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Abstract

This report documents how we have implemented a trace generator
for the Circus specification language using K, a rewrite-based executable
semantic framework in which programming languages, type systems and
formal analysis tools can be defined using configurations, computations
and rules. This implementation is based on the operational semantics of
Circus, that we have revisited to make it exploitable with K. The moti-
vation of this work is the development of a test generation environment
for Circus. Moreover, it may provide some inspiration to the developers
of tools for specification languages based on process algebras.
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1 Introduction

Circus is a state-rich process algebra combining Z [WD96], CSP [Ros98], and
a refinement calculus [Mor94]. Its denotational and operational semantics are
based on the Unifying Theories of Programming (UTP) [HJ98].

The K-Framework is a rewrite-based executable semantic framework for de-5

veloping tools based on the operational semantics of programming languages
[Ros07].

We report how we have defined a configuration structure and a set of rewrite
rules within the K-Framework, which, given a Circus specification, produces an
executable symbolic transition system that mimics the one defined by the formal10

operational semantics of Circus.
The result is a symbolic evaluator that takes the text of a Circus specification

as input and produces, as output of interest, a constraint and two sets of sym-
bolic traces: one corresponding to the constrained symbolic traces of the Circus
operational semantics [CG11a]; the other to the specification traces, closer to15

the specification text, that were introduced in [CG14] to facilitate the analysis
of test coverage criteria.

We have translated each Circus operational semantic rule into some equiv-
alent K-Framework rewrite rule or set of rules. The efforts were focused on
keeping a close similarity between the rules of the formal semantics and the20

input format of the K-framework.
Most of the rules were translated in a straightforward way, permitting a

crosscheck between the operational semantics and the designed rewriting ver-
sion. Nevertheless, some behaviors, especially those related to the synchro-
nization of nested concurrent processes, required the adoption of more complex25

strategies.
Non-determinism is allowed in Circus specifications and it was handled ex-

ploiting the backtracking mechanism of the K-framework, guaranteeing the cov-
erage of all possibilities.

We have organised this document as follows:30

• The statement of a simplified, machine readable, syntax for the Circus
language is given in Section 3;

• The definition of a configuration to keep the necessary information for
handling the state and other properties for Circus processes is given in
Section 4;35

• The adopted strategy to handle communications and synchronizations be-
tween concurrent processes is described in Section 5;

• The structural rules for dealing with structural issues, such as loading and
optimizing the configuration, are presented in Section 6;

• The Circus operational semantics rules designed as K-Framework rewrite40

rules are presented in Section 7;
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• Some examples of specification texts, used for validating the behavior
of the transition system, and the corresponding traces are presented in
Section 8.

Moreover, the next section contains a brief introduction to some background45

concepts.

2 Background

2.1 The K-Framework

The K-framework is presented by its authors as a rewrite-based definitional
framework in which programming languages, calculi, as well as type systems or50

formal analysis tools can be defined [RŞ10]. It provides many desirable aspects
such as modularity, non-determinism and concurrency handling. The frame-
work is presented formally [Ros07] and packed in a reference implementation,
offering tools to generate executable interpreters that allows state-exploration
and reasoning about programs [CLRR16].55

Semantics for programming languages, calculi and other analysis tools are
defined in the framework by using a set of rewrite rules and labelled, poten-
tially nested, cell structures, refered to as the configuration. The content of
the configuration cells keeps relevant information such as the state and general
environment for the system/program.60

There are two types of rewrite rules: computational, which count as com-
putational steps, and structural rules, which are used to rearrange the terms
so that the computational rules can apply. A computation is an element or
a sequential list of elements that carries “computational meaning”, that is, a
sequence of computational tasks. For instance, the assignment of the value of65

an expression to a variable is a computation, composed by a sequence of com-
putations which are required to, first, compute the value of the expression and,
then, perform the adequate changes to the affected environment configuration
cells.

In the K-Framework, computations are syntactical elements of the sort K70

and they are stored and handled inside the configuration cell labelled as k . This
cell is referred to as the k cell or the computation cell. Computations have
a list structure, capturing the intuition of computation sequentialization, with
the symbol ∼> as list the separator, to be read as “followed by” and the unit
symbol “.” (the empty computation).75

In particular, computations extend the original language or calculus syn-
tax. When necessary to avoid ambiguities, throughout this report we use the
name k-computation when referring to a computation inside the k-cell. The k-
computations can be handled like any other terms in the rewriting environment,
that is, they can be matched, moved from one place to another in the original80

term, modified, or even deleted.
In such a framework, it is important to distinguish between computations

under treatment and computations already completed, for instance, between
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expressions and their values. To allow this distinction, the framework defines
the KResult internal syntactic subcategory. Coming back to the variable assign-85

ment example, the treatment of the expression will be judged finished when the
achieved result is classified under KResult category as, for example, an integer
value.

The rewrite rules in the K-Framework are unconditional, although they may
have ordinary side conditions, and they are context-insensitive, so the rules90

apply concurrently as soon as they match. They generalize conventional rewrite
rules by making explicit which parts of the term is read, write, or ignored.

The framework has been developed with the mechanisation of structural
operational semantics in mind. The correspondence can be summarised, in a
nutshell, as:95

• Computation terms and other auxiliary information such as environment
and state, are contained in nested configuration cells. Computations are
kept in special k-cells, and other information are organised and managed
in cells and sub-cells, depending on the considered language.

• Rewrite rules correspond to transitions of the operational semantics. They100

describe the evolution of the top configuration cell. Computations pro-
gresses are reflected by evolutions of k-sub-cells. Changes of environment
and state are reflected by changes of other cells.

• Structural rules describe computations rearrangements, so that rewrite
rules can match and apply.105

Such definitions can be processed by the rewrite engine that is the kernel of
the K framework. As say the authors, “interpreters for free” can be obtained
from formal language definitions, as well as various tools based on operational
semantics. In this work, our immediate goal was symbolic traces generation for
Circus, having in mind a test generation environment as described in [ACGS16]110

2.2 Circus

This section is a slightly modified version of Section 2 of our paper [ACGS16].
As exemplified in Figure 1, Circus makes it possible to model systems and their
components via a set of interacting processes. Each process has:

a state and some operations for observing and changing it in a Z style. In our115

example, the state is a pair AState of variables named sec and min with
integer values between 0 and 59 (as defined by RANGE ), and the data
operations on this state are specified by the three schemas AInit , IncSec,
IncMin.

actions that define communicating behaviours in a CSP style. In our example,120

the behaviour of the Chrono process is specified by the main action after
the symbol •. It is a sequential composition of the schema AInit followed
by the repeated execution of the Run action. Run starts with an external

5



channel tick , time
channel out

process Chrono =̂ begin
state AState == [ sec,min : RANGE ]

AInit == [ AState ′ | sec′ = min ′ ∧ min ′ = 0 ]
IncSec == [ ∆AState | sec′ = (sec + 1)mod 60 ∧ min ′ = min ]
IncMin == [ ∆AState | min ′ = (min + 1)mod 60 ∧ sec′ = sec ]
Run =̂ tick → IncSec; ((sec = 0) N IncMin)

@
((sec 6= 0) N Skip)

@
time→ out !(min, sec)→ Skip

• (AInit ; (µ X • (Run; X )))
end

Figure 1: A Circus specification of a chronometer

choice between two events tick and time; tick is followed by the increment
of the chronometer, and time by the display of the values of min and sec.125

Circus comes with a denotational and an operational semantics, based on Hoare
and He’s Unifying Theories of Programming (UTP) [HJ98], and a notion of re-
finement. We can use Circus to write abstract as well as more concrete specifica-
tions, or even programs. A full account of Circus and its denotational semantics
is given in [OCW09].130

The operational semantics for Circus is briefly introduced below, and a sig-
nificant part is reproduced in Appendix A. It is defined as a symbolic labelled
transition system between configurations. These are triples (c | s |= A), with a
constraint c, a state s, and a continuation A, which is a Circus action. Tran-
sitions associate two configurations and a label. The labels are either empty,135

represented by ε, or symbolic communications of the form c?w or c!w, where c

is a channel name and w is a symbolic variable that represents an input (?) or
an output (!) value.

The first component c of a configuration (c | s |= A) is a constraint over
symbolic variables that are used to define labels and the state. The constraints140

are texts that denote Circus predicates over these symbolic variables. We use
typewriter font for pieces of text. The second component s is a UTP predicate,
which defines a total assignment x := w of symbolic variables w to all variables
x in scope, including the state components. State assignments, however, can
also include declarations and undeclarations of variables using the constructs145

var x := e and end x. The state assignments define a value for all variables in
scope. These values are represented by symbolic variables similarly to what is
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c ∧ T 6= ∅ x 6∈ αs

(c | s |= d?x : T→ A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

c ∧ (s; g)

(c | s |= g N A)
ε−→ (c ∧ (s; g) | s |= A)

Figure 2: Examples of two transition rules: for inputs, and for guards

classically done in symbolic execution of programs [Kin76].
Two examples of rules are given in Figure 2. The first rule defines the

transitions arising from an input prefixing d?x : T→A; it is rule (A.5) of A. The150

label of the transition is d?w0, where w0 is a symbolic variable. The constraint
that w0 is of the right type (w0 ∈ T) is added to the constraint of the new
configuration. The state of the new configuration is enriched, via the UTP
sequence operator “; ”, by a new component x , which is assigned value w0. The
continuation of the new configuration is the action A in an environment enriched155

by x as defined by let x • A.
The second rule of Figure 2 defines the transitions for a guarded action

g & A. The label of the transition is empty, since the evaluation of g is not an
observable event; g is added to the constraint of the new configuration taking
into account the assignments in the current state s. The continuation is A.160

Traces of a process are defined in the usual way, that is, as sequences of
observable events. Due to the symbolic nature of configurations and labels,
however, we can obtain from the operational semantics constrained symbolic
traces, or cstraces, for short. These are pairs formed by a sequence of labels,
that is, a symbolic trace, and a constraint over the symbolic variables used in165

the labels. Roughly speaking, the constrained symbolic trace can be obtained
by evaluating the operational semantics, collecting the labels together, and ac-
cumulating the constraints over the symbolic variables used in the labels. We
give below some examples of cstraces of Chrono.

cst1 :(〈tick〉, true)

cst2 :(〈time, out !α0!α1〉, α0 = 0 ∧ α1 = 0)

cst3 :(〈tick , time, out !α0!α1〉, α0 = 0 ∧ α1 = 1)

cst4 :(〈tick〉60, true)

cst5 :(〈tick〉60 a 〈time, out !α0!α1〉, α0 = 1 ∧ α1 = 0)

A trace is an instantiation of a cstrace, where the symbolic variables used in170

the labels are replaced by values satisfying the constraint. For instance, the two
traces 〈time, out !0!0〉 and 〈tick , time, out !0!1〉 are instances of cst2 and cst3.
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In [CG10, CG14, CG13a] specification traces were defined. Their distinctive
feature is their labels. They record not only events, like in the operational se-
mantics, but also guards and state changes. Moreover, they are expressed in175

terms of the variables of the specification text, rather than symbolic variables.
Such traces are necessary to take into account coverage criteria of the specifi-
cation text. The syntax of the labels and the main transition rules are given in
Appendix B.

In this work, we have developed, using the K-Framework a trace generator180

for Circus that produces both the cstraces and the specification traces of Circus
specifications.

