�
�, H1.D/

��
\L2

�
�, C

�
0, T ; L2.D/

��
, 0 � u � 1 and � inN 2

w

�
0, T , L2.D/

�
is a solution to the stochastic problem (1.1) if almost everywhere in .0, T/, P -almost surely in�, and for any v in V

Z
D
@t

�
u �

Z .

0
h.u/dW.s/

�
vdx C

Z
D
ru.rvdx C

Z
D
�vdx D

Z
D
.ws.u/C f / vdx,

with u.., 0/ D u0 and � 2 @IŒ0,1�.u/.

Remark 1 (Sense of the initial condition)
Because u 2 L2

�
�, C

�
0, T ; L2.D/

��
, it satisfies the initial condition in the following sense:

P -a.s in �, u.., 0/ D lim
t!0

u.., t/ in L2.D/.

The aim of this paper is to show the following result:

Theorem 1.2
Under hypotheses H1–H5, there exists a unique pair .u, �/ solution to Problem (1.1) in the sense of Definition 1.

To do this, we firstly consider in Section 2 a family of approximating problems (by regularization of the maximal monotone operator
@IŒ0,1�/ depending on a parameter � > 0, and we prove a related well-posedness result. Secondly, in Section 3, we perform the passage
to the limit with respect to the approximating parameter � > 0, by compactness and monotonicity tools, and we show that the
approximate solutions converge to a solution of Problem (1.1), in the sense of Definition 1, and that this solution is unique.

2. Regularized problem

Set � > 0 and consider the following stochastic problem:

8̂<
:̂

du� C . �.u�/ ��u�/ dt D .ws.u�/C f / dtC h.u�/dW in � � D � .0, T/, (2.1a)

u�.!, x, t D 0/ D u0.x/, ! 2 �, x 2 D, (2.1b)

ru� .n D 0 in � � @D � .0, T/, (2.1c)

where  � denotes the Yosida approximation of @IŒ0,1� (see, e.g., [1, 20]). For all v 2 R, it holds

�.v/ D �
.v/�

�
C
.v � 1/C

�
D

8<
:

v
�

if v 6 0
0 if v 2 Œ0, 1�

v�1
�

if v > 1.

Definition 2
A function u� 2 L2

�
�, C

�
0, T ; L2.D/

��
\ L1

�
0, T ; L2.�, H1.D//

�
\N 2

w

�
0, T , H1.D/

�
such that @t

�
u� �

R .
0 h.u�/dW

�
and �u� belong to

L2.��Q/ is a solution to the stochastic problem (2.1) if almost everywhere in .0, T/ and P -almost surely in�, the following variational
formulation holds for any v 2 H1.D/:

Z
D
@t

�
u� �

Z .

0
h.u�/dW.s/

�
vdx C

Z
D
ru� .rvdx C

Z
D
 �.u�/vdx D

Z
D

�
ws.u�/C f

�
vdx,

with u�.., 0/ D u0.
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Remark 2
Because u� 2 L2

�
�, C

�
0, T ; L2.D/

��
, it satisfies the initial condition in the sense of Remark 1.

We have the following well-posedness result:

Theorem 2.1
Under hypotheses H1–H5 and for any � > 0, there exists a unique solution u� in the sense of Definition 2 to the stochastic Problem (2.1).

2.1. Existence of u�

Note that the well-posedness of Problem (2.1) could be deduced from classic results in the literature [2, 21], but for a matter of self-
containedness and to prepare the a priori estimates needed to pass to the limit on the penalization procedure, we propose to detail a
result of existence of a solution based on an implicit time-discretization scheme for the deterministic part and an explicit one for the
Itô part.

We consider a positive integer N and denote by�t D T
N and tn D n�t, n 2 f0, : : : , Ng. Let us first introduce some classical notations

needed in the sequel.

Definition 3
For any sequence .xn/ � X , where X is a separable Banach space, let us denote by the following:

x�t D

N�1X
kD0

xkC11Œtk ,tkC1/,

Qx�t D

N�1X
kD0

h xkC1 � xk

�t
.t � tk/C xk

i
1Œtk ,tkC1/,

@Qx�t

@t
D

N�1X
kD0

xkC1 � xk

�t
1Œtk ,tkC1/,

and elementary calculations yield for an arbitrary constant C > 0 independent of�t:

kx�tk2
L2.0,T ;X/ D �t

NX
kD1

kxkk
2
X ; kQx�tk2

L2.0,T ;X/ 6 C�t
NX

kD0

kxkk
2
X ;

kx�t � Qx�tk2
L2.0,T ;X/ D �t

N�1X
kD0

kxkC1 � xkk
2
X ;

k
@Qx�t

@t
k2

L2.0,T ;X/ D
1

�t

N�1X
kD0

kxkC1 � xkk
2
X ;

kx�tkL1.0,T ;X/ D max
kD1,..,N

kxkkX ; kQx�tkL1.0,T ;X/ D max
kD0,..,N

kxkkX .

The discretization scheme is the following one: For given small positive parameters�t and un in L2
�
.�,Ftn/; H1.D/

�
(n � 0), we aim

to find unC1 in L2
�
.�,FtnC1/; H1.D/

�
, such that P -a.s in� and for any v in H1.D/Z

D
.unC1 � un/vdx C�t

Z
D

�
runC1.rv C  �.unC1/v

�
dx

D �t

Z
D
.ws.unC1/C fn/vdx C .WnC1 �Wn/

Z
D

h.un/vdx,
(2.2)

where Wn D W.tn/ and fn D
1
�t

R tn

tn�1
f .s/ds §. To proceed in this way, we prove that, once n is fixed, we can find the solution for the step

nC 1 by a fixed point argument, once it is ensured that the time step of the discrete scheme is sufficiently small.

Lemma 1
Set un 2 L2

�
.�,Ftn/; H1.D/

�
. If �t < 1

.LsC
1
� /

, there exists a unique unC1 2 L2
�
.�,FtnC1/; H1.D/

�
, satisfying the variational

problem (2.2).

Proof
Consider T the application defined by the following:

T : L2
�
.�,FtnC1/; L2.D/

�
! L2

�
.�,FtnC1/; H1.D/

�
S 7! T .S/,

§For convenience, one denotes t�1 D ��t and f is extended by 0 for negative t
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where for any S 2 L2
�
.�,FtnC1/; L2.D/

�
, u D T .S/ is the solution in L2

�
.�,FtnC1/; H1.D/

�
of the variational problem:

E

	Z
D
.u � un/vdx



C�tE

	Z
D
ru.rv C  �.S/vdx




D �tE

	Z
D
.ws.S/C fn/vdx



C E

	
.WnC1 �Wn/

Z
D

h.un/vdx



, 8v 2 L2..�,FtnC1/; H1.D//.

By denoting B D un C�t
�

ws.S/C fn �  �.S/
�
C .WnC1 �Wn/h.un/ 2 L2

�
.�,FtnC1/; L2.D/

�
, this variational problem can be rewritten

as follows:

E

	Z
D

uv C�tru.rvdx



D E

	Z
D

Bvdx



, 8v 2 L2

�
.�,FtnC1/; H1.D/

�
.

Thanks to the theorem of Lax–Milgram, T is a well-defined function. Moreover, for any S1, S2 2 L2
�
.�,FtnC1/; L2.D/

�
, by denoting

u1 D T .S1/ and u2 D T .S2/, one has that for any v in L2
�
.�,FtnC1/; H1.D/

�
:

E

	Z
D
.u1 � u2/v C�tr.u1 � u2/.rvdx



D E

	Z
D
.B1 � B2/vdx



,

where

B1 D un C�t
�

ws.S1/C fn �  �.S1/
�
C .WnC1 �Wn/h.un/,

and

B2 D un C�t
�

ws.S2/C fn �  �.S2/
�
C .WnC1 �Wn/h.un/.

Then, for v D u1 � u2, we have

E

	Z
D
ju1 � u2j

2dx



� E

	Z
D
ju1 � u2j

2 C�tjr.u1 � u2/j
2dx




D �tE

	Z
D

�
ws.S1/ � ws.S2/C  �.S2/ �  �.S1/

�
.u1 � u2/dx




6 �t

�
Ls C

1

�

�
E

	Z
D
ju1 � u2jjS1 � S2jdx



,

which yields

ku1 � u2kL2
�
.�,FtnC1 /;L

2.D/
� 6 �t

�
Ls C

1

�

�
kS1 � S2kL2

�
.�,FtnC1 /;L

2.D/
�.

