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Defining the Circus operational semantics in the K-framework

This report documents how we have implemented a trace generator for the Circus specification language using K, a rewrite-based executable semantic framework in which programming languages, type systems and formal analysis tools can be defined using configurations, computations and rules. This implementation is based on the operational semantics of Circus, that we have revisited to make it exploitable with K. The motivation of this work is the development of a test generation environment for Circus. Moreover, it may provide some inspiration to the developers of tools for specification languages based on process algebras.

Introduction

Circus is a state-rich process algebra combining Z [START_REF] Woodcock | Using Z-Specification, Refinement, and Proof[END_REF], CSP [START_REF] Roscoe | The Theory and Practice of Concurrency[END_REF], and a refinement calculus [START_REF] Morgan | Programming from Specifications[END_REF]. Its denotational and operational semantics are based on the Unifying Theories of Programming (UTP) [START_REF] Hoare | Unifying Theories of Programming[END_REF].

The K-Framework is a rewrite-based executable semantic framework for developing tools based on the operational semantics of programming languages [START_REF] Rosu | A rewriting-based framework for computationspreliminary version[END_REF].

We report how we have defined a configuration structure and a set of rewrite rules within the K-Framework, which, given a Circus specification, produces an executable symbolic transition system that mimics the one defined by the formal operational semantics of Circus.

The result is a symbolic evaluator that takes the text of a Circus specification as input and produces, as output of interest, a constraint and two sets of symbolic traces: one corresponding to the constrained symbolic traces of the Circus operational semantics [START_REF] Cavalcanti | Testing for Refinement in Circus[END_REF]; the other to the specification traces, closer to the specification text, that were introduced in [START_REF