Limitations of current implementation

The current version of our symbolic trace generator is limited in dealing with
certain aspects of Circus specifications:185

Type checking is not yet implemented and, as a result, it is necessary to
handle each desired type with specific rewrite rules. In the current version,
we handle integers and sets, but it is trivial to expand the implementation
with rules for more types;

Multiple valued communication is not available, for the moment, we only190

deal with single valued inputs or outputs;

Schema expressions are not treated in the current version. Besides, the for-
mulas and expressions usable when writing Z schemas are restricted to
the use of native types of the K-framework;

Parallel assignments are not correctly tracked into the specification trace195

output, but it is done for cstraces;

Specification traces for external choice contains specifications labels of dis-
carded branches. Nevertheless, this undesired behavior is consistent with
the operational semantics. It does not affect symbolic traces generation.

In Section 9 we introduce a brief discussion of the limitations that should200

be alleviated in future works. The next section contains the details of how we
designed the simplified machine readable syntax for treating Circus specification
texts.

3 Syntax

To establish a simple, text-only, machine-readable syntax for Circus specifica-205

tions, we started from the syntax defined by Feliachi et al. [FGW13] for process-
ing the language in the proof assistant Isabelle/HOL [PW02]. We also drawn
some inspiration from the machine readable language for CSP, namely CSPm

[SA11].
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We have added some special syntactical constructs for internal use only:210

they are not expected in the Circus specification input by the user, but they
are needed as place marks to control the K rewriting engine while performing
complex step sequences. When it is the case, such fact will be pointed out in
the syntax and semantics descriptions given in the sequel.

The syntax used in our implementation is organised in three modules: the215

main Circus syntax, the syntax for expressions, and a module of useful constructs
shared between the other two. We refrain from presenting all modules in this
section, focusing only on the elements of the first module.

We present our Circus syntax in a BNF style as it is accepted by the K
Framework. The root non-terminal element is CircusSpec (1), a complete Circus220

specification that is a sequence CircusPars (2) of Circus paragraphs.

syntax CircusSpec ::= CircusPars (1)
syntax CircusPars ::= CircusPar | CircusPar CircusPars (2)

A Circus paragraph CircusPar (3) can represent a process declaration, a Z
paragraph, a channel declaration, a channel set declaration, a name set declara-
tion or the special internal use keyword “:run” (6) that allows the user to select
which declared process initiates the execution.225

syntax CircusPar ::= (3)
ProcDecl

| ZParagraph

| "chanset" Id "==" SetExp [strict(2)] (4)
| "nameset" Id "==" SetExp [strict(2)] (5)
| CompleteCDecl

| ":run" Id (6)

The declaration of sets for channels (4) and names (5) associates an identifier
with a set expression SetExp. This last element is tagged as strict, forcing the
K-Framework to advance the computation of SetExpr before processing the
declaration itself.

An element of the sort SetExpr is defined in the auxiliary syntax module230

for expressions, which is omitted here. In a brief description, a SetExpr allows
the definition of sets of names using the Circus syntax, i.e., comma-separated
and delimited by “{|” and “|}”. It also allows expressions over these sets (such
as union, intersection, exclusion, etc.) and identifiers to reference a previously
declared named set.235

syntax CompleteCDecl ::= "channel" MultiDecl (7)
syntax Type ::= "Int" (8)
syntax SimpleDecl ::= Id | Id ":" Type (9)
syntax MultiDecl ::= List{SimpleDecl, ","} (10)

Channel declarations are defined by CompleteCDecl (7). Prefixed by the
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keyword “channel”, such paragraphs can contain one or multiple (10), typed
(8) or untyped simple declarations SimpleDecl (9). The channel name is an
identifier.

A process declaration ProcDecl (11) states the association between an iden-240

tifier, that will reference the process throughout the environment, and a process
definition ProcDef (13) or an action paragraph Action (20). For specifications
that use the second variant, we define a transformation macro rule (12) that will
convert it into a full process definition and place the given action paragraph as
the so-called anonymous action of the process (see (13) below).245

syntax ProcDecl ::= "process" Id "^=" ProcDef (11)
|"process" Id "^=" Action

rule process P:Id ^= A:Action (12)
=> process P ^= begin @ A end [macro]

A process definition ProcDef (13) consists in an optional sequence of process
paragraphs PPars (15) followed by the mandatory anonymous action paragraph
Action (20), after the “@” symbol. The definition is surrounded by the keywords
“begin” and “end”.

syntax ProcDef ::= (13)
"begin" PPars "@" Action "end"

| "begin" "@" Action "end"

A process paragraph PPar (14) contains either a Z paragraph ZParagraph250

(16) or a named action declaration.

syntax PPar ::= ZParagraph | Id "^=" Action (14)
syntax PPars ::= PPar | PPar PPars (15)

The ZParagraph (16) is either a schema or a state declaration. The state
declaration is prefixed by the keyword “state” followed by an association be-
tween the state name identifier and a single schema definition. The standard
non-state schema declaration also allows the association to a SchemaExp (17).255

syntax ZParagraph ::= Id "==" SchemaExp (16)
| "state" Id "==" Schema

Although mentioned in this syntax, the current implementation offers no
support to schema expressions. That explains the reason for the simple defini-
tion of SchemaExp (17). The extension to schema expressions is a subject for
future work.

A Schema (18) has two parts: some variable declarations and a condition,260

which is a boolean expression. The second part is optional and, when omitted,
a structural macro rule (19) introduces the “true” keyword at its place.
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syntax SchemaExp ::= Schema (17)
syntax Schema ::= "[" MultiDecl "]" (18)

| "[" MultiDecl "|" BoolExp "]"

rule [ M:MultiDecl ] => [ M | true ] [macro] (19)

The most complex non-terminal is Action (20), which combines CSP syntax
with Circus elements. It covers CSP constructs like the standard process names
(22), prefixed communication (23), guarded actions (25), channel hiding (28)265

and several composition operators that are briefly presented by in-line com-
ments. On the Circus side there are constructs like Z schema (21), local variable
declarations (24), recursive actions (26) and other Circus specific commands (29)
that are explained in the Command (31) element. The presence of comparison
operators and the keyword “left”, like in (27), gives the precedence and the270

associativity of nested syntactical elements.

syntax Action ::= Id (20)
| Schema (21)
| "Skip" | "Stop" | "Chaos" (22)
| "(" Action ")"

> Comm "->" Action (23)
| "var" Id "@" Action (24)
> BoolExp "&" Action (25)
> BoolExp "g" Action [strict(1)]

| "u" Id "@" Action (26)
> left: (27)
Action "/H" SetExp (28)

| Action ";" Action //sequential composition

| Action "[]" Action //external choice

| Action "|-|" Action //internal choice

| Action "[|" SetExp "|" SetExp "|" SetExp "|]" Action

| Action "[|" SetExp "|]" Action //parallel composition

| Action "|||" Action //interleave

> Command (29)

The syntax of the communication part of a prefixed action is given by Comm
(30). It can correspond to synchronization events, i.e. channel name identifiers,
or single valued inputs and outputs. The use of the strictness attribute in
the output is required to force the calculation of the expression value before275

processing the output construct as a whole. The support for multi-valued inputs
and outputs is let to future improvement.

syntax Comm ::= Id (30)
| Id "?" Id

| Id "!" Exp [strict(2)]
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The Command non-terminal corresponds to Circus commands, such as vari-
able assignment and variable scope finalization, and other special internal use
constructs.280

syntax Command ::= (31)
Id ":=" Exp [strict(2)]

| "end" Id

| InternalCommand

Such internal use constructs, showed in (32), are not meant for user input,
but used for controlling intermediate steps of the rewriting engine. A com-
plete description of these extra steps is given with the rules for the operational
semantics in Section 7.

syntax InternalCommand ::= (32)
| "choice" Set

| "par" List "," Set "," Set "," Set

| "hide" Int Set

| "proc" Int

| "state" BoolExp [strict]

| "schema" BoolExp [strict]

At last, we need to put all the syntax elements that should be handled285

as actual values under the framework built-in category KResult (33). A k-
computation is considered completed as soon as the achieved result is of the
sort of one of the elements listed under such category.

syntax KResult ::= Int | Set | Bool (33)

After parsing a well formed Circus specification, the K-Framework will begin
the application of semantic rules. For instance, before evaluating the actual be-290

havior of any processes, structural rules are applied to handle the loading of the
input specification into the configuration cells. We present in the next section
some relevant notions of the K-Framework configuration, along with the con-
figuration structure that we have designed for holding the Circus specifications
elements.295

4 Configuration

A configuration in the K-Framework is a nested bag of configuration items (or of
configuration item terms) referred as configurations cells. During the processing
of a Circus specification, the configuration provides an abstraction of the state
and of the infrastructure needed to process the continuation of the specification,300

i.e. to compute its subsequent behavior.
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Depending on the considered semantics, configurations may contain cells
that keep the current version of: the K-computation, the environment, the
store, some analysis results, and various useful bookkeeping information [Ros07].
Given its wide range of use, the K framework does not limit nor impose any305

restrictions over the design of such a structure, leaving it entirely as a subject of
the needs of the semantics being treated and of the kind of tool being developed:
interpreter, type checker, symbolic evaluator, compiler, trace generator, etc.

There are two kinds of rules describing transitions between configurations:
structural rules, and computational rules. Structural rules process and organise310

the text of the specification in a way that fits the application of computa-
tional rules. Structural rules have no counterpart in the operational semantics;
they can be seen as transformations, preserving the semantics of the text being
treated, that aim at preparing and controlling the application of the computa-
tional rules. Computational rules correspond to transitions in the operational315

semantics and describe those changes of the configuration corresponding to com-
putations, i.e. reduction steps.

More precisely, structural rules yield some initial content of the < k >-cells
(and of some auxiliary cells) called in the sequel the loaded specification that
drives the computational rules to be applied.320

This section starts with an overview of the Circus configuration. Then we
present in sub-section 4.1 the cells that correspond to the loaded specification.
These cells memorise the way the Circus specification is structured into various
processes and actions. Finally, in sub-section 4.2 we explain the local configu-
ration that corresponds to the each of these processes or actions.325

Figure 3 shows an overview of the configuration we have designed for rep-
resenting and processing Circus specifications. It is presented using the same
syntax as accepted by the framework: in a XML style where each tag represents
a configuration cell. Such cells can be nested and replicated when explicitly
annotated with the attribute “multiplicity”.330

Due to the size of the whole structure, the content of some cells is omitted
in this overview and presented later.

The top cell encapsulates the whole configuration and contains cells that
handle global information, such as: the next fresh integer reference in nextid ;
the map of channel names into channel types in ch; the map of set names into335

the actual sets in nset ; the structures of loaded processes in procstrs; the set
of discarded processes references in discarded ; a temporary set used to convert
Circus sets into native K-Framework sets in tempset ; the particular configuration
of every process in procs; non-resolved initials ready to be synchronised with
some other process in inits; non-consumed notifications of resolved initials in340

oks; and finally, the results of the treatment of the Circus specification, i.e.
specification traces and symbolic traces in the spectr and tr cells.

In the sequel of this section, we give a first glimpse of the roles of these cells.
This will be made more precise when presenting the transition rules between
configurations in Sections 6 and 7.345
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configuration

<top>

<nextid> 1 </nextid>

<ch> .Map </ch>

<nset> .Map </nset>

<procstrs> ... </procstrs>

<discarded> .Set </discarded>

<tempset> .Set </tempset>

<procs> ... </procs>

<inits> ... </inits>

<oks> ... </oks>

<spectr> .K </spectr>

<tr> .K </tr>

</top>

Figure 3: Overview of the configuration

4.1 Structures of loaded processes: the procstrs cell

The content of the cell procstrs is a sub structure that represents the processes
loaded from the specification text. Presented in Figure 4, the subcell procstr ,
which actually is a bag of subsubcells, can be replicated as many times as
processes are found in the specification text. It contains a name that identifies350

the process, stored in pmodel cell, a map of named action identifiers to action
texts in pact , a map of schema names to schema texts in psch, and the complete
process text, which is stored in pdef . Whenever a K-computation involves
an identifier referring to any such elements, e.g., named action call, schema
or process inclusion, this structure is used to retrieve the required piece of355

specification text.