Then, for�t < 1
.LsC

1
� /

, T is a contractive mapping in L2
�
.�,FtnC1/; L2.D/

�
, and the result holds.

Proposition 2.2 (Estimates on the approximate sequences)
There exists a constant C > 0 that only depends on T , Ch, u0, Ls, and f such that

jju�tjjL1.0,T ;L2.��D//, jj Qu
�tjjL1.0,T ;L2.��D// 6 C

jjru�tjjL2.��Q/ 6 C

jju�t � Qu�tjjL2.��Q/ 6 C�t.

Proof
By using the test function v D unC1 in (2.2), we have

Z
D
.unC1 � un/unC1dx C�t

Z
D
jrunC1j

2 C  �.unC1/unC1dx

D �t

Z
D
.ws.unC1/C fn/ unC1dx C .WnC1 �Wn/

Z
D

h.un/unC1dx.

Using the formula ab D 1
2

�
a2 C b2 � .a � b/2

�
with a D unC1 � un and b D unC1 yields

1

2

Z
D
junC1 � unj

2dx C
1

2

Z
D
junC1j

2dx �
1

2

Z
D
junj

2dx C�t

Z
D
jrunC1j

2 C  �.unC1/unC1dx

D �t

Z
D
.ws.unC1/C fn/ unC1dx C .WnC1 �Wn/

Z
D

h.un/undx

C .WnC1 �Wn/

Z
D

h.un/.unC1 � un/dx.
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Thanks to the monotonicity of  � and the fact that  �.0/ D 0, we get for any ı > 0

1

2

Z
D
junC1 � unj

2dx C
1

2

Z
D
junC1j

2dx �
1

2

Z
D
junj

2dx C�t

Z
D
jrunC1j

2dx

6 �t

Z
D
.ws.unC1/C fn/ .unC1 � un C un/ dx C .WnC1 �Wn/

Z
D

h.un/undx

C
1

2ı
.WnC1 �Wn/

2
Z

D
h2.un/dx C

ı

2

Z
D
junC1 � unj

2dx.

Then by taking the expectation, we get E
�
.WnC1 �Wn/

R
D h.un/undx

�
D 0

1

2
E

	Z
D
junC1 � unj

2 C junC1j
2 � junj

2dx



C�tE

	Z
D
jrunC1j

2dx




6 �t

2
E

	Z
D

L2
s junC1j

2 C junC1 � unj
2 C L2

s junC1j
2 C junj

2dx




C
�t

2
E

	Z
D
jfnj

2 C junC1 � unj
2 C jfnj

2 C junj
2dx




C
1

2ı
E
�
.WnC1 �Wn/

2
�
E

	Z
D

h2.un/dx



C
ı

2
E

	Z
D
junC1 � unj

2dx



.

And, for example, for ı D 1
2 ,

1

4
E

	Z
D
junC1 � unj

2dx



C
�1

2
��tL2

s

�
E

	Z
D
junC1j

2 � junj
2dx



C�tE

	Z
D
jrunC1j

2dx




6 �tE

	Z
D
junC1 � unj

2dx



C�t

�
1C L2

s

�
E

	Z
D
junj

2dx



C�tE

	Z
D
jfnj

2dx



C�tE

	Z
D

h2.un/dx



,

where we used the fact that E
�
.WnC1 �Wn/

2
�
D �t.

Thus, for�t small enough, we can infer that

1

8
E

	Z
D
junC1 � unj

2dx



C

1

4
E

	Z
D
junC1j

2 � junj
2dx



C�tE

	Z
D
jrunC1j

2dx




6 �t
�
1C C2

h C L2
s

�
E

	Z
D
junj

2dx



C�tE

	Z
D
jfnj

2dx



.

Consequently, for any k 2 f0, : : : , Ng if one denotes by jj.jj the norm in L2.D/

1

8

k�1X
nD0

E
�
jjunC1 � unjj

2
�
C

1

4
E
�
jjukjj

2
�
C�t

k�1X
nD0

E
�
jjrunC1jj

2
�

6 1

4
E
�
jju0jj

2
�
C�t

�
1C C2

h C L2
s

� k�1X
nD0

E
�
jjunjj

2
�
C�t

k�1X
nD0

E
�
jjfnjj

2
�

.

Note that

�t
k�1X
nD0

E
�
jjfnjj

2
�
D �t

k�1X
nD0

E

	
jj

1

�t

Z tn

tn�1

f .s/dsjj2



D
1

�t

k�1X
nD0

E

"Z
D

�Z tn

tn�1

f .s/ds

�2

dx

#

6 �t

�t

k�1X
nD0

E

	Z
D

Z tn

tn�1

ˇ̌
f .s/

ˇ̌2
dsdx




6 jjf jj2L2.��Q/.

The discrete Gronwall lemma asserts then that by denoting QC D 4jjf jj2
L2.��Q/

C jju0jj
2
L2.D/

,

E
�
jjukjj

2
�
6 QC exp

k�1X
nD0

4�t
�
1C C2

h C L2
s

�!
6 QCe4T.1CC2

hCL2
s /.
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In this way,

1

4
E
�
jjukjj

2
�
C

1

8

k�1X
nD0

E
�
jjunC1 � unjj

2
�
C�t

k�1X
nD0

E
�
jjrunC1jj

2
�

6 1

4
jju0jj

2 C jjf jj2L2.��Q/ C
QCT
�
1C C2

h C L2
s

�
e4T.1CC2

hCL2
s /.

Using the notations of Definition 3, we conclude that there exists a constant C > 0 only depending on T , Ch, u0, Ls, and f such that

jju�tjjL1.0,T ;L2.��D//, jj Qu
�tjjL1.0,T ;L2.��D// 6 C

jjru�tjjL2.��Q/ 6 C

jju�t � Qu�tjjL2.��Q/ 6 C
p
�t,

which concludes the proof.

Proposition 2.3 (Additional estimates)
There exists a constant C > 0 that only depends on T , Ch, u0, Ls, and f and such that

jju�tjjL1.0,T ;L2.�;H1.D///, jj Qu
�tjjL1.0,T ;L2.�;H1.D/// 6 C.1C jj �.u

�t/jjL2.��Q//,

jjQB�tjjL2.��.0,T/;H1.D//, jj@t.Qu
�t � QB�t/jjL2.��Q/ 6 C.1C jj �.u

�t/jjL2.��Q//,

jj Qu�t � u�tjjL2.0,T ;L2.�;H1.D/// 6 C.1C jj �.u
�t/jjL2.��Q//

p
�t,

where QB�t is given by Definition 3 with Bn D
R tn

0 h.u�t.s ��t//dW.s/, n 2 f0, : : : , Ng.

Proof
By denoting as previously the norm in L2.D/ by jj.jj, setting the test function v D unC1 � un � .WnC1 �Wn/h.un/ in (2.2) yields for any
ı > 0, after taking the expectation:

E
�
jjvjj2

�
� ı

�t2

2
E
�
jj �.unC1/jj

2
�
�

1

2ı
E
�
jjvjj2

�
C
�t

2
E

	
jjrunC1jj

2 C
1

2
jjrunC1 � runjj

2 � jjrunjj
2 � 2�tjjrh.un/jj

2




6 E
�
jjvjj2

�
C�tE

	Z
D
 �.unC1/vdx



C�tE

	Z
D
runC1.rvdx




D �tE

	Z
D
.ws.unC1/C fn/ vdx




6 ı�t2

2

�
L2

sE
�
jjunC1jj

2
�
C E

�
jjfnjj

2
��
C

1

ı
E
�
jjvjj2

�
.

Indeed, because E
�
.WnC1 �Wn/

R
D run.rh.un/dx

�
D 0 and E

�
.WnC1 �Wn/

2
�
D �t, we have

E

	Z
D
runC1.rvdx



D

1

2

�
E
�
jjrunC1jj

2
�
C E

�
jjr.unC1 � un/jj

2
�
� E

�
jjrunjj

2
� �

� E

	
.WnC1 �Wn/

Z
D
r.unC1 � un/.rh.un/dx




> 1

2

�
E
�
jjrunC1jj

2
�
C

1

2
E
�
jjr.unC1 � un/jj

2
�
� E

�
jjrunjj

2
�
� 2�tE

�
jjrh.un/jj

2
� �

.

Finally, for ı D 3, one gets

1

2
E
�
jjvjj2

�
C
�t

2
E

	
jjrunC1jj

2 C
1

2
jjrunC1 � runjj

2 � jjrunjj
2




6 3
�t2

2

�
E
�
jj �.unC1/jj

2
�
C L2

sE
�
jjunC1jj

2
��
C 3

�t2

2
E
�
jjfnjj

2
�
C�t2C2

hE
�
jjrunjj

2
�

.
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Then, for any k 2 f0, : : : , Ng,

k�1X
nD0

E
�
jjvjj2

�
C�tE

�
jjrukjj

2
�
C
�t

2

k�1X
nD0

E
�
jjrunC1 � runjj

2
�

6 �tjjru0jj
2 C 3�t2

k�1X
nD0

E
�
jj �.unC1/jj

2
�
C L2

sE
�
jjunC1jj

2
�!
C 3�t2

k�1X
nD0

E
�
jjfnjj

2
�
C 2�t2C2

h

k�1X
nD0

E
�
jjrunjj

2
�

,

and so
k�1X
nD0

�tE

	ˇ̌̌ˇ̌̌ v

�t

ˇ̌̌ˇ̌̌2

C E

�
jjrukjj

2
�
C

1

2

k�1X
nD0

E
�
jjrunC1 � runjj

2
�

6 jjru0jj
2 C 3�t

k�1X
nD0

E
�
jj �.unC1/jj

2
�
C L2

sE
�
jjunC1jj

2
�!
C 3�t

k�1X
nD0

E
�
jjfnjj

2
�
C 2�tC2

h

k�1X
nD0

E
�
jjrunjj

2
�

6
�
1C 2C2

h

�
jjru0jj

2 C 3
�
jj �.u

�t/jj2L2.��Q/ C L2
s jju

�tjj2L2.��Q/

�
C 3jjf jj2L2.��Q/ C 2C2

hjjru�tjj2L2.��Q/.

Using estimates given by Proposition 2.2, we deduce by denoting

QB�t D

N�1X
kD0

�
BkC1 � Bk

�t
.. � tk/C Bk

�
1Œtk ,tkC1/,

with Bk D

Z tk

0
h.u�t.s ��t//dW.s/ D

k�1X
nD0

.WnC1 �Wn/ h.un/, k 2 f0, : : : , Ng,

that u�t and Qu�t are bounded in L1
�
0, T ; L2.�; H1.D//

�
, that @t.Qu�t � QB�t/ is bounded in L2.� � Q/, and that Qu�t � u�t ! 0 in

L2
�
0, T ; L2.�; H1.D//

�
as�t! 0.

Because, for any k 2 f0, : : : , N � 1g, E
h
k

k�1P
nD0

.WnC1 �Wn/ h.un/k
2
i
D �t

k�1P
nD0

E
�
jjh.un/jj

2
�
, by Itô’s isometry ([21] Proposition 2.3.5 p.

25), one gets

E
h Z T

0
kQB�t.t/k2dt

i
D

N�1X
kD0

Z tkC1

tk

E

"BkC1 � Bk

�t
.t � tk/C Bk


2
#

dt

� C
N�1X
kD0

Z tkC1

tk

E
�
kBkC1 � Bkk

2
�
C E

�
kBkk

2
�

dt

D C
N�1X
kD0

�t

(
E
�
k .WkC1 �Wk/ h.uk/k

2
�
C E

h
k

k�1X
nD0

.WnC1 �Wn/ h.un/k
2
i)

� C
N�1X
kD0

�t2
kX

nD0

E
h
kh.un/k

2
i

.

Thus,

E
h Z T

0
kQB�t.t/k2dt

i
� C�t

N�1X
nD0

E
�
kh.un/k

2
�

is bounded, and the proposition is proved because the same argument holds with the H1 norm.

Proposition 2.4
There exists u� 2 L2

�
�, C

�
0, T ; L2.D/

��
\ L1

�
0, T ; L2.�, H1.D//

�
\ N 2

w

�
0, T , H1.D/

�
, h� and �� in L2

�
0, T ; L2.�, H1.D//

�
and w� in

L2.� � Q/ such that, up to subsequences denoted in the same way, as�t! 0 (i.e., N!C1),

u�t , Qu�t �* u� in L1
�
0, T ; L2.�, H1.D//

�
,

h.u�t/ * h� in L2
�
0, T ; L2.�, H1.D//

�
,

�.u
�t/ * �� in L2

�
0, T ; L2.�, H1.D//

�
,

ws.u
�t/ * w� in L2.� � Q/,

Qu�t � QB�t * u� �

Z .

0
h�.s/dW.s/ in L2

�
�, H1.Q/

�
,

8t 2 Œ0, T�, Qu�t.t/ * u�.t/ in L2 .� � D/ .
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Proof
Note that thanks to the estimates given by Propositions 2.2 and 2.3, and noticing that jj �.u�t/jjL2.��Q/ is bounded with respect to the
parameter�t, by compactness, the existence of the weak limits u� , h� ,�� , and w� is immediate. We mention that u� is a H1.D/-valued
predictable process as a weak limit of the continuous and adapted process Qu�t.. ��t/ belonging to the Hilbert space N 2

w

�
0, T , H1.D/

�
equipped with the norm of L2

�
.0, T/ ��, H1.D/

�
.

Let us now focus on the weak convergence of Qu�t � QB�t towards u� �
R .

0 h�.s/dW.s/ in L2
�
�, H1.Q/

�
.

Firstly, because Qu�t � QB�t ,r.Qu�t � QB�t/ and @t.Qu�t � QB�t/ are bounded in L2.� � Q/, there exists �� in L2
�
�, H1.Q/

�
such that, up

to a subsequence,

Qu�t � QB�t * �� in L2
�
�, H1.Q/

�
.

Secondly, we show later that QB�t converges weakly to
R .

0 h�.s/dW.s/ in C
�
0, T ; L2 .� � D/

�
. In this way,

Qu�t � QB�t * u� �

Z .

0
h�.s/dW.s/ in L2

�
0, T ; L2 .� � D/

�
,

and then �� D u� �
R .

0 h�.s/dW.s/. Indeed, for any t 2 Œtn, tnC1/, we have

E

	ˇ̌̌ˇ̌̌
QB�t.t/ �

Z t

0
h.u�t.s ��t//dW.s/

ˇ̌̌ˇ̌̌2


D E

	ˇ̌̌ˇ̌̌ t � tn

�t

Z tnC1

tn

h.u�t.s ��t//dW.s/ �

Z t

tn

h.u�t.s ��t//dW.s/
ˇ̌̌ˇ̌̌2


D E

	ˇ̌̌ˇ̌̌
.WnC1 �Wn/ h.un/

t � tn

�t
� .W.t/ �Wn/ h.un/

ˇ̌̌ˇ̌̌2


D E
�
jjh.un/jj

2
�
�

�
E
�
.WnC1 �Wn/

2� � t � tn

�t

�2

C E
�
.W.t/ �Wn/

2� �

� 2E

	
jjh.un/jj

2.WnC1 �Wn/
t � tn

�t
.W.t/ �Wn/




D E
�
jjh.un/jj

2
�
�

�
.t � tn/

2

�t
C .t � tn/ � 2

.t � tn/2

�t

�

� 2E

	
jjh.un/jj

2.WnC1 �W.t//
t � tn

�t
.W.t/ �Wn/




D E
�
jjh.un/jj

2
�
�

�
.t � tn/ �

.t � tn/
2

�t

�
6 C�t,

by using again the fact that E
�
.WnC1 �Wn/

2� D �t, E
�
.W.t/ �Wn/

2� D t � tn, and the independence between the increment
WnC1 �W.t/ and any Ft- measurable process ([2] p. 90).

Moreover, h.u�t.. ��t// converges weakly to h� in L2.� � Q/, and because the stochastic integral

I : L2.� � Q/! C
�
0, T ; L2.�, L2.D//

�
v 7! I.v/ : .!, x, t/ 7!

Z t

0
v.!, x, s/dW.s/,

is linear and continuous, we thus haveZ .

0
h.u�t.s ��t//dW.s/ *

Z .

0
h�.s/dW.s/ in C

�
0, T ; L2.�, L2.D//

�
,

and so
QB�t *

Z .

0
h�.s/dW.s/ in C

�
0, T ; L2.�, L2.D//

�
.