<top>...

<procstrs>

<procstr multiplicity="*">

<pmodel> .K </pmodel>

<pact> .Map </pact>

<psch> .Map </psch>

<pdef> .K </pdef>

<pstate> .Map </pstate>

<pinv> .K </pinv>

</procstr>

</procstrs>

...</top>

Figure 4: The process textual structures cell procstrs
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4.2 Local configurations for symbolic evaluation of pro-
cesses: the procs and proc cells

For processes, sub-processes or actions under symbolic evaluation, we manip-
ulate individual proc structures that are subcells of the cell procs. This con-360

struction is shown in Figure 5. A proc cell can be referred as an individual
environment for each element that performs K-computations.

This rather complex cell keeps all the elements needed to perform the K-
computation that corresponds to the symbolic evaluation of a process or action
and all the relationship to its context, i.e. other processes or actions.365

The proc cells are spawned on demand whenever a new line of K-computation
with its own environment is required, e.g., concurrent components in a paral-
lel composition, alternatives of an external choice, inclusion of an independent
state-isolated process, etc. These situations will be explained when the corre-
sponding operational semantic rules are presented, in Section 7. The references370

between these cells reflect the hierarchical tree structures induced by the nested
organisation of the processes and actions in the Circus specification.

<top>...

<procs>

<proc color="green" multiplicity="*">

<model> .K </model>

<k>$PGM:K</k>

<id>0</id>

<alt>0</alt>

<parent>0</parent>

<env> .Map </env>

<postenv> .Map </postenv>

<stack> .List </stack>

<sync>false</sync>

<const>true</const>

<temp> .K </temp>

</proc>

</procs>

...</top>

Figure 5: The process cell procs

A proc cell contains: in the model subcell, an identifier that references the
name of the process which originated it; in k , the K-computation cell itself; in
id , an integer reference that is used to globally identify the current environ-375

ment; in alt , a reference to an external choice alternative execution line, if any;
in parent , a reference to the environment which spawned it; in env , a map that
associates variable names to symbolic values; in postenv , the same sort of map
as env , but specifically for manipulation of schema post conditions; in inv , the
state invariant text as written in the process specification; in stack , a stack of380
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env environments, used for managing nested variable scopes; in sync, a boolean
flag that is used to put the process evaluation on hold until an adequate synchro-
nization of an initial (see subsection 4.3 and section 5); in const , the constraint
on the symbolic values in use by the env variables; and an auxiliary cell temp,
buffering the specification text before outputting it in the generated traces.385

4.3 Possible initials after a configuration: the inits cell bag

The initials cell bag inits, shown in Figure 6 is a buffer of observable events or
communications that are ready to be performed by an action. Its content is a
subset of the set of initials as it is defined in the Circus testing theory [CG11b].
The symbolic evaluation of an action can be ready to perform several observable390

events: it may be the case for actions involving multiple nested parallel compo-
sitions or there may be pending synchronizations, or explicitly hidden events or
communications. These complications led us to design the configuration struc-
ture described below: it makes it possible to buffer and manipulate all events
or communications that are potentially observable after the configuration. One

<top>...

<inits>

<init multiplicity="*">

<iresp> 0 </iresp>

<iev> .K </iev>

<from> .Set </from>

<ialt> .Set </ialt>

</init>

</inits>

...</top>

Figure 6: The process initial structures cell inits

395

init cell holds a reference in iresp to the proc cell that is currently responsible
for its management. In iev is the description of the observable synchronization
event or communication that is managed. Moreover, the set from holds refer-
ences to all proc cells that are standing for the outcome of such initial, i.e. the
cells of the action that originated it and of all other actions that might synchro-400

nize when this initial is resolved. Besides, ialt is a set of references to alternative
proc cells, i.e. the ones corresponding to actions that may be discarded as re-
sults of external choices when the initial is resolved. We use the term resolved,
rather than performed, since there are no guarantees that an initial posted dur-
ing the symbolic ecaluation of an action will be actually performed: it might be405

held infinitively in a synchronized parallel composition, or hidden by a channel
hiding operation.

The resolution of an initial creates an ok notification, described in Figure 7.
Each ok notification contains the event or communication actually performed
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and the set to of the references of all proc cells that were standing for the410

outcome of the resolved init .

<top>...

<oks>

<ok multiplicity="*">

<oev> .K </oev>

<to> .Set </to>

</ok>

</oks>

...</top>

Figure 7: The process initial notification structures cell oks

We give more details on the way synchronizations are managed during the
symbolic evaluation in the next section.

5 Symbolic evaluation of process synchroniza-
tions415

As mentioned above, the behavior modeling part of Circus is founded over similar
bases as the CSP process algebra [Hoa85]. This long standing and well-known
modeling algebra for processes provides a powerful set of constructs to precisely
specify parallel behaviors and interactions.

Although allowing the interpretation of parallel computations (threads), as420

exemplified in [RS14] and [ŞAL+13], the K-Framework does not offer prede-
fined resources to facilitate the control of synchronization between concurrent
processes. It is left to the designer interested in entering an operational se-
mantics with concurrent aspects to define a strategy and design the required
configuration structures that will guide a semantically correct parallel behavior.425

In the most complete available formal presentation of the K framework
[Ros07], two examples are briefly sketched to introduce the possibility of mod-
eling process algebra semantics: for CCS and π-Calculus. But to the best of
our knowledge, there is no published (or posted) operational semantics of CSP
in K.430

In our context, it was essential to develop in K a correct semantic repre-
sentation of the Circus concurrent features. That motivated the design of a
synchronization strategy that could be embedded in the K-Framework configu-
ration cells and manipulated respecting its single step rewrite logic rules.

Our strategy consists in organizing the references between the proc cells435

in a tree structure that splits hierarchically the lines of execution for critical
constructions, namely: parallel composition, external choice, channel hiding
and independent process inclusion. Given this tree hierarchy, it is possible to
manipulate the observable events or communications that may be produced at
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any depth in the tree and to manage potential synchronisations or deadlocks,440

and hiding.

Figure 8: Sample graphical representation of a synchronization tree

We show in Figure 8 a graphical representation of the rewriting steps that
build the tree structure for a simple example, which contains a parallel compo-
sition inside a channel hiding action.

Starting from the text of the main action specification, in the top level proc445

cell, (globally identified with the integer reference Id 0), the first step gives to
the action subjected to the channel hiding operation a lower hierarchical level.
Thus a new proc cell, identified with a fresh Id 1, is spawned and noted as a
subtree of proc Id 0. For convenience, we will refer to an uniquely identified
proc cell as proc # n, where n is its integer reference. The text of the action of450

the top-level proc # 0 is rewritten into an internal syntactical construction that
indicates it as a subordinated hidden action, giving the reference to its proc cell
and the set of hidden channels.

The second rewriting step splits both sides of the parallel composition present
in the recently created proc # 1 into two fresh proc cells, proc # 2 and proc # 3,455

respectively for left and right side that are noted as subtrees of proc # 1. The
text of the parallel action inside proc # 1 is rewritten into an internal syntac-
tical construction that keeps as parameters the references to the new subtree
proc cells and the set of channels that must be used for synchronizing the cor-
responding parallel actions.460

When a K-computation being processed in a proc cell involves an observable
event or communication, this item is never immediately added to the traces
cells tr and spectr : it is posted as a potential initial in a new init cell as seen
in subsection 4.3. In our example, it is the case for proc # 2 and proc # 3. Once
an initial is posted, the current K-computation remains on hold by lifting the465

boolean flag inside its sync configuration cell. It will remain standing by until
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a proper resolution of the initial is reached.
We say that an initial is resolved when it matches the criteria of a resolution

rule: some semantic rule that will either suppress the initial (75) or write it
into the traces (87). The resolution causes an ok notification inside the oks470

configuration cell. Each notification is accompanied by a to cell, that contains
a set of references to all proc environments waiting for the initial resolution.

A posted initial will be manipulated and delegated to the upper tree levels by
forwarding rules. Following the Circus operational semantics, there are different
sorts of forwarding rules for each splitting construct.475

The reason for having this life-cycle for initials, namely: posting, forwarding,
resolving and/or discarding, is that the presence of an observable communica-
tion/event in a trace depends on the context of the action that triggers it. In two
cases, such observable communications/events may never appear in the traces
of the main process, i.e., the process under analysis.480

First, it may appear in OPS rules where, above the rule, there is a non-ε
labeled transition but, under the rule, the transition is labelled with ε (silent).
It is the case for the OPS rules A.24, A.25 and A.27, which defines channel
hiding and parallel synchronization.

The other case is when an action present in the original configuration of485

a transition disappears in the target configuration, as in the case of the OPS
rules A.18 and A.19, which defines the behavior for external choice. As a result,
observable events/communications triggered by the discarded action will never
be written in the traces.

In the following, we introduce the management of initials for the Circus490

constructions mentioned in the two cases above, namely: channel hiding, parallel
composition and external choice.

Channel hiding is modeled with rules that may selectively forward initials
concerning non hidden channels (74) or instantly resolve an initial from the
hidden ones (75), suppressing it and spawning the respective ok notification.495

The parallel composition forwarding rules will pass by any initial that is
not related to the channels listed in the synchronization set (80). Otherwise,
the initial will be hold until another initial, matching the synchronization, is
produced by the symbolic evaluation of the action at the other side of the
composition (81).500

An external choice operation will indiscriminately forward the initials from
both sides, but an alternative reference is marked in the alt cell of each, pointing
to the proc cell in the competing side: the first resolved initial will determine
which side is chosen and, consequently, the discarding of all marked alternatives.

More details about these rules and the conditions for forwarding initials to505

upper levels are given in Section 7.
If an initial, after all the manipulations that it may receive in the lower levels,

is finally delegated to the proc # 0 environment, then it is eligible for producing
some observable event or communication. However, it is not assured that this
will actually occur, since an initial might reach the top-level after the discarding510

of all those proc cells that were matching its outcome. In that case, the initial
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will be just discarded. Otherwise, the observable event or communication is
appended to the traces and the respective ok notification is posted.

A proc on hold by the sync flag is ready to continue its K-computation
once the appropriate ok notification exists. The continuation is triggered by515

a rule (88), which tries to match the references of standing-by processes with
references in the addressing subcell of ok notifications: once matched, a reference
is removed from the ok notification, the process sync flag is released and the
standing by K-computation takes place. A synchronized ok notification might
be addressed to more than one proc at the same time and, for that reason, they520

are not discarded in this step: it would prevent the continuation of the other
standing by proc. After the removal of all standing-by proc references, there is a
specific structural rule dedicated to the cleaning of ok notifications with empty
addressing subcell.

The two last sections have presented the defined structure for the configu-525

ration. In the two next sections, we proceed to the description of the structural
rules that link the text of Circus specifications to this structure, and then of the
rewrite rules that describe the transitions between configurations according to
the Circus operational semantics [CG13b].

6 Structural and embedding rules530

To handle the text of a Circus specification, it is necessary to write rules to
process the input and organize it in a way that fits the designed configuration
structure. We refer to them as structural rules, and they have neither semantic
effect nor counterparts in the operational semantics.

6.1 Specification processing and loading535

As seen in Section 3, the syntax for the source code of a Circus specification
is a sequence of Circus paragraphs, i.e., non-terminals elements of the sort
CircusPar . We start with a simple rule to enforce the sequential processing
of all CircusPar that are present in the source code, displayed in (34).

rule P1:CircusPar P2:CircusPars => P1 ∼>P2 (34)

The “=>” symbol is the separator between the term matching and how it540

should be rewritten. The “∼>” symbol is the sequential list separator for K-
computations. After explicitly stating the processing order for the top most
structure, we give the rules to deal with the sorts of CircusPars expected to
be found in a specification. The following rules deal with the declaration of
channels.545

Remark (K-Framework rewrite rules). Rewriting into the K empty symbol, i.e.
the “.” dot, means that the matched content will be erased. The triple dots “...”,
that may be present either in the beginning or the end of a mentioned cell, means
that there may be more content that are not considered in the matching and will
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rule <k> channel C:Id : Type:Id => . ...</k> (35)
<ch> ... .Map => C |-> Type ...</ch>

rule <k> channel C:Id => . ...</k> (36)
<ch> ... .Map => C |-> "sync" ...</ch>

remain unchanged after the rewrite step. The “| − >” symbol is the constructor550

of map pairs.

According to rule (35), a paragraph with a channel declaration will be re-
moved from the top of the computation cell after the addition of the name of
this channel and its type (for typed channels) to the global configuration cell
< ch > as a map pair, with the given channel name as key and the channel type555

as value. When there is no type declared, the channel name is mapped to sync,
as seen in rule (36).

To deal with multiple channel declarations in a single line, we profit from
the technique referred as syntax desugaring [RS14], that rewrites a complex
sequence of declarations into single-lined simple declarations. This is described560

in rule (37).

rule channel S1:SimpleDecl, S2:SimpleDecl, M:MultiDecl => (37)
channel S1 channel S2, M

For paragraphs defining named sets, i.e., declaration of uniquely identified
sets that holds channel and variable names, we use a strategy that embeds a
Circus set construction into the representation of sets as used natively in the
K-framework. To achieve that, when there is a channel set in the top of the565

computation cell, we move all its elements, one by one, to the < tempset > cell,
as seen in rule (38). When the set being computed is emptied, it is replaced by
the temporary one, which is a pure K-framework set construction, described in
rule (39).

rule <k> {| Xi:Id, Xs:CommaIds |} => {| Xs |} ... </k> (38)
<tempset> ... . => SetItem(Xi) </tempset>

rule <k> {| .CommaIds |} => TempSet ... </k> (39)
<tempset> TempSet => .Set </tempset>

Finally, in rules (40) for channels names and (41) for variable names, the570

named set declaration that now utilizes a K-framework set construction is loaded
into the global cell < nset >, holding a map from declared set names to the
actual K sets.

Rule (42), reverses the process: when an identifier that refers to a set name
is found in the top of the computation cell, that identifier is replaced by the575

referred set, loaded from the map in < nset >. The embedding of native K-
Framework set type allows the convenient use of internal operations, such as
union, intersection, difference and comparisons. Moreover, the framework pro-
vides an interface to SMT solvers, in our case, Z3 [DMB08], which is invokable
each time a formula involving native types needs to be solved.580
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rule <k>chanset CSName:Id == CSet:Set => . ... </k> (40)
<nset>... .Map => CSName |-> CSet </nset>

rule <k>nameset NSName:Id == NSet:Set => . ... </k> (41)
<nset>... .Map => NSName |-> NSet </nset>

rule <k>NSetId:Id => CSet ...</k> (42)
<nset>... NSetId |-> CSet:Set ...</nset>

Remark (Strictness). Here, we rely on the heating and cooling rules of the
K-Framework [RŞ10], i.e., when present in a syntax construction, named sets
are marked as strict arguments and pushed to the top of the computation cell
(heating). As sets are declared under KResult category, the processed native set
in the top of the K cell is plugged back to its original syntactical place (cooling).585

In order to support more than one process declaration per source text, each
paragraph of such syntactical construct is loaded into a structure inside the con-
figuration cell < procstrs >. These structures keep references between the de-
clared process name and its textual definition body, named actions, or schemas.
This is achieved by rule (43), that removes a process declaration from the top590

of the computation cell and places it into a new < procstr > cell. The pro-
cess name identifier P is kept into the < pmodel > cell and its textual process
definition PD is stored into the < pdef > cell.

rule (43)
<k> process P:Id ^= PD:ProcDef => . ...</k>

<procstrs>...

(.Bag => <procstr>...

<pmodel> P </pmodel>

<pdef> PD </pdef>

...</procstr>)

...</procstrs>

To select which process will be processed in the K simulation, we added the
command keyword :run in the syntax of CircusPar (cf. rule (6)). As stated595

in rule (44), when the :run command is presented with an identifier naming a
process model that already exists in some < procstr > structure, the body PD
of such process is extracted from the < pdef > to the top of the computation
cell, triggering its treatment. The rule also sets the < model > configuration
cell of the current proc environment to the name of the loaded model.600

rule <k> :run ProcId:Id => PD ... </k> (44)
<model> _ => ProcId </model>

<procstr>...

<pmodel> ProcId </pmodel>

<pdef> PD </pdef>

...</procstr>
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Once loaded in the configuration cells, the next step is to deal with the
presence or absence of process paragraphs in the header of the process (cf. rules
(13) and (14)). Such paragraphs may declare a state, some named actions and
Z schemas before the main action. Rule (45) deals with a process that contains
only the main anonymous action, moving this action straight to the top of the605

computation cell and discarding the rest of the construct.

rule <k> begin @ Pa:ParAction end => Pa ... </k> (45)

Rules (46) and (47) deal with processes with process paragraphs. Such rules
simply establish the sequential processing of the PPars before the main action
(46) and enforces the natural processing order of each process paragraph (47).

rule <k> begin P:PPars @ A:ParAction end => P ∼> A ... </k> (46)
rule P1:PPar P2:PPars => P1 ∼> P2 (47)

Rule (48) deals with the declaration of a named action in a process para-610

graph. It removes the declaration from the computation cell and inserts the
action body into the < pact > map of the correct < procstr > structure, using
the model of the process and the name of the action as references.

Similarly, rule (49) describes how the declared Z schemas are processed and
loaded.615

rule (48)
<k>N:Id ^= A:Action => . ... </k>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<pact> LMap => LMap[N <- A] </pact>

...</procstr>

rule (49)
<k> N:Id == S:SchemaExp => . ... </k>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<psch> LMap => LMap[N <- S] </psch>

...</procstr>

Consequently, a rule is needed that takes the named action definition from
its storage and places its body into the top of the computation cell: rule (50) is
triggered by the occurrence of a named action, i.e., the next computation is an
identifier that refers to a valid named action. Valid means that it exists in the
named action map < pact > under the < procstr > configuration of the model620

PModel , from the process under treatment.
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rule (50)
<k> A:Id => (B) ...</k>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<pact>... A |-> B ...</pact>

...</procstr>

Rule (51) that fetches a schema by its name is similar to the one for actions,
but it also requires the preparation of a new environment for treating the dec-
orated Z identifiers. The conditions in an operation schema, i.e., schemas that
may change state or local variables, can involve variable assignments from both625

before and after the schema application. For that reason, the current environ-
ment env is replicated into the postenv cell, and this replica can be manipulated
and compared with the original env . If the schema condition is satisfied, the
replica replaces the original copy.

rule (51)
<k> A:Id => B ...</k>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<psch>... A |-> B ...</psch>

...</procstr>

<env> Env </env>

<postenv> _ => Env </postenv>

6.2 Configuration maintenance630

The rules presented in this subsection are designed to maintain the structures
of configuration cells, performing optimizations, and cleaning those pieces that
are not required anymore, such as discarded processes and their initials.

Rule (52) is designed to delete an ok notification structure when there are
no more process references in the addressing set to. This is accomplished by635

matching the empty set (.Set) and rewriting the whole bag of cells to the empty
cell bag (.Bag).

rule (52)
<oks>

(<ok>... <to>.Set</to> ...</ok> => .Bag)

...</oks>

Another rule, (53), deletes an init structure that became useless due to
the discarding of all the processes referred in the from set. To check such
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property, we require the subset inclusion From ⊂ Disc, where Disc is the set of640

all discarded processes, registered in the discarded global configuration cell.

rule (53)
<discarded>Disc</discarded>

<inits>...

(<init>... <from> From </from> ...</init> => .Bag)

...</inits>

requires (From <=Set Disc)

The rule that removes the proc environments of discarded processes is shown
in (54). It requires the matching of the process reference PId with an element
of the set inside the discarded cell.

rule (54)
<discarded> ... SetItem(PId) ... </discarded>

<procs>...

<proc>...

<id>PId</id>

...</proc> => .Bag

...</procs>

It is possible that a discarded process leave children environments. For such645

cases, rule (55) performs the removal of these orphans proc environment and
add the reference of the removed orphan to the set of discarded processes.

rule (55)
<discarded>

Disc SetItem(PId:Int) => SetItem(PId) Disc SetItem(Orphan)

</discarded>

<procs>...

<proc>...

<id>Orphan:Int</id>

<parent>PId</parent>

...</proc> => .Bag

...</procs>

7 Operational semantic rules

Once the configuration is loaded and an action is present in the top of the
computation cell, the rewriting engine is expected to proceed accordingly to the650

semantics of Circus: it is mandatory to keep the rewrite rules faithful to the
formal operational semantics. Our implementation is based on such rules as
given in [CG13b] and recalled in Appendix A.
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As usual, the operational semantics of Circus, abbreviated to OPS in the se-
quel, relies upon configurations and transition rules between configurations. As655

seen in subsection 2.2 configuration consists of three parts: a logical constraint
between some symbolic variables, a state/environment definition mapping Circus
variables into symbolic variables, and a continuation, i.e. the remaining Circus
action. The application of an OPS rule will modify at least one of these parts.
An OPS rule is defined by: a precondition, i.e. a logical expression on sym-660

bolic variables; an observable or an empty label, noted ε; and two configuration
patterns, for the configurations before and after the rule application.

Transposed into the K-Framework, i. e. in the configuration structure pre-
sented in Section 4, the constraint is a logical expression in the const cell, the
state/environment is a map in the env cell and the remaining action is processed665

at the k computation cell. The rewrite rules take into consideration the current
configuration cells and, if the logical precondition applies, the content of the
cells is rewritten according to the patterns.

The rules presented in this section are paired with some reference to the
original OPS rules that motivated them. Ideally, we would have exactly one670

rewrite rule in K for each OPS rule. However, due to particularities of the K-
framework and the complexity of the semantics of Circus, this was not always
feasible. In such cases, we report the reasons that motivated our decisions.

7.1 Internal progress

We present here the implementation of those OPS rules that does not produce675

observable labels, i.e., rules that guides the progress of processes while producing
an ε label and, consequently, does not require any appending to the symbolic
trace tr cell. Nevertheless, they may induce the appending of specification labels
to the specification trace contained in the spectr cell.

The assignment of variables is described by the Circus OPS rule A.2. There680

is no precondition. A new fresh symbolic value (?W ) is assigned to the given
variable identifier V and a condition (?W == E ) is appended to the constraint.
This condition imposes an equality relation between the new symbolic value and
the expression (E ) given in the right hand side of the assignment construct. As
the syntax of variable assignment is tagged for strictness in its right side element,685

the value of the expression is evaluated before the treatment of the assignment
itself. After this treatment, the action in the new configuration gets a Skip in
place of the treated assignment.

We have two rewrite rules to accomplish this semantic behavior, due to the
necessity of treating differently local and state variables. The first case is covered690

by rule (56), where the explicit requirement in (57) guarantees that this rule
will only be applied for a variable V that is not a name in the set of keys from
the state map St .