Finally, because Qu�t � QB�t converges weakly in L2
�
�, H1.Q/

�
¶, it converges weakly in

L2
�
�, C

�
0, T ; L2.D/

��
,! C

�
0, T ; L2.�, L2.D//

�
,

then for any t 2 Œ0, T�, Qu�t.t/ * u�.t/ in L2 .� � D/. Now, by the property of the stochastic integral ([2] Theorem 4.12 p. 101),R .
0 h�.s/dW.s/ 2 L2

�
�, C

�
0, T ; L2.D/

��
, which allows us to conclude that u� 2 L2

�
�, C

�
0, T ; L2.D/

��
.

Remark 3
Note that for t D 0, we have Qu�t.0/ D u0 * u�.0/ in L2.� � D/ and then u0 D u�.0/ (in the sense of Remark 1).

¶We remind that H1.Q/ ,! C .Œ0, T�, L2.D//.
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By denoting f�t D
N�1P
kD0

fk1Œtk ,tkC1Œ, we have for any v in H1.D/ and P a-s. in�

Z
D
@t.Qu

�t � QB�t/vdx C

Z
D
ru�t .rvdx C

Z
D

�.u
�t/vdx D

Z
D

�
ws.u

�t/C f�t

�
vdx.

Because f�t ! f in L2.� � Q/, at the limit one gets that, for any v in H1.D/, ˛ in L2.0, T/ and any ˇ in L2.�/, the following variational
formulation holds: Z

��Q
@t

�
u� �

Z .

0
h�.s/dW.s/

�
v˛ˇdxdtdP C

Z
��Q

.ru� .rv/ ˛ˇdxdtdP

C

Z
��Q

��v˛ˇdxdtdP D

Z
��Q

.w� C f / v˛ˇdxdtdP .
(2.3)

Because H1.D/ is separable, one gets that almost everywhere in .0, T/, P -almost surely in�, and for any v in H1.D/,Z
D
@t

�
u� �

Z .

0
h�.s/dW.s/

�
vdx C

Z
D
ru� .rvdx C

Z
D
��vdx D

Z
D
.w� C f / vdx.

Particularly, almost everywhere in .0, T/, P -almost surely in�, one gets that

�u� D @t

�
u� �

Z .

0
h�.s/dW.s/

�
C �� � w� � f ,

a priori in V 0, but then in L2.D/ because L2.D/ is the chosen pivot space. Thus,�u� 2 L2.��Q/ and u� is an Itô process of the following
form:

du� C .�� ��u�/dt D .w� C f / dtC h�dW .

Proposition 2.5
The following convergences hold strongly in L2.� � Q/:

u�t ! u� ,

h.u�t/! h.u�/,

�.u
�t/!  �.u�/,

ws.u
�t/! ws.u�/.

Proof
By considering as previously the test function v D unC1 in (2.2), we have for any n > 0 after taking the expectation:

1

2
E
�
jjunC1 � unjj

2
�
C

1

2
E
�
jjunC1jj

2
�
�

1

2
E
�
jjunjj

2
�
C�tE

�
jjrunC1jj

2
�

C�tE

	Z
D
 �.unC1/unC1dx




6 �tE

	Z
D
.ws.unC1/C fn/ unC1dx



C

1

2
E
�
jjunC1 � unjj

2
�
C
�t

2
E
�
jjh.un/jj

2
�

,

which yields, after multiplying by e�cn�t , for any positive c

e�cn�tE
�
jjunC1jj

2
�
� e�c.n�1/�tE

�
jjunjj

2
�
C 2�te�cn�tE

�
jjrunC1jj

2
�

C 2�te�cn�tE

	Z
D
 �.unC1/unC1dx




6 2e�cn�t�tE

	Z
D
.ws.unC1/C fn/ unC1dx



C�te�cn�tE

�
jjh.un/jj

2
�

C
�

e�cn�t � e�c.n�1/�t
�
E
�
jjunjj

2
�

.

For any k > 0, by summing this inequality from n D 0 to k, one gets

e�ck�tE
�
jjukC1jj

2
�
C 2

kX
nD0

�te�cn�tE
�
jjrunC1jj

2
�
C 2

kX
nD0

�te�cn�tE

	Z
D
 �.unC1/unC1dx




6 ec�tjju0jj
2 C 2

kX
nD0

e�cn�t�tE

	Z
D
.ws.unC1/C fn/ unC1dx



C

kX
nD0

�te�cn�tE
�
jjh.un/jj

2
�

C

kX
nD0

�
e�cn�t � e�c.n�1/�t

�
E
�
jjunjj

2
�

.

(2.4)
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Because  � is non-decreasing and satisfies  �.0/ D 0, we have

E

"
�t

kX
nD0

e�cn�t

Z
D
 �.unC1/unC1dx

#
> E

"
kX

nD0

Z tnC1

tn

e�cs

Z
D
 �.unC1/unC1dxds

#

D E

	Z tkC1

0
e�cs

Z
D

�.u
�t/u�tdxds



,

and in the same way,

kX
nD0

�te�cn�tE
�
jjrunC1jj

2
�
>
Z tkC1

0
e�csE

h
jjru�tjj2

i
ds.

Moreover,

kX
nD0

�te�cn�tE
�
jjh.un/jj

2
�
D �tjjh.u0/jj

2 C

k�1X
nD0

�te�c.nC1/�tE
�
jjh.unC1/jj

2
�

6 �tjjh.u0/jj
2 C

k�1X
nD0

Z tnC1

tn

e�csE
�
jjh.unC1/jj

2
�

ds

D �tjjh.u0/jj
2 C

Z tk

0
e�csE

h
jjh.u�t/jj2

i
ds.

Besides,

kX
nD0

�
e�cn�t � e�c.n�1/�t

�
E
�
jjunjj

2
�
D .1 � ec�t/jju0jj

2 C

kX
nD1

�
e�cn�t � e�c.n�1/�t

�
E
�
jjunjj

2
�

D .1 � ec�t/jju0jj
2 � c

kX
nD1

�Z tn

tn�1

e�csds

�
E
�
jjunjj

2
�

D .1 � ec�t/jju0jj
2 � c

kX
nD1

�Z tn

tn�1

e�csE
h
jju�tjj2

i
ds

�

6 .1 � ec�t/jju0jj
2 � ce�c�t

Z tk

0
e�csE

h
jju�tjj2

i
ds.

In this way, we can write inequality (2.4) in the following manner:

e�ck�tE
�
jjukC1jj

2
�
C 2

Z tkC1

0
e�csE

h
jjru�tjj2

i
dsC 2

Z tkC1

0
e�csE

	Z
D

�.u
�t/u�tdx



ds

6 ec�tjju0jj
2 C 2

kX
nD0

e�cn�t�tE

	Z
D
.ws.unC1/C fn/ unC1dx




C�tjjh.u0/jj
2 C

Z tk

0
e�csE

h
jjh.u�t/jj2

i
ds

C .1 � ec�t/jju0jj
2 � ce�c�t

Z tk

0
e�csE

h
jju�tjj2

i
ds.

For t 2 Œtk , tkC1/, we have e�ck�t > e�ct and .t ��t/C 6 tk :

e�ctE
h
jju�t.t/jj2

i
C 2

Z t

0
e�csE

h
jjru�tjj2

i
dsC 2

Z t

0
e�csE

	Z
D

�.u
�t/u�tdx



ds

6 jju0jj
2 C 2

kX
nD0

e�cn�t�tE

	Z
D
.ws.unC1/C fn/ unC1dx




C�tjjh.u0/jj
2 C

Z t

0
e�csE

h
jjh.u�t/jj2

i
ds

� ce�c�t

Z .t��t/C

0
e�csE

h
jju�tjj2

i
ds.

(2.5)
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Note that Z t

0
e�csE

h
jjru�tjj2

i
ds D

Z t

0
e�csE

	
jjr.u�t � u�/jj

2 C 2

Z
D
ru�tru�dx � jjru�jj

2



ds,Z t

0
e�csE

	Z
D

�.u
�t/u�tdx



ds D

Z t

0
e�csE

	Z
D

�
�.u

�t/ �  �.u�/
�
.u�t � u�/dx



ds

C

Z t

0
e�csE

	Z
D

�.u�/.u
�t � u�/C  �.u

�t/u�dx



ds,

and Z t

0
e�csE

h
jjh.u�t/jj2

i
ds D

Z t

0
e�csE

	
jjh.u�t/ � h.u�/jj

2 C 2

Z
D

h.u�t/h.u�/dx � jjh.u�/jj
2



ds.