The assignment to state variables is treated by rule (58). This separation is
motivated by the need of keeping the validity of the state invariant after chang-695

ing the value of a state variable. After reassigning a symbolic value to a state
variable, it is necessary to rewrite the state invariant into the constraint. This is
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rule (56)
<k> V:Id := E:Int => Skip ... </k>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<pstate> St </pstate>

...</procstr>

<env> Env => Env[V <- ?W:Int] </env>

<const> Const => Const andBool (?W ==Int E) </const>

<spectr>... . => V := E </spectr>

requires (notBool (V in (keys(St)))) (57)

simply achieved by adding these conditions and, relying on SMT optimizations,
to remove the old clauses that are no more required in the configuration. To
trigger this extra step, we insert the construction state Inv in the resulting700

action before the Skip originally required by the OPS rule A.2. The compu-
tation triggered by this auxiliary construction is further described within the
rules concerning state evaluations (rules (68) and (67)).

rule (58)
<k> V := E:Int => state Inv ∼> Skip ... </k>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<pstate> ... V |-> _ ... </pstate>

<pinv> Inv:BoolExp </pinv>

...</procstr>

<env>... V |-> (_ => ?W:Int) ...</env>

<const> Const => Const andBool (?W ==Int E) </const>

<spectr>... . => V := E </spectr>

The declaration and scope handling for local variables in Circus are described
by OPS rule A.6, rule A.7 and rule A.8. In Circus, the precondition for a variable705

declaration concerns its type and name. As the current implementation does not
handle type checking, the declared name is considered only. This precondition
imposes V 6∈ αs, i.e., the given name V for a variable is not already used in
the alphabet αs. Since the parser already rejects identifiers that conflicts with
syntactical tokens, the condition of the rule we introduce in (59) only checks if710

V is not a name of a state variable. The Circus OPS also requires every declared
variable to be assigned to a fresh symbolic value, reflected in K by the use of
the fresh identifier generator ?W.

OPS rule A.6 introduces the keyword let, to handle the scope of the de-
clared variable in the remaining action. In our K-Framework implementation,715

we have considered that it is not necessary to use such keyword since the de-
clared variables names are available in the environment env cell. As defined
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rule (59)
<k> var V:Id @ A:Action => A ∼> end V ...</k>

<env> Env => Env[V <- ?W:Int] </env>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<pstate> St </pstate>

...</procstr>

<stack> . => ListItem(Env) ... </stack>

requires (notBool (V in (keys(St))))

by the original OPS rule, in rule (59) we state that the declared variable scope
is restricted to the action A specified after the @ symbol. This is ensured by
appending “end V” to be evaluated after the action A.720

To guarantee the possibility of reusing variable names in nested scopes, a
stack of environments is used and the current env configuration is pushed onto
the stack cell at each new variable declaration. Once a scope ends, the previous
environment is popped back into the env cell. The assignments of variables
declared in the ending scope are lost. All the other assignments are kept by the725

updateMap operation, as shown in rule (60).

rule (60)
<env>

RetEnv => updateMap(Env, removeAll(RetEnv, SetItem(V)))

</env>

<stack> ListItem(Env) => .List ... </stack>

<spectr>... . => end V </spectr>

For the sequential composition of processes, the Circus OPS includes the
rule A.9 and rule A.10. The first defines the continuation of an action A1 in the
left hand side of the operator while there are computations to be performed.
The OPS rule A.10 defines the continuation with the right hand side action A2730

once the computations in A1 finishes with a Skip. In our implementation, the
described behavior is achieved by ordering the computations of two sequentially
composed actions, as presented in (61). To guarantee the correct continuation
after reaching Skip in the first executed action, we include rule (62).

rule (61)
<k> A1:Action ; A2:Action => A1 ∼> A2 ... </k>

rule (62)
<k> Skip ∼> A:Action => A ... </k>

The behavior of the internal choice construction is given in Circus OPS735

rule A.11, consisting in two parts: the process unconditionally behaves as the
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left hand side action or the right hand side action of the operator. This choice
is made non-deterministically and, for that reason, the rules in (63) and (64)
are tagged with the [transition] annotation. When a transition is specified,
the rewriting engine marks the current step for backtracking when searching for740

alternative executions [ŞAL+13].

rule (63)
<k> A1:Action |-| A2:Action => A1 ... </k> [transition]

rule (64)
<k> A1:Action |-| A2:Action => A2 ... </k> [transition]

The guarded actions are defined in Circus OPS rule A.12. It states that the
computation of an action A guarded by a logical condition G results in continuing
the process with the action A while adding the condition specified in G to the
constraint. The precondition for applying the rule requires that the constraint745

remains valid after adding G. Rule (65) strictly reproduces such behavior.

Remark (Guarded actions in specification traces). To write the specification
text of a guard in a specification trace, we use an intermediary step that is not
given here. It is available in the source code listing of the implementation.

rule (65)
<k> G:Bool & A:Action => A ... </k>

<const> Const => Const andBool G </const>

requires Const andBool G

7.2 State and Z schema750

Due to its richness and its complexity, the semantics of Z [Spi88] would deserve
to be treated in a full companion project. In absence of such a project, we de-
cided to give semantics to a subset of Z schema constructs in the K-Framework,
allowing the declaration and handling of states for Circus processes. In a nut-
shell, we deal with Z constructs where variables and formulas are written using755

the K predefined types and operators.
We divide the schemas into two types: the state schemas and operation

schemas. A process declaration can include a single state schema only and may
contain multiple operation schemas. A state schema contains the declaration of
state variables and an invariant, i.e. a logical expression involving these variables760

that should remain always valid throughout the evolution of the process config-
uration. Operation schemas define state changes via pre- and post-conditions.
These are logical expressions on state variables and input/output schema vari-
ables (that may reference any variable name within the current environment).
Variables are possibly decorated in the post-condition: they describe the effect765

of the operation on these variables.
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The variables declared in the state schema are treated by rule (66), process-
ing each name V in the list of multiple declarations M. The variable names and
types are inserted both into the state and env maps. Since all Circus variables
are arbitrarily initialised, a fresh symbolic value ?W is assigned to each declared770

variable.

rule (66)
<k> state [ (V:Id , M:MultiDecl => M) | B:BoolExp ] ...</k>

<env>... .Map => V |-> ?W:Int ...</env>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<pstate>... .Map => V |-> "int" ...</pstate>

<pinv> Inv:BoolExp </pinv>

...</procstr>

rule (67)
<k> state [ .MultiDecl | B:BoolExp ] => state B ...</k>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<pinv> _ => B </pinv> ...</procstr>

Once there are no more variable declarations to be processed in the dec-
laration part of the schema, rule (67) is applied, storing the state invariant
expression B into the inv cell and scheduling the evaluation of the invariant for
the next computation step.775

Rule (68) triggers the evaluation of the state invariant using the current env
variable assignment. If the invariant is valid within the context of the constraint
in const , the rule is applied, the invariant expression is added to the constraint
and the process continues. If the invariant is invalidated, no rule applies.

rule (68)
<k> state B:Bool => . ...</k>

<const> Const => Const andBool B </const>

requires Const andBool B

Note that rule (58) forces the computation of the invariant after the treat-780

ment of assignments to state variables, rule (67) here for operations schema.
The behavior induced by a reference to an operation schema inside a Circus

action is given by the OPS rule A.1. In our implementation, once ready for
computation, the schema is loaded according to the structural rule (51). Then,
rewrite rule (69) begins a sequence of steps by processing the declaration part:785

each variable gets a fresh symbolic value into its postenv cell map entry. This
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is necessary for handling decorated identifiers in logical expressions involved in
post-conditions.

rule (69)
<k> [ (V:Id , M:MultiDecl => M) | B:BoolExp ] ...</k>

<postenv> Postenv => Postenv[V <- ?W:Int] </postenv>

Similarly as ensured by the rewrite rule (67), when the variable declaration
part of an operation schema is emptied, rule (70) takes place and puts the790

schema logical expression B to be processed in the ¡k¿ cell. The computation is
triggered by the internal keyword schema followed by the logical expression.

rule (70)
<k> [ .MultiDecl | B:BoolExp ] => schema B...</k>

rule (71)
<k> schema B => state Inv ∼> Skip ...</k>

<const> Const => Const andBool B </const>

<env> _ => PostEnv </env>

<postenv> PostEnv => .Map </postenv>

<model> PModel:Id </model>

<procstr>...

<pmodel> PModel </pmodel>

<pinv> Inv </pinv> ...</procstr>

requires Const andBool B

Rule (71) defines the evaluation of the schema logical expression B in the
context of the current environment env and the post-condition environment
in postenv . If the conjunction of the condition with the current constraint795

const is valid, the rule is applied and all the involved configuration elements are
updated. The OPS rule A.3 of Circus operational semantics defines Skip as the
continuation of a successful operation schema application. In rule (71), we force
the reevaluation of the state invariant before Skip.

7.3 Observable progress800

In this subsection we present the rules that model the synchronization strategy
described in Section 5. Such rules are designed to post, forward and resolve the
init structures that represents the potential initials after an action.

We refrain from presenting all the rules when subtle structural differences are
necessary to handle initials for events, inputs and outputs. In such cases, only805

the rule for events is presented and further details can be obtained consulting
the complete listing of rules.
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Initial posting

The posting of an initial is necessary when the current computation involves a
communication or an event. Rule (72) deals with the case of an event, following810

the Circus OPS rule A.4 for outputs, just omitting the value to be outputted.
(actually, there is no specific rule for the case of event synchronisation in the
version of the Circus operational semantics we use).

When an identifier C referring to a channel name is in the top of the com-
putation cell, i.e., an event on channel C is required, the sync flag is lifted and815

an initial is created inside the bag inits. This new initial refers in cell iresp to
the proc environment currently responsible for it, namely PId. It keeps in iev
the name of the potential event, namely C. The set of subscriber processes is in
from, initialized by the reference to the current proc environment, and the set
of references to alternatives, in ialt , is initialized with the empty set.820

rule (72)
<k> C:Id ... </k>

<sync> false => true </sync>

<id>PId:Int</id>

<ch> ... C |-> _ ... </ch>

<inits>...

.Bag => <init>

<iresp>PId</iresp>

<iev>C</iev>

<from>SetItem(PId)</from>

<ialt> .Set </ialt>

</init>

</inits>

[transition]

The transition annotation is used because the order of unsynchronized
communications is non-deterministic.

The rewriting engine should be MC: what do you mean? aware of poten-
tial different continuations that may arise from the non-determinism after the
application of rule (72).825

After a rule for posting the initial, we present the forwarding rules sketched
in Section 5, first for channel hiding, then for parallel composition, and finally
for external choice.

Channel hiding

The behavior induced by hiding observable communications of some channels830

is defined in Circus OPS rules A.26, A.27 and A.28. To correctly reproduce
this behavior, we use the tree structure presented in Section 5: when a channel
hiding operator is applied to an action A, a child proc environment is spawned
to continue action A.
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As shown in rule (73), the new environment gets a copy of all the semanti-835

cally relevant configuration cells: env , model and const ; a fresh integer reference
is generated by incrementing the integer inside the global nextid cell; the ref-
erence to the parent proc environment is kept in the cell parent . The parent
computation cell is rewritten into the internal construction hide with two pa-
rameters: the child proc environment reference (L +Int 1) and the set CS of840

channels to be hidden.

rule (73)
<k>A:Action /H CS:Set

=> hide (L +Int 1) CS ... </k>

<nextid> L => L +Int 1 </nextid>

<id> ParId </id>

<model> PModel:Id </model>

<env> Env </env>

<const> Const </const>

(.Bag =>

<proc>...

<k> A </k>

<model> PModel </model>

<parent> ParId </parent>

<id> (L +Int 1) </id>

<alt> (L +Int 1) </alt>

<env> Env </env>

<const> Const </const>

...</proc>)

The forwarding of all the initials posted by the action in the child proc
environment will necessarily pass through the responsibility of the parent en-
vironment for reaching upper levels and, if succeeding to reach the top level,
being appended to the traces. The hierarchical structure allows the design of845

rewrite rules to filter the initials on their way to the top level according to the
OPS rules A.26 and A.27.

The case covered by OPS rule A.26 is the occurrence of an event or com-
munication that does not involve a hidden channel, i.e., a channel that is not
an element of the hiding channel set CS. As shown in rewrite rule (74), the for-850

warding is performed by replacing the iresp reference of the matched init from
the child CId to the parent PId.

OPS rule A.27 covers the case where the involved channel is a member of
the hiding set. No observable label is produced, but the evaluation of the action
proceeds. Thus, in rule (75) the initial is resolved before reaching the top855

level environment, therefore canceling its potential writing into the traces. This
removes the matched init cell and spawns the corresponding ok notification,
allowing the action to continue as if the initial was actually written into the
traces. The rewrite rule contains some additional conditions to avoid posting
ok notifications to discarded processes.860
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rule (74)
<proc>...

<k> hide CId:Int CS:Set ... </k>

<id> PId:Int </id>

...</proc>

<inits>...

<init>...

<iresp>CId => PId</iresp>

<iev>C:Id</iev>

...</init>

... </inits>

requires notBool (C in CS)

rule (75)
<proc>...

<k> hide CId:Int CS:Set ... </k>

<id> PId:Int </id>

...</proc>

<inits>

(<init>...

<iresp>CId</iresp>

<ialt>Alt</ialt>

<iev>C:Id</iev>

<from>FSet</from>

</init> => .Bag)

... </inits>

<oks>...

(.Bag =>

<ok> <oev>C</oev> <to>FSet -Set Disc</to> </ok>)

... </oks>

<discarded>Disc => Disc Alt</discarded>

requires notBool (size(FSet -Set Disc) ==Int 0)

andBool (C in CS)

The finalization of a hidden action is defined in OPS rule A.28: when the
hidden action reaches a Skip, this closes the scope of the hidding. Thus the hid-
ing operator and channel set are removed from the action text, which is reduced
to a single Skip. This is ensured by rule (76), where the semantically relevant
configuration cells are copied from the child environment under finalization back865

to the parent for continuing the remaining evaluations.

Parallel composition

The parallel composition operator is defined by the Circus OPS rules A.20 to
A.25. The evaluation of such a structure begins with the spawning of two
parallel actions A1 and A2 inside new children proc environments: each one will870
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rule (76)
<k>hide CId:Int CSet:Set => Skip ... </k>

<id> ParId </id>

<env> _ => Env </env>

<const> _ => Const </const>

(<proc>...

<k> Skip </k>

<id>CId</id>

<parent> ParId </parent>

<env> Env </env>

<const> Const </const>

...</proc> => .Bag)

rule (77)
<k>

A1:Action [|X1:Set|CSet:Set|X2:Set|] A2:Action =>

par ListItem(L +Int 1) ListItem(L +Int 2), CSet,X1,X2

... </k>

<nextid> L => L +Int 2 </nextid>

<id> ParId </id>

<model> PModel:Id </model>

<env> Env </env>

(.Bag =>

<proc>...

<k> A1 </k>

<model> PModel </model>

<parent> ParId </parent>

<id> (L +Int 1) </id>

<alt> (L +Int 2) </alt>

<env> Env </env>

...</proc>

<proc>...

<k> A2 </k>

<model> PModel </model>

<parent> ParId </parent>

<id> (L +Int 2) </id>

<alt> (L +Int 1) </alt>

<env> Env </env>

...</proc>)

correspond to the left and the right parts of the composition.
We designed the rewrite rule (77) to match OPS rule A.20. The context of

each child proc environment replicates the semantically relevant configuration
cells from the parent proc. The computation cell of the parent is rewritten,
starting with the internal keyword par, followed by: the fresh references to the875
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left (L +Int 1) and right (L +Int 2) child proc environments, the set CSet

of synchronization channels, two disjoint sets X1 and X2 of variable names to
handle the parallel assignment of variables.

We also provide two complementary structural rules: rule (78) accepts the
syntax for parallel composition with no parallel state writing; and rule (79)880

transforms the syntax of an interleaving in a parallel composition with no syn-
chronizations.

rule (78)
<k>

A1:Action [|CS:Set|] A2:Action

=> A1:Action [|.Set|CS|.Set|] A2:Action

... </k> [structural]

rule (79)
<k>

A1:Action ||| A2:Action

=> A1:Action [|.Set|] A2:Action

... </k> [structural]

Once spawned, both actions are evualated independently until the posting
of an initial occurs. Forwarding of initials inside a parallel composition takes
into consideration the synchronization of the concurrent actions when there are885

events or communications over channels in the CSet synchronization set.
Initials involving a channel name C that is not in CSet are forwarded accord-

ing to the OPS rules A.22 and A.23, i.e., they are forwarded immediately. Since
we do not discriminate which side of the parallel composition is treated, only
one rewrite rule is necessary for defining the behavior of both OPS rules. Rule890

(80) matches a proc environment CId that is a child of a parallel composition
environment PId and has an initial that respects the condition notBool (C in

CSet). Once matched, the rule forwards it, rewriting the responsible iresp from
the child to the parent (CId => PId).
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rule (80)
<proc>...

<id>CId:Int</id>

<parent>PId:Int</parent>

...</proc>

<proc>...

<id>PId</id>

<k> par _:List,CSet:Set,_:Set,_:Set ... </k>

...</proc>

<inits>...

<init>...

<iresp>CId => PId</iresp>

<iev>C:Id ...</iev>

...</init>

... </inits>

requires notBool (C in CSet)

For initials over channel names in the synchronization set, the forwarding895

is postponed until there is another initial, posted by the environment at the
opposite side of the parallel composition, configuring one of the synchronization
behaviors as defined in OPS rulesA.24 or A.25.

Rule (81) handles the forwarding of two synchronized initials: it matches
two children environment, the left side LId and the right side RId; a parent900

parallel composition proc environment PId; and two initials, one for each child
proc. The two initials involved in a synchronization are merged into a single
one that will carry in its from and alt sets all the references to the standing
by environments from both. The initial carrying all the references is forwarded
and the other is removed.905
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rule (81)
<proc>...

<id>LId:Int</id>

<parent>PId:Int</parent>

...</proc>

<proc>...

<id>RId:Int</id>

<parent>PId:Int</parent>

...</proc>

<proc>...

<id>PId</id>

<k> par _:List,CSet:Set,_:Set,_:Set ... </k>

...</proc>

<inits>...

<init>...

<iresp>LId => PId</iresp>

<iev>C:Id ...</iev>

<ialt> LAlt => LAlt RAlt </ialt>

<from> LFrom => LFrom RFrom </from>

...</init>

(<init>...

<iresp>RId</iresp>

<iev>C ...</iev>

<ialt>RAlt</ialt>

<from>RFrom</from>

... </init> => .Bag)

... </inits>

requires (C in CSet)

An input/output synchronization, as defined in OPS rule A.24, establishes
the communication of a value between the two sides of a parallel composition.
Such cases are treated by rule (82). We omit the proc environment matching
part, since it is identical to rule (81). The difference is the explicit requirement
of matching an input value with an output value over the same synchronized910

channel. The initials are merged within the output communication, since the
output label is the correct observable behavior accordingly to the Circus OPS.
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rule (82)
(...)

<inits>...

<init>...

<iresp>LId => PId</iresp>

<iev>C:Id ! E:Exp</iev>

<ialt> LAlt => LAlt RAlt </ialt>

<from> LFrom => LFrom RFrom </from>

...</init>

(<init>...

<iresp>RId</iresp>

<iev>C:Id ? _</iev>

<ialt>RAlt</ialt>

<from>RFrom</from>

... </init> => .Bag)

... </inits>

requires (C in CSet)

The finalization of a parallel composition is given in the OPS rule A.21.
When both parallel actions reach their final Skip, the whole parallel composition
continues as a single Skip and the variable assignments performed in the parallel915

branches are merged accordingly to the name sets X1 and X2. Only assignments
made in the left (resp. right) side to variable names listed in X1 (resp. X2) are
kept.

Rule (83) performs this step, removing the two finished children environ-
ments and merging both assignment maps in the env cells into the parent proc920

environment, taking into consideration the name sets X1 and X2.
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rule (83)
(<proc>...

<id>LId:Int</id>

<k> Skip </k>

<parent>PId:Int</parent>

<const> LConst </const>

<env> LEnv </env>

...</proc> => .Bag )

(<proc>...

<id>RId:Int</id>

<k> Skip </k>

<parent>PId:Int</parent>

<const> RConst </const>

<env> REnv </env>

...</proc> => .Bag )

<proc>...

<id>PId</id>

<const> Const =>

Const andBool LConst andBool RConst

</const>

<env> Env =>

updateMap(Env,

removeAll(LEnv, keys(LEnv) -Set X1)

removeAll(REnv, keys(REnv) -Set X2)

)

</env>

<k> par ListItem(LId) ListItem(RId),

CSet:Set, X1:Set, X2:Set => Skip ...</k>

...</proc>

External choice

Starting an external choice, as defined in the OPS rule A.13, is similar to starting
a parallel composition: the Circus process is split into two actions and, as given in
OPS rules A.16 and A.17, they can proceed until an initial is posted. Rule (84)925

implements the behavior of OPS rule A.13, spawning two proc environments
to evaluate each action, and rewriting the computation cell into the internal
keyword choice followed by a set of two elements containing the fresh references
to the spawned environments. Actually, the Circus OPS rules A.16 and A.17 do
not require an explicit rewrite rule, since they deal with internal progress, and930

internal progress does not involves initial handling as seen in subsection 7.1
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rule (84)
<k> A1:Action [] A2:Action =>

choice SetItem(L +Int 1) SetItem(L +Int 2) ... </k>

<nextid> L => L +Int 2 </nextid>

<id>PId:Int</id>

<model> PModel:Id </model>

<env> Env </env>

<const> Const </const>

(.Bag =>

<proc>...

<k> A1 </k>

<model> PModel </model>

<parent>PId</parent>

<env> Env </env>

<const> Const </const>

<id> (L +Int 1) </id>

<alt> (L +Int 2) </alt>

...</proc>

<proc>...

<k> A2 </k>

<model> PModel </model>

<env> Env </env>

<const> Const </const>

<id> (L +Int 2) </id>

<alt> (L +Int 1) </alt>

<parent>PId</parent>

...</proc>)

As stated by OPS rule A.18 and rule A.19, once an observable event or com-
munication is performable at one of sides of the external choice, the other side is
no more considered. The Circus process continues with the observable event or
communication and its continuation. To achieve such a behavior, the forwarding935

of initials inside an external choice is handled by rule (85). Initials are forwarded
as soon as they are posted by one of the sides. For each forwarded initial, we
mark in the set alt of alternatives the reference to the proc environment in the
other side of the choice. When an initial with a non-empty set of alternatives
is resolved, all proc environments referred in the set are discarded and only the940

chosen side of each external choice gets an ok notification to proceed.
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rule (85)
<proc>...

<id>PId</id>

<k> choice Set ... </k>

...</proc>

<proc>...

<id>CId</id>

<parent>PId</parent>

<alt>AId</alt>

...</proc>

<inits>...

<init>...