Besides, there exists a constant C > 0 independent of�t such that

ˇ̌̌
ˇ̌ kX

nD0

e�cn�t�tE

	Z
D

ws.unC1/unC1dx



�

Z t

0
e�csE

	Z
D

ws.u
�t/u�tdx



ds

ˇ̌̌
ˇ̌

�

ˇ̌̌
ˇ̌ kX

nD0

e�cn�t�tE

	Z
D

ws.unC1/unC1dx



�

Z tkC1

0
e�csE

	Z
D

ws.u
�t/u�tdx



ds

ˇ̌̌
ˇ̌

C

ˇ̌̌
ˇ
Z tkC1

t
e�csE

	Z
D

ws.u
�t/u�tdx



ds

ˇ̌̌
ˇ

�

ˇ̌̌
ˇ̌ kX

nD0

Z tnC1

tn

�
e�cn�t � e�cs

�
E

	Z
D

ws.unC1/unC1dx



ds

ˇ̌̌
ˇ̌C CLs�t sup

k
E
h
kukk

2
L2.D/

i

6 c
kX

nD0

Z tnC1

tn

�tE

	Z
D
jws.unC1/unC1jdx



dsC CLs�t

6 c�tLsjju
�tjj2L2.��Q/ C CLs�t

6 C�t,

and similarly ˇ̌̌
ˇ̌ kX

nD0

e�cn�t�tE

	Z
D

fnunC1dx



�

Z t

0
e�csE

	Z
D

f�tu�tdx



ds

ˇ̌̌
ˇ̌

�

ˇ̌̌
ˇ̌ kX

nD0

e�cn�t�tE

	Z
D

fnunC1dx



�

Z tkC1

0
e�csE

	Z
D

f�tu�tdx



ds

ˇ̌̌
ˇ̌

C

ˇ̌̌
ˇ
Z tkC1

t
e�csE

	Z
D

f�tu�tdx



ds

ˇ̌̌
ˇ

D

ˇ̌̌
ˇ̌ kX

nD0

Z tnC1

tn

�
e�cn�t � e�cs

�
E

	Z
D

fnunC1dx



ds

ˇ̌̌
ˇ̌C ˇ̌̌ˇ

Z tkC1

t
e�csE

	Z
D

fkukC1dx



ds

ˇ̌̌
ˇ

6 c�tjjf�tjjL2.��Q/jju
�tjjL2.��Q/ C

Z tkC1

t
jjfkjjL2.��D/jjukC1jjL2.��D/ds

6 c�tjjf�tjjL2.��Q/jju
�tjjL2.��Q/ C jju

�tjjL1.0,T ;L2.��D//

p
�t
� Z tkC1

t
jjfkjj

2
L2.��D/ds

�1=2

6 C�tC Q�.�t/, where Q�.�t/! 0 when �t! 0,

as well as

ce�c�t

Z .t��t/C

0
e�csE

h
jju�tjj2

i
ds

D ce�c�t

Z t

0
e�csE

h
jju�tjj2

i
ds � ce�c�t

Z t

.t��t/C
e�csE

h
jju�tjj2

i
ds

> ce�c�t

Z t

0
e�csE

h
jju�tjj2

i
ds � ce�c�t�tjju�tjj2L1.0,T ;L2.��D//

D ce�c�t

Z t

0
e�csE

	
jju�t � u�jj

2 C 2

Z
D

u�tu�dx � jju�jj
2



ds � C�t.
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Using these, we can write inequality (2.5) in the following way:

e�ctE
h
jju�t.t/jj2

i
C 2

Z t

0
e�csE

	
jjr.u�t � u�/jj

2 C 2

Z
D
ru�tru�dx � jjru�jj

2



ds

C 2

Z t

0
e�csE

	Z
D

�
�.u

�t/ �  �.u�/
�
.u�t � u�/dx



ds

C 2

Z t

0
e�csE

	Z
D

�.u�/.u
�t � u�/C  �.u

�t/u�dx



ds

6 jju0jj
2 C 2

Z t

0
e�csE

	Z
D

�
ws.u

�t/C f�t

�
u�tdx



dsC�tjjh.u0/jj

2

C

Z t

0
e�csE

	
jjh.u�t/ � h.u�/jj

2 C 2

Z
D

h.u�t/h.u�/dx � jjh.u�/jj
2



ds

� ce�c�t

Z t

0
e�csE

	
jju�t � u�jj

2 C 2

Z
D

u�tu�dx � jju�jj
2



dsC C�tC Q�.�t/.

And so by noting that

Z t

0
e�csE

	Z
D

ws.u
�t/u�tdx



ds D

Z t

0
e�csE

	Z
D

�
ws.u

�t/ � ws.u�/
�
.u�t � u�/dx



ds

C

Z t

0
e�csE

	Z
D

ws.u�/.u
�t � u�/dx



ds

C

Z t

0
e�csE

	Z
D

ws.u
�t/u�dx



ds,

we obtain

e�ctE
h
jju�t.t/jj2

i
C 2

Z t

0
e�csE

	
jjr.u�t � u�/jj

2 C 2

Z
D
ru�tru�dx � jjru�jj

2



ds

C 2

Z t

0
e�csE

	Z
D

�.u�/.u
�t � u�/C  �.u

�t/u�dx



ds

6 jju0jj
2 C 2

Z t

0
e�csE

	Z
D

f�tu�tdx



dsC 2

Z t

0
e�csE

	Z
D

ws.u
�t/u�dx



ds

C 2

Z t

0
e�csE

	Z
D

ws.u�/.u
�t � u�/dx



dsC�tjjh.u0/jj

2

C

Z t

0
e�csE

	
2

Z
D

h.u�t/h.u�/dx � jjh.u�/jj
2



ds

� ce�c�t

Z t

0
e�csE

	
2

Z
D

u�tu�dx � jju�jj
2



ds

C C�tC

�
C2

h C 2Ls � ce�c�t C
2

�

�
jju�t � u�jj

2
L2.��Q/ C Q�.�t/.

By choosing c such that C2
h C 2Ls � ce�c�t C 2

�
6 0, we finally get

Z T

0
e�ctE

h
jju�t.t/jj2

i
dtC 2

Z T

0

Z t

0
e�csE

	
2

Z
D
ru�tru�dx � jjru�jj

2



dsdt

C 2

Z T

0

Z t

0
e�csE

	Z
D

�.u�/.u
�t � u�/C  �.u

�t/u�dx



dsdt

6 Tjju0jj
2 C 2

Z T

0

Z t

0
e�csE

	Z
D

f�tu�tdx



dsdtC 2

Z T

0

Z t

0
e�csE

	Z
D

ws.u
�t/u�dx



dsdt

C 2

Z T

0

Z t

0
e�csE

	Z
D

ws.u�/.u
�t � u�/dx



dsdtC T�tjjh.u0/jj

2

C

Z T

0

Z t

0
e�csE

	
2

Z
D

h.u�t/h.u�/dx � jjh.u�/jj
2



dsdt

� ce�c�t

Z T

0

Z t

0
e�csE

	
2

Z
D

u�tu�dx � jju�jj
2



dsdtC CT�tC Q�.�t/.

(2.6)
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Now, by applying the Itô formula to the process u� and the function F.t, v/ D e�ctjjvjj2, we get the following energy equality ([2]
Theorem 4.17 p. 105, [21] Theorem 4.2.5 p. 75):

Z T

0
e�ctE

�
jju�.t/jj

2
�

dtC c

Z T

0

Z t

0
e�csE

�
jju�jj

2
�

dsdt

C 2

Z T

0

Z t

0
e�csE

�
jjru�jj

2
�

dsdtC 2

Z T

0

Z t

0
e�csE

	Z
D
��u�dx



dsdt

D Tjju0jj
2 C 2

Z T

0

Z t

0
e�csE

	Z
D
.w� C f /u�dx



dsdtC

Z T

0

Z t

0
e�csE

�
jjh�jj

2
�

dsdt.