<iresp>CId => PId</iresp>

<ialt>... .Set => SetItem(AId) ...</ialt>

... </init>

... </inits>

The finalization of an external choice is given by the OPS rules A.14 and
A.15. When one of the choice sides reaches its final Skip, the external choice
ends, and the Circus process continues with the assignments and constraint from
the successfully finished side. By using the transition annotation, we capture945

the behavior of both OPS rules with rule (86).

rule (86)
<procs>...

<proc>...

<id>PId:Int</id>

<k> choice _ => Skip ... </k>

<env> _ => Env </env>

<const> _ => Const </const>

...</proc>

(<proc> ...

<id>P1:Int</id>

<parent>PId</parent>

<alt>AId:Int</alt>

<k>Skip</k>

<env> Env </env>

<const> Const </const>

...</proc> => .Bag)

...</procs>

<discarded>...

.Set => SetItem(AId)

...</discarded>

[transition]
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Initial resolution

As explained in Section 5, the resolution of an initial is the end of its life-cycle.
It is removed from the set of initials and two consequences may follow: the
appending of its content to the traces and the generation of an ok notification950

to allow the continuation of proc environments affected by this initial.
The resolution rewrite rules are triggered in two cases. The first one is when

an initial is embedded in the scope of a hiding operation. This case is treated
in rule (75). The other one is when an initial has reached the top level, i.e.
its iresp sub-cell references the proc Id 0 environment. It is treated in rule955

(87), which ensures the removal of the init , the appending of the event iev to
the trace tr and specification trace spectr and, finally, the spawning of the ok
notification, addressed to all the proc environments listed in the set from of the
resolving init . Extra precautions are taken to avoid the resolution of an initial
that concerns only discarded processes, such cases are treated by the structural960

rule in (53).

rule (87)
<id>0</id>

(<init>...

<iresp>0</iresp>

<ialt>Alt</ialt>

<iev>C:Id</iev>

<from>FSet</from>

</init> => .Bag)

<oks>...

(.Bag => <ok>

<oev>C</oev>

<to>FSet -Set Disc</to>

</ok>)

... </oks>

<tr>... . => C </tr>

<spectr>... . => C </spectr>

<discarded>Disc => Disc Alt</discarded>

requires notBool (size(FSet -Set Disc) ==Int 0)
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When an ok notification is available and addressed to a standing-by proc
environment, i.e., holding true in its sync flag sub-cell, rule (88) is triggered. It
matches such standing-by proc PId referenced in an ok structure and its event
oev with the proc current computation. As result, the current computation965

is concluded and the sync flag is set to false, allowing the continuation of the
remaining computations in proc. The reference PId is also removed from the
to set of the ok notification. The notification itself remains available to match
possible other proc environments in the remaining references. When the to set
becomes empty, the structural rule in (52) removes the ok structure from the970

configuration.

rule (88)
<k> C:Id => . ... </k>

<sync> true => false </sync>

<id>PId:Int</id>

<oks>...

<ok>

<oev>C:Id</oev>

<to>... SetItem(PId) => .Set ...</to>

</ok>

... </oks>
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8 Examples

This section presents some examples of Circus specifications that we used for
checking the resulting traces from our K-Framework implementation against
the ones expected following the formal operational semantics.975

The first example, shown in Figure 9, specifies a Circus process containing
in the main anonymous action a parallel composition with a defined synchro-
nization set and two concurrent external choices. The initials of events from
channels that are not elements of the synchronization set are forwarded as soon
as they are posted. The non-deterministic search finds all the possible solutions,980

including the partial ones, i.e., traces which do not reach the final Skip.

channel a1,a2,a3,b1,b2,b3,c1,c2

channelset SyncSet == {|a1,b1|}
process proc3 ^=

begin

@

((b2 -> b3 -> Skip) [] (a1 -> a2 -> a3 -> Skip))

[|SyncSet|]

((c1 -> b1 -> Skip) [] (c2 -> a1 -> Skip))

end

Figure 9: Synchronization test specification

The output is shown in Figure 10, listing all the solutions found and combin-
ing all the possible event orders caused by the non-determinism. The Solution

6 shows the only trace that reaches the final Skip.

Search results:

Const:Bool --> true

Solution 1: b2 ∼> b3 ∼> c1

Solution 2: b2 ∼> b3 ∼> c2

Solution 3: b2 ∼> c1 ∼> b3

Solution 4: b2 ∼> c2 ∼> b3

Solution 5: c1 ∼> b2 ∼> b3

Solution 6: c2 ∼> a1 ∼> a2 ∼> a3 ∼> Skip

Solution 7: c2 ∼> b2 ∼> b3

Figure 10: Synchronization test output result

The specification shown in Figure 11 exercises the variable scope handling.985

The scope of the input variable x is checked before and after the redeclaration
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that occurs inside the named action Act.

channel c

process Scope ^=

begin

Act ^= c?x -> c!x -> Skip

@

c?x -> (c!x -> Act; c!x -> Skip)

end

Figure 11: Variable scope test specification

As defined in the operational semantics, the symbolic value assigned to a
previously declared variable name is restored with the ending of the scope that
contains the redeclaration. The output is shown in Figure 12, including the990

constraint and tracking of scope ending in the specification trace.

Search results:

Solution 1:

Const:Bool -->

V0 ==K V1 andBool V2 ==K V3

SpecTrace:K -->

( c ?? x ) ∼> ( c !! x ) ∼> ( c ?? x ) ∼> ( c !! x )

∼> ( end x ) ∼> ( c !! x ) ∼> end x

Trace:K -->

( c ?? V1 ) ∼> ( c ! V0 ) ∼> ( c ?? V3 ) ∼> ( c ! V2 )

∼> ( c ! V0 )

Figure 12: Scope test output result

In Figure 13 we show a specification that exercises the concurrent assignment
to state variables. The main action begins by assigning 0 to all the three variable
names. Then it splits into two parallel actions: the left part is allowed to write
to x and the right part is allowed to write to z. The left and right parts assigns,995

respectively, 1 and 2 to all the three variable names. The parallel composition
finishes with the assignments and the main action continues communicating the
values of the three variables through the channel out.
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channel out

process ParState ^=

begin

state myState == [x,y,z]

@

x:=0;y:=0;z:=0;

((x:=1;y:=1;z:=1) [|{|x|}|{||}|{|y|}|] (x:=2;y:=2;z:=2));

out!x -> out!y -> out!z -> Skip

end

Figure 13: Parallel state assignment specification text

The generated output can be seem in Figure 14, showing a result accordingly
to the expected: the sequence of the three out communications containing the1000

values of x, y and z, respectively, 1, 2 and 0. It means that x and y were changed
by the left and right parts of the parallel composition while z remained with its
original assignment. The output is given by symbolic values that are referenced
in the constraint Const.

Search results:

Solution 1:

Const:Bool -->

V1 ==K 0 andBool V0 ==K 1 andBool V2 ==K 2

SpecTrace:K -->

( x := 0 ) ∼> ( y := 0 ) ∼> ( z := 0 ) ∼> ( x := 1 )

∼> ( x := 2 ) ∼> ( y := 2 ) ∼> ( z := 2 ) ∼> ( y := 1 )

∼> ( z := 1 ) ∼> ( out !! x ) ∼> ( out !! y ) ∼> ( out !! z )

Trace:K -->

( out ! V0 ) ∼> ( out ! V2 ) ∼> ( out ! V1 ) ∼> Skip

Figure 14: Parallel state assignment output result

The example Circus process in Figure 15 specifies the behavior of a Fibonacci1005

sequence generator as introduced in [CMW13]. It uses operation schema to
initialize and update the state variables. Since OutFib is a recursive action, the
traces are unbounded and it is necessary to limit the number of rewrite steps
we are going to apply in the evaluation.
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channel out

process Fibonacci ^=

begin

state FibState == [x,y]

InitFibState == [x’,y’ | x’ == y’ && x’ == 1 ]

OutFibState == [y’,x’ | y’ == (x + y) && x’ == y ]

InitFib ^= out!1 -> out!1 -> InitFibState

OutFib ^= out!(x+y) -> OutFibState; OutFib

@

InitFib; OutFib

end

Figure 15: Fibonacci specification text

In Figure 16 we show the output arbitrarily limited to 500 rewrite steps. The1010

resulting trace is consistent with the operational semantics, as it was discussed
in [CMW13].

Search results:

Solution 1:

Const:Bool -->

true

SpecTrace:K -->

( out ! 1 ) ∼> ( out ! 1 ) ∼> InitFibState

∼> (out !! ( x + y )) ∼> OutFibState ∼> (out !! ( x + y ))

∼> OutFibState ∼> (out !! ( x + y )) ∼> OutFibState

∼> (out !! ( x + y )) ∼> OutFibState ∼> (out !! ( x + y ))

∼> OutFibState ∼> (out !! ( x + y )) ∼> OutFibState

∼> (out !! ( x + y )) ∼> OutFibState ∼> (out !! ( x + y ))

∼> OutFibState ∼> (out !! ( x + y ))

Trace:K -->

( out ! 1 ) ∼> ( out ! 1 ) ∼> ( out ! 2 ) ∼> ( out ! 3 )

∼> ( out ! 5 ) ∼> ( out ! 8 ) ∼> ( out ! 13 ) ∼> ( out ! 21 )

∼> ( out ! 34 ) ∼> ( out ! 55 ) ∼> ( out ! 89 )

Figure 16: Fibonacci output result

The chronometer specification, shown in Figure 17, was introduced in [ACGS16].
It contains three Circus processes: the Chrono, that keeps in its state the count
of elapsed minutes and seconds; the Ticker , that synchronizes with Chrono in1015

the tick channel, causing the increment of seconds, and in time channel, causing
the output of the current number of elapsed minutes and seconds; and Clock ,
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that parallel composes Chrono and Ticker , setting the synchronization channels
and hiding the output of the channel tick .

channel out,tick,time

process Chrono ^=

begin

state AState == [sec,min]

AInit == [min,sec | sec’ == min’ && min’ == 0]

IncSec == [min,sec | sec’ == ((sec+1) mod 60) && min’ == min]

IncMin == [min,sec | min’ == ((min+1) mod 60) && sec’ == sec]

Run ^= (tick -> IncSec;

(((sec==0) & IncMin) [] ((sec != 0) & Skip))

)

[]

(time -> out!min -> out!sec -> Skip)

@

AInit; u X @ (Run; X)

end

process Ticker ^= u X @ (tick -> time; X)

process Clock ^= (Chrono [|{|tick,time|}|] Ticker) /H {|tick|}

:run Clock

Figure 17: Chrono specification text

The line :run Clock defines Clock as the process to be evaluated. We1020

shown the resulting output in Figure 18, that is correct in consideration to the
operational semantics analysis presented in [ACGS16].
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Search results:

Solution 1:

Const:Bool -->

true

SpecTrace:K -->

AInit ∼> IncSec ∼> ( sec != 0 ) ∼> time ∼> ( out !! min )

∼> ( out !! sec ) ∼> IncSec ∼> ( sec != 0 ) ∼> time

∼> ( out !! min ) ∼> ( out !! sec ) ∼> IncSec ∼>
(...)

∼> time ∼> ( out !! min ) ∼> ( out !! sec ) ∼> IncSec

∼> ( sec == 0 ) ∼> IncMin ∼> time ∼> ( out !! min )

∼> ( out !! sec ) ∼> IncSec ∼> ( sec != 0 ) ∼> time

∼> ( out !! min ) ∼> ( out !! sec ) ∼> (...)

Trace:K -->

time ∼> ( out ! 0 ) ∼> ( out ! 1 ) ∼> time

∼> ( out ! 0 ) ∼> ( out ! 2 ) ∼> time ∼> ( out ! 0 )

∼> ( out ! 3 ) ∼> time ∼> ( out ! 0 ) ∼>
(...)

∼> time ∼> ( out ! 0 ) ∼> ( out ! 59 ) ∼> time

∼> ( out ! 1 ) ∼> ( out ! 0 ) ∼> time ∼> ( out ! 1 )

∼> ( out ! 1 ) ∼> (...)

Figure 18: Chrono output result

9 Conclusions and future work

In this work, we have established a set of rewrite rules within the K-Framework,
which automates the behavior of the transition system defined by the formal1025

operational semantics of Circus. We also embedded a subset of the operational
semantics of the Circus specification traces.

The current result is an executable interpreter, which accepts an input spec-
ification text and enumerate its constrained symbolic traces and specification
traces. Presently, the tool is the first symbolic specification traces generator for1030

the Circus language.
Beyond providing interpreters based on formal semantics, the K-Framework

has proven to be usable for other static analysis and state-exploration purposes:
once introduced the rewrite rules of the operational semantics, it is possible to
extend the configuration and the structural rules in order to develop a wide class1035

of tools. Pursuing the original motivation of our work, as described in [ACGS16],
we plan to exploit the symbolic trace generators for the development of a test
platform for Circus specification. With this goal in mind, we have plans to work
on guided trace generation, aiming at ensuring the pertinence of a trace set
with respect to a testing criterion (for instance, the coverage of mutations in a1040
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specification text).
We also plan to alleviate some current limitations of the tool: covering the

whole specification traces semantics, handling multivalued communications, and
accepting Z schema expressions. Moreover, the current version of the imple-
mentation does not includes type checking, which is easily supported by the1045

K-Framework. This is another considered extension.
Most of the rewrite rules are very close to their counterparts in the opera-

tional semantics. Nevertheless, some adaptations were needed and they compli-
cate the establishment of the correctness of the implementation. Clearly, some
proofs need to be conducted.1050

When dealing with Circus, parts of CSP and Z semantics were introduced in
the rule set. It would be an interesting exercise to implement the whole seman-
tics for both specification languages in the K-Framework. And more generally,
we believe that this piece of work brings some insights to the automation of
process algebra operational semantics in the K-Framework.1055
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A Operational semantics: table of selected tran-
sition rules

c ∧ (s; p) ∧ (∃ v′ • s; Q)

(c | s |= p` Q) ε−→ (c ∧ (s; Q [w0/v
′]) | s; v := w0 |= Skip)

v ′ = outαs (A.1)

c

(c | s |= v := e)
ε−→ (c ∧ (s; w0 = e) | s; v := w0 |= Skip)

(A.2)

c ∧ (s; preOp)

(c | s |= Op)
ε−→ (c ∧ (s; Op [w0/v

′]) | s; v := w0 |= Skip)
v ′ = outαs (A.3)

1135

c

(c | s |= d!e→ A)
d!w0−→ (c ∧ (s; w0 = e) | s |= A)

(A.4)

c ∧ T 6= ∅ x 6∈ αs

(c | s |= d?x : T→ A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(A.5)
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c ∧ T 6= ∅ x 6∈ αs

(c | s |= var x : T • A) ε−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)
(A.6)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= let x • A1)
l−→ (c2 | s2 |= let x • A2)

(A.7)

c

(c | s |= let x • Skip) ε−→ (c | s; end x |= Skip)
(A.8)

1140

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l−→ (c2 | s2 |= A2; B)

(A.9)

c

(c | s |= Skip; A)
ε−→ (c | s |= A)

(A.10)

c

(c | s |= A1 u A2)
ε−→ (c | s |= A1)

c

(c | s |= A1 u A2)
ε−→ (c | s |= A2)

(A.11)

c ∧ (s; g)

(c | s |= g N A)
ε−→ (c ∧ (s; g) | s |= A)

(A.12)

c

(c | s |= A1 @ A2)
ε−→ (c | s |= (loc c | s • A1) � (loc c | s • A2))

(A.13)

1145

c1

(c | s |= (loc c1 | s1 • Skip) � (loc c2 | s2 • A))
ε−→ (c1 | s1 |= Skip)

(A.14)

c2

(c | s |= (loc c1 | s1 • A) � (loc c2 | s2 • Skip))
ε−→ (c2 | s2 |= Skip)

(A.15)
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(c1 | s1 |= A1)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 • A1)
�
(loc c2 | s2 • A2)


 ε−→


c | s
|= (loc c3 | s3 • A3)
�
(loc c2 | s2 • A2)


 (A.16)

(c2 | s2 |= A2)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 • A1)
�
(loc c2 | s2 • A2)


 ε−→


c | s
|= (loc c1 | s1 • A1)
�
(loc c3 | s3 • A3)


 (A.17)

(c1 | s1 |= A1)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 • A1) � (loc c2 | s2 • A2))
l−→ (c3 | s3 |= A3)

(A.18)

1150

(c2 | s2 |= A2)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 • A1) � (loc c2 | s2 • A2))
l−→ (c3 | s3 |= A3)

(A.19)

c

(c | s |= A1 J x1 | cs | x2 K A2)
ε−→

 c | s
|=
(par s | x1 • A1) J cs K (par s | x2 • A2)

 (A.20)

c
c | s
|= (par s1 | x1 • Skip)

JcsK
(par s2 | x2 • Skip)


 ε−→ (c | (∃ x′2 • s1) ∧ (∃ x′1 • s2) |= Skip)

(A.21)

(c | s1 |= A1)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l 6∈ cs

c | s
|= (par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)


 l−→


c3 | s
|= (par s3 | x1 • A3)

JcsK
(par s2 | x2 • A2)


 (A.22)
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(c | s2 |= A2)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l 6∈ cs

c | s
|= (par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)


 l−→


c3 | s
|= (par s1 | x1 • A1)

JcsK
(par s3 | x2 • A3)


 (A.23)

1155



(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)

∨

(c | s1 |= A1)
d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)

∨

(c | s1 |= A1)
d!w1−→ (c3 | s3 |= A3) ∧ (c | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)


d ∈ cs c3 ∧ c4 ∧ w1 = w2

c | s
|= (par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)


 d!w2−→


c3 ∧ c4 ∧ w1 = w2 | s
|= (par s3 | x1 • A3)

JcsK
(par s4 | x2 • A4)




(A.24)

(c | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ w1 = w2
c | s
|= (par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)


 d?w2−→


c3 ∧ c4 ∧ w1 = w2 | s
|= (par s3 | x1 • A3)

JcsK
(par s4 | x2 • A4)




(A.25)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l 6= ε chan l 6∈ cs

(c1 | s1 |= A1 \ cs) l−→ (c2 | s2 |= A2 \ cs)
(A.26)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l = ε ∨ chan l ∈ cs

(c1 | s1 |= A1 \ cs) ε−→ (c2 | s2 |= A2 \ cs)
(A.27)

c

(c | s |= Skip \ cs) ε−→ (c | s |= Skip)
(A.28)
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B Specification-oriented transition system: la-
bels and rules

The syntax of the labels of specification traces is given below, followed by the
transition rules.

Label ::= Pred | Comm | LAct
Comm ::= ε | CName | CName!Exp | CName?VName

| CName?VName : Pred
LAct ::= VName∗ : [Pred ,Pred ] | Schema | VName := Exp

| var VName : Exp | var VName := Exp | end VName

(state(P1) |= maction(P1))
l

=⇒ (state(P2) |= maction(P2))

P1
l

=⇒ P2

(B.1)

1165

c ∧ (s; p) ∧ (∃ v ′ • s; Q)

(c | s |= p` Q) p` Q
=⇒P (c ∧ (s; Q [w0/v

′]) | s; v := w0 |= Skip)

v ′ = outαs (B.2)

c ∧ (s; preOp)

(c | s |= Op)
Op
=⇒ (c ∧ (s; Op [w0/v

′]) | s; v := w0 |= Skip)
v ′ = outαs (B.3)

c

(c | s |= v := e)
v:=e
=⇒P (c ∧ (s; w0 = e) | s; v := w0 |= Skip)

(B.4)

c ∧ (s; g)

(c | s |= g N A)
g

=⇒P (c ∧ (s; g) | s |= A)
(B.5)

c

(c | s |= d!e→ A)
d!e

=⇒P (c ∧ (s; w0 = e) | s |= A)
(B.6)

1170

c ∧ T 6= ∅ x 6∈ αs

(c | s |= d?x : T→ A)
d?x
=⇒ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(B.7)
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c ∧ T 6= ∅ x 6∈ αs

(c | s |= var x : T • A) (var x:T)
=⇒P (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(B.8)

c

(c | s |= let x • Skip) (end x)
=⇒P (c | s; end x |= Skip)

(B.9)

(c1 | s1 |= A1)
l

=⇒P (c2 | s2 |= A2)

(c1 | s1 |= let x • A1)
l

=⇒P (c2 | s2 |= let x • A2)
(B.10)

(c1 | s1 |= A1)
l

=⇒P (c2 | s2 |= A2)

(c1 | s1 |= A1; B)
l

=⇒P (c2 | s2 |= A2; B)

(B.11)
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c

(c | s |= A1 J x1 | cs | x2 K A2)
var vl,vr:=v,v

=⇒P
c | s; var vl, vr := v, v
|= (spar v | vl | vr | x1 := x1l • A1[vl/v])

JcsK
(spar v | vr | vl | x2 := x2r • A2[vr/v])




v ′ = outαs
v = x1, x2
fresh vl , vr

(B.12)

(c | s; end v, y |= A1)
l

=⇒P (c3 | s3 |= A3) chan l = ε ∨ chan l 6∈ cs

(c | s |= (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2))
l

=⇒P
c3 | s3 ∧ s; end x
|= (spar v | x � (end l), (var l) | y | x1 := z1 • A3)

JcsK
(spar v | y | x � (end l), (var l) | x2 := z2 • A2)




(B.13)
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(c | s; end v, y |= A1)
d?a

=⇒P (c3 | s3 |= A3)

(c | s; end v, x |= A2)
d!e

=⇒P (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ ∃w0 • (s3; (w0 = a))⇔ (s4; (w0 = e))

(c | s |= (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2))

d!e
=⇒P

c3 ∧ c4 ∧ ∃ w0 • (s3; (w0 = a))⇔ (s4; (w0 = e)) | s
|= (spar v | x � a | y | x1 := z1 • A3)

Jcs | var a := e | s3 ∧ s4 ∧ s; end x, yK
(spar v | y | x � a | x2 := z1 • A4)




(B.14)

The above rule uses a new parallel construct that keeps track of the new input
variable declared and the new state obtained as a consequence. It is used to1180

ensure that, as required here, all transitions have a single label, and the label
contains a guard, a communication, or an action. The next rule ensures that
in the next step of the evaluation of the parallelism, the variable declaration

and state change are recorded. This concern was not present in [CG10].

c

(c | s |=

 (spar v | x | y | x1 := z1 • A1)
Jcs | var a := e | s1K

(spar v | y | x | x2 := z2 • A2)

)

var a:=e
=⇒P

(c | s1 |= (spar v | x | y | x1 := z1 • A1) J cs K (spar v | y | x | x2 := z2 • A2))

(B.15)

1185

Rules similar to those above for parallelism are needed for external choice.

(c1 | s1 |= A1)
l

=⇒P (c2 | s2 |= A2) chan l 6∈ cs

(c1 | s1 |= A1 \ cs) l
=⇒P (c2 | s2 |= A2 \ cs)

(B.16)

Above, we assume that, if l is not a communication, then chan l is some
special channel ε that does not belong to any synchronisation set cs.
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