By replacing Tjju0jj
2 in (2.6) using this last equality, we obtain

Z T

0
e�ctE

h
jju�t.t/jj2

i
dtC 2

Z T

0

Z t

0
e�csE

	
2

Z
D
ru�tru�dx � jjru�jj

2



dsdt

C 2

Z T

0

Z t

0
e�csE

	Z
D

�.u�/.u
�t � u�/C  �.u

�t/u�dx



dsdt

6
Z T

0
e�ctE

�
jju�.t/jj

2
�

dtC c

Z T

0

Z t

0
e�csE

�
jju�jj

2
�

dsdt

C 2

Z T

0

Z t

0
e�csE

�
jjru�jj

2
�

dsdtC 2

Z T

0

Z t

0
e�csE

	Z
D
��u�dx



dsdt

� 2

Z T

0

Z t

0
e�csE

	Z
D
.w� C f /u�dx



dsdt �

Z T

0

Z t

0
e�csE

	Z
D

h2
�dx



dsdt

C 2

Z T

0

Z t

0
e�csE

	Z
D

f�tu�tdx



dsdtC 2

Z T

0

Z t

0
e�csE

	Z
D

ws.u
�t/u�dx



dsdt

C 2

Z T

0

Z t

0
e�csE

	Z
D

ws.u�/.u
�t � u�/dx



dsdtC T�tjjh.u0/jj

2

C

Z T

0

Z t

0
e�csE

	
2

Z
D

h.u�t/h.u�/dx � jjh.u�/jj
2



dsdt

� ce�c�t

Z T

0

Z t

0
e�csE

	
2

Z
D

u�tu�dx � jju�jj
2



dsdtC CT�tC Q�.�t/.

And by passing to the superior limit, we get f�t ��!
�t

f in L2.� � Q/:

lim sup
�t

Z T

0
e�ctE

h
jju�t.t/jj2

i
dtC 2

Z T

0

Z t

0
e�csE

�
jjru�jj

2
�

dsdt

C 2

Z T

0

Z t

0
e�csE

	Z
D
��u�dx



dsdt

6
Z T

0
e�ctE

�
jju�.t/jj

2
�

dtC c

Z T

0

Z t

0
e�csE

�
jju�jj

2
�

dsdt

C 2

Z T

0

Z t

0
e�csE

�
jjru�jj

2
�

dsdtC 2

Z T

0

Z t

0
e�csE

	Z
D
��u�dx



dsdt

� 2

Z T

0

Z t

0
e�csE

	Z
D
.w� C f /u�dx



dsdt �

Z T

0

Z t

0
e�csE

�
jjh�jj

2
�

dsdt

C 2

Z T

0

Z t

0
e�csE

	Z
D

fu�dx



dsdtC 2

Z T

0

Z t

0
e�csE

	Z
D

w�u�dx



dsdt

C

Z T

0

Z t

0
e�csE

	
2

Z
D

h�h.u�/dx � jjh.u�/jj
2



dsdt � c

Z T

0

Z t

0
e�csE

�
jju�jj

2
�

dsdt.

Finally,

lim sup
�t

Z T

0
e�ctE

h
jju�t.t/jj2

i
dt 6

Z T

0
e�ctE

�
jju�.t/jj

2
�

dt �

Z T

0

Z t

0
e�csE

�
jjh.u�/ � h�jj

2
�

dsdt.

Thus, u�t ! u� in L2.� � Q/, h.u�/ D h� , �� D  �.u�/ and w� D ws.u�/.
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2.2. Uniqueness of u�

Proposition 2.6
There exists a unique solution to Problem (2.1).

Proof
Let u� , Qu� be two solutions of Problem (2.1) associated with the same initial condition u0. Then, u� � Qu� satisfies

d.u� � Qu�/C
�
 �.u�/ �  �.Qu�/ ��.u� � Qu�/

�
dt D

�
ws.u�/ � ws.Qu�/

�
dtC

�
h.u�/ � h.Qu�/

�
dW .

Let c be a positive constant; by applying the Itô formula [2, 21] to the process u� � Qu� and the function F.t, v/ D e�ctjjvjj2, one gets for
any t 2 Œ0, T�:

e�ctE
�
jj.u� � Qu�/.t/jj

2
�
C c

Z t

0
e�csjju� � Qu�jj

2dsC 2

Z t

0
e�csE

�
jjr.u� � Qu�/jj

2
�

ds

C 2

Z t

0
e�csE

�
. �.u�/ �  �.Qu�//.u� � Qu�/

�
ds

D 2

Z t

0
e�csE

�
.ws.u�/ � ws.Qu�//.u� � Qu�/

�
dsC

Z t

0
e�csE

�
jjh.u�/ � h.Qu�/jj

2
�

ds.

In this way, by choosing c such that 2Ls C C2
h � c < 0, one gets

8t 2 I, e�ctE
�
jj.u� � Qu�/.t/jj

2
�
6 0,

which proves the announced uniqueness result.

3. Proof of the main result

The aim of this section is to prove our main result, Theorem 1.2. To do this, firstly, we show the following convergence result.

Proposition 3.1
Up to subsequences, .u�/�>0 converges strongly in N 2

w

�
0, T , H1.D/

�
and weakly* in L1

�
0, T ; L2.� � D/

�
to a function u, . �.u�//�>0

converges weakly in N 2
w

�
0, T , L2.D/

�
to a function � 2 @IŒ0,1�.u/, and in addition, almost everywhere in .0, T/, P -almost surely in�, and

for any v in H1.D/

< @t

�
u �

Z .

0
h.u/dW

�
, v >V0 ,V C

Z
D
ru.rvdx C

Z
D
�vdx D

Z
D
.ws.u/C f / vdx.

3.1. Study of the sequences .u�/�>0 and . �.u�//�>0

Proposition 3.2
.u�/�>0 is bounded in L1

�
0, T ; L2.� � D/

�
\N 2

w

�
0, T , H1.D/

�
.

Proof
This first result is a direct consequence of Proposition 2.2 and of the lower semi-continuity of the norm for the weak, or weak-*,
convergence.

Proposition 3.3
. �.u�//�>0 is bounded in N 2

w

�
0, T , L2.D/

�
.

Proof
We consider the convex antiderivative 	� of  � defined by the following:

	�.v/ D

8̂<
:̂

v2

2� if v 6 0
0 if v 2 Œ0, 1�

.v�1/2

2� if v > 1.
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By applying the Itô formula [2, 21] to the process u� and the function F.t, v/ D
R

D 	�.v/dx, one gets for any t 2 Œ0, T�:

Z
D
	�.u�.t//dx D

Z
D
	�.u0/dx C

Z t

0

Z
D
 �.u�/

˚
�u� �  �.u�/C ws.u�/C f

�
dxds

C

Z t

0

Z
D
 �.u�/h.u�/dxdW.s/C

1

2

Z t

0

Z
D

0
�.u�/h

2.u�/dxds.

(3.1)

Because h.0/ D h.1/ D 0, one gets

Z t

0

Z
D

0
�.u�/h

2.u�/dxds

D

Z t

0

Z
u�<0

0
�.u�/h

2.u�/dxdsC

Z t

0

Z
u�>1

0
�.u�/h

2.u�/dxds

D

Z t

0

Z
u�<0

0
�.u�/ Œh.u�/ � h.0/�2 dxdsC

Z t

0

Z
u�>1

0
�.u�/ Œh.u�/ � h.1/�2 dxds

6 C2
h

Z t

0

Z
u�<0

0
�.u�/u

2
�dxdsC C2

h

Z t

0

Z
u�>1

0
�.u�/.u� � 1/2dxds

6 2C2
h

Z t

0

Z
D
	�.u�.s//dxds.

After taking the expectation in (3.1), one gets 	�.u0/ D 0:

E

	Z
D
	�.u�.t//dx



C E

	Z t

0

Z
D
 0�.u�/jru�j

2dxds



C jj �.u�/jj

2
L2.��Q/

6 1

2
jj �.u�/jj

2
L2.��Q/ C jjws.u�/jj

2
L2.��Q/ C jjf jj

2
L2.��Q/ C C2

hE

	Z t

0

Z
D
	�.u�.s//dxds



,

and using the fact that  0� > 0, one gets

E

	Z
D
	�.u�.t//dx



C

1

2
jj �.u�/jj

2
L2.��Q/

6 jjws.u�/jj
2
L2.��Q/ C jjf jj

2
L2.��Q/ C 2C2

hE

	Z t

0

Z
D
	�.u�.s//dxds



.

Because 	�.u�.t// > 0, by using Gronwall’s lemma, one gets the existence of QC > 0 independent of � such that

2C2
hE

	Z t

0

Z
D
	�.u�.s//dxds



6 QC;

thus,

jj �.u�/jj
2
L2.��Q/ 6 2L2

s jju�jj
2
L2.��Q/ C 2jjf jj2L2.��Q/ C 2C,

and then . �.u�//�>0 is bounded in N 2
w

�
0, T , L2.D/

�
thanks to Proposition 3.2.

Using this result, the convergence of u�t to u� in L2.� � Q/ and Proposition 2.3, one gets the following bounds, in particular for the

sequences
�
@t

�
u� �

R .
0 h.u�/dW

��
�>0

,
�

u��
�

�
�>0

and
�
.u��1/C

�

�
�>0

.

Proposition 3.4
There exists a constant C > 0 that only depends on T , Ch, u0, Ls, and f such that

jju�jjL1.0,T ;L2.�;H1.D///, jj@t.u� �

Z �
0

h.u�/dW/jjL2.��Q/, jj�u�jjL2.��Q/ 6 C.

Proof
The boundedness of jju�jjL1.0,T ;L2.�;H1.D/// is a direct consequence of Proposition 2.3 and the lower semi-continuity of the norm for
the weak-* convergence. Moreover, thanks to Proposition 2.3, there exists a constant C > 0 that only depends on T , Ch, u0, Ls, and f
such that

jj@t.Qu
�t � QB�t/jjL2.��Q/ 6 C

�
1C jj �.u

�t/jjL2.��Q/

�
.
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Then, using the lower semi-continuity of the norm for the weak convergence, the strong convergence of  �.u�t/ towards  �.u�/ in
L2.� � Q/ given by Propositions 2.5 and 3.3, there exists QC that only depends on T , Ch, u0, Ls, and f such that

jj@t

�
u� �

Z .

0
h.u�/dW

�
jjL2.��Q/ 6 lim inf

�t
jj@t

�
Qu�t � QB�t

�
jjL2.��Q/

6 C

�
1C lim inf

�t

n
jj �.u

�t/ � �.u�/jjL2.��Q/ C jj �.u�/jjL2.��Q/

o�
6 QC.

Finally, a comparison in (2.1a) gives the boundedness of�u� in L2.� � Q/.

Proposition 3.5�
u��
�

�
�>0

and
�
.u��1/C

�

�
�>0

are bounded in L2.� � Q/.

Proof
Because  �.u�/ D �

u��
�
C .u��1/C

�
is bounded in L2.� � Q/ and u�� .u� � 1/C D 0, one gets that

ˇ̌̌ˇ̌̌
�

u��
�

ˇ̌̌ˇ̌̌2
L2.��Q/

C
ˇ̌̌ˇ̌̌ .u� � 1/C

�

ˇ̌̌ˇ̌̌2
L2.��Q/

D
ˇ̌̌ˇ̌̌
�

u��
�
C
.u� � 1/C

�

ˇ̌̌ˇ̌̌2
L2.��Q/

D jj �.u�/jj
2
L2.��Q/ 6 C,

and the result holds.

3.2. Existence of a solution

Proposition 3.6
There exist u 2 N 2

w

�
0, T , H1.D/

�
\L1

�
0, T , L2

�
�, H1.D/

��
\L2

�
�, C

�
0, T ; L2.D/

��
, � , �1, �2 in N 2

w

�
0, T , L2.D/

�
and Nws, Nh in N 2

w

�
0, T , H1.D/

�
such that up to subsequences denoted in the same way, the following convergences hold as � ! 0:

u� * u in N 2
w

�
0, T ; H1.D/

�
,

u�
�
* u in L1

�
0, T , L2.�, H1.D//

�
,

h.u�/ * Nh in L2
�
� � .0, T/, H1.D/

�
,

u� �

Z .

0
h.u�/dW * u �

Z .

0

NhdW in L2
�
�, H1.Q/

�
,

ws.u�/ * Nws in L2
�
� � .0, T/, H1.D/

�
,

�.u�/ * � in L2.� � Q/,

�
u��
�
* �1 in L2.� � Q/, with �1 6 0,

.u� � 1/

�

C

* �2 in L2.� � Q/, with �2 > 0.

Proof
These results are immediate using estimates given by Propositions 3.2, 3.3, 3.4, and 3.5. Let us precise briefly that the regularity u 2
L2
�
�, C

�
0, T ; L2.D/

��
comes from the fact that

u �

Z .

0

NhdW 2 L2
�
�, H1.Q/

�
,! L2

�
�, C

�
0, T ; L2.D/

��
,

and the result holds because
R .

0
NhdW 2 L2

�
�, C

�
0, T ; L2.D/

��
([2] Theorem 4.12 p. 101).

Note also that �1 � 0 (resp. �2 � 0) because � u��
�
� 0 (resp. .u��1/

�

C
� 0) and as the subset of the non-negative elements of

L2.� � Q/ is a closed convex set.

Remark 3.7
Note that  �.u�/ D �

u��
�
C .u��1/

�

C
, and so � D �1 C �2.

Proposition 3.8
Up to a subsequence u�.T/ * u.T/ in L2.� � D/.

Proof
Because u� �

R .
0 h.u�/dW converges weakly to u �

R .
0
NhdW in L2

�
�, H1.Q/

�
, it converges weakly in

L2
�
�, C

�
0, T ; L2.D/

��
,! C

�
0, T ; L2.� � D/

�
.

Moreover, using the linear continuity of the stochastic integral, we haveZ T

0
h.u�/dW *

Z T

0

NhdW in L2.� � D/.
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We deduce that u�.T/ * u.T/ in L2.� � D/.

Remark 4
In the same manner, because u�.., 0/ D u0, one shows that u.., 0/ D u0 in the sense that

P -a.s in �, u.., 0/ D lim
t!0

u.., t/ in L2.D/.

Proposition 3.9
u�� ! 0 and .u� � 1/C ! 0 in L2.� � Q/ as � ! 0.

Proof
This result is a direct consequence of Proposition 3.5. Because there exists C > 0 such that

ˇ̌̌ˇ̌̌
�

u��
�

ˇ̌̌ˇ̌̌2
L2.��Q/

C
ˇ̌̌ˇ̌̌ .u� � 1/C

�

ˇ̌̌ˇ̌̌2
L2.��Q/

6 C,

one gets

jju�� jj
2
L2.��Q/ C

ˇ̌̌ˇ̌̌
.u� � 1/C

ˇ̌̌ˇ̌̌2
L2.��Q/

6 C�2,

and the result holds.

Remark 3.10
Because

 �.u�/u� D
u��
�
� u�� C

.u� � 1/C

�
�
�
.u� � 1/C C 1

�
,

one gets that

E

	Z
Q
 �.u�/u�dxds



! E

	Z
Q
�2dxds



as � ! 0.

By passing to the limit in the variational formulation (2.3), one gets that for any v in H1.D/, ˛ in L2.0, T/, and any ˇ in L2.�/,

Z
�

Z T

0

Z
D
@t

�
u �

Z .

0

Nh.s/dW.s/

�
vdx˛ˇdtdP C

Z
��Q

.ru.rv/ ˛ˇdxdtdP

C

Z
��Q

�v˛ˇdxdtdP D

Z
��Q

. Nws C f / v˛ˇdxdtdP .

Because H1.D/ is separable, one gets that almost everywhere in .0, T/, P -almost surely in� and for any v in H1.D/:

Z
D
@t

�
u �

Z .

0

Nh.s/dW.s/

�
vdx C

Z
D
ru.rvdx C

Z
D
�vdx D

Z
D
. Nws C f / vdx.

In particular, u is a continuous L2.D/-valued predictable process satisfying

u.t/ D u.0/C

Z t

0
.�u � � C Nws C f / dsC

Z t

0

Nh.s/dW.s/,

where� denotes the Laplace operator on H1.D/ associated with the formal Neumann boundary condition. Note that in our situation,
�u is an element of L2.D/, ru is then an element of H.div, D/, and the normal trace ru.n exists in H�1=2.@D/. Moreover, the solution u
satisfies the following energy equality P -almost surely in� and for any t 2 Œ0, T� by denoting as previously jj.jj D jj.jjL2.D/ and because
u.0/ D u0

E
�
jju.t/jj2

�
D jju0jj

2 � 2E

	Z t

0
jjrujj2ds



C 2E

	Z t

0

Z
D

u.f � � C Nws/dxds



C E

	Z t

0
jj Nhjj2ds



.

Proposition 3.10
� 2 @IŒ0,1�.u/, Nh D h.u/, Nws D ws.u/, and the convergence of u� towards u holds strongly in L2

�
.0, T/ ��, H1.D/

�
.

Proof
We use here the same type of arguments as in the proof of Proposition 2.5. By applying the Itô formula to the process u� and the
function F.t, v/ D 1

2 e�˛tjjvjj2 with ˛ > 0, one gets that

e�˛T 1

2
jju�.T/jj

2 �
1

2
jju0jj

2 C
1

2

Z
Q
˛e�˛sju�j

2dxdsC

Z
Q

e�˛sjru�j
2dxdsC

Z
Q

e�˛su� �.u�/dxds

D

Z
Q

e�˛su�
�

ws.u�/C f
�

dxdsC

Z T

0

Z
D

e�˛su�h.u�/dxdW.s/C
1

2

Z
Q

e�˛sh2.u�/dxds.
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Thus, by taking the expectation,

e�˛T 1

2
E
�
jju�.T/jj

2
�
�

1

2
jju0jj

2 C E

	Z
Q

e�˛sjru�j
2dxds



C E

	Z
Q

e�˛su� �.u�/dxds




C E

	Z
Q

e�˛s
�˛

2
ju�j

2 � u�ws.u�/ � fu� �
1

2
h2.u�/

�
dxds



D 0.

(3.2)

Now, by passing to the superior limit, we get using Remark 3.10

lim sup

�
e�˛T 1

2
E
�
jju�.T/jj

2
�
C E

	Z
Q

e�˛sjru�j
2dxds


�
C E

	Z
Q

e�˛s�2dxds




C lim inf

�
E

	Z
Q

e�˛s
�˛

2
ju�j

2 � u�ws.u�/ �
1

2
h2.u�/

�
dxds


�

6 E

	Z
Q

e�˛sfudxds



C

1

2
jju0jj

2.

(3.3)

By denoting

A� D E

	Z
Q

e�˛s
�˛

2
ju�j

2 � u�ws.u�/ �
1

2
h2.u�/

�
dxds



,

we have

A� D E

	Z
Q

e�˛s
n˛

2
ju� � uj2 � .u� � u/

�
ws.u�/ � ws.u/

�
�

1

2

�
h.u�/ � h.u/

�2
o

dxds




C E

	Z
Q

e�˛s
n
˛
�

u�u �
u2

2

�
� u�ws.u/ � u

�
ws.u�/ � ws.u/

�
� h.u/h.u�/C

1

2
h2.u/

o
dxds




> E

	Z
Q

e�˛sju� � uj2
�˛

2
� Ls �

C2
h

2

�
dxds



C E

	Z
Q

˛

2
e�˛s

�
u�uC u.u� � u/

�
dxds




C E

	Z
Q

e�˛s
n
.u � u�/ws.u/ � uws.u�/ � h.u/h.u�/C

1

2
h2.u/

o
dxds



.

Thus,

lim inf A� > lim infE

	Z
Q

e�˛sju� � uj2
�˛

2
� Ls �

C2
h

2

�
dxds



C E

	Z
Q

˛

2
e�˛sjuj2dxds




C E

	Z
Q

e�˛s
n1

2
h2.u/ � u Nws � h.u/ Nh

o
dxds



.

Now, by choosing ˛ such that ˛2 � Ls �
C2

h
2 > 0, one gets that

lim inf A� > E

	Z
Q

e�˛s
n˛

2
juj2 � u Nws C

1

2
h2.u/ � h.u/ Nh

o
dxds



.

Using this in (3.3), we obtain

lim sup

�
e�˛T 1

2
E
�
jju�.T/jj

2
�
C E

	Z
Q

e�˛sjru�j
2dxds


�

C E

	Z
Q

e�˛s
n
�2 C

˛

2
juj2 � u Nws C

1

2
h2.u/ � h.u/ Nh � fu

o
dxds




6 1

2
jju0jj

2.

(3.4)

Besides, by applying the Itô formula to the process u and the function F.t, v/ D 1
2 e�˛tjjvjj2, we get, after taking the expectation,

e�˛T 1

2
E
�
jju.T/jj2

�
�

1

2
jju0jj

2 C E

	Z
Q

e�˛sjruj2dxds




D E

	Z
Q

e�˛s
n
�
˛

2
juj2 C u Nws C

1

2
Nh2 � �uC fu

o
dxds



.

(3.5)

And by injecting it in (3.4), we get

lim sup

�
e�˛T 1

2
E
�
jju�.T/jj

2
�
C E

	Z
Q

e�˛sjru�j
2dxds


�

C E

	Z
Q

e�˛s
n
�2 � �uC

1

2
.h.u/ � Nh/2

o
dxds




6 e�˛T 1

2
E
�
jju.T/jj2

�
C E

	Z
Q

e�˛sjruj2dxds



.

(3.6)
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Thanks to the properties of the weak convergence and of the lim sup and lim inf, one has that

e�˛T 1

2
E
�
jju.T/jj2

�
C E

	Z
Q

e�˛sjruj2dxds




� lim inf

�
e�˛T 1

2
E
�
jju�.T/jj

2
��
C lim inf

�
E

	Z
Q

e�˛sjru�j
2dxds


�

� lim sup

�
e�˛T 1

2
E
�
jju�.T/jj

2
�
C E

	Z
Q

e�˛sjru�j
2dxds


�
,

so that

E

	Z
Q

e�˛s
n
�2 � �uC

1

2
.h.u/ � Nh/2

o
dxds



� 0.

Thanks to Proposition 3.9 and Remark 3.7, we note that for almost all .!, x, t/ 2 � � Q, 0 6 u.!, x, t/ 6 1 and � D �1 C �2 with �1 � 0
and �2 � 0.

Then �2 � �u D .1 � u/�2 � �1u � 0, and a first consequence of the previous inequality is that h.u/ D Nh. A second consequence is
that �2 � �u D .1 � u/�2 � �1u D 0 and because

� if u D 0 then �2 D 0. So � D �1 6 0 and in this way � 2 R�,
� if u D 1 then �1 D 0. So � D �2 > 0 and in this way � 2 RC, and
� if 0 < u < 1, then �1 D �2 D 0 and � D 0,

one may conclude that � 2 @IŒ0,1�.u/.
The last consequence is that

lim sup

�
e�˛T 1

2
E
�
jju�.T/jj

2
�
C E

	Z
Q

e�˛sjru�j
2dxds


�

D e�˛T 1

2
E
�
jju.T/jj2

�
C E

	Z
Q

e�˛sjruj2dxds



.

A standard monotone argument yields

u�.T/! u.T/ in L2.� � D/, ru� ! ru in L2..0, T/ ��, L2.D//.

Note that because T is arbitrary, one can also conclude the convergence of u�.t/ to u.t/ in L2.� � D/ for any t. Then, by Proposition
2.2 and the lower semi-continuity of the norm for the weak-* convergence, E

�
jju�.t/jj2

�
is bounded uniformly with respect to t and �.

Lebesgue converging theorem yields u� ! u in L2..0, T/ ��, H1.D//.
Then, by using the Lipschitz property of ws, one gets that Nws D ws.u/ and that the convergence of ws.u�/ towards ws.u/ holds

strongly in L2.� � Q/.

3.3. Uniqueness of the solution

Theorem 3.12
Problem (1.1) admits a unique solution.

Proof
We consider two solutions u and Ou of Problem (1.1) associated with the same initial condition u.0/ D Ou.0/ D u0:

duC .� ��u/dt D .ws.u/C f /dtC h.u/dW , � 2 @IŒ0,1�.u/,

d OuC . O� ��Ou/dt D .ws.Ou/C f /dtC h.Ou/dW , O� 2 @IŒ0,1�.Ou/.

Note that, by monotonicity, it holds .� � O�/.u � Ou/ > 0.
Besides, by applying the Itô formula to the process u � Ou and to the function F.t, v/ D e�˛sjjvjj2 where ˛ > 0, one gets after taking

the expectation

1

2
e�˛TE

�
jj.u � Ou/.T/jj2

�
C E

	Z
Q

e�˛sjr.u � Ou/j2dxds



C
˛

2
E

	Z
Q

e�˛sju � Ouj2dxds




6 LsE

	Z
Q

e�˛sju � Ouj2dxds



C

C2
h

2
E

	Z
Q

e�˛sju � Ouj2dxds



.

Then, by choosing ˛ such that ˛2 � Ls �
C2

h
2 6 0, one gets that u D Ou, and, going back to the equations, one has finally that � D O� and

the solution is unique.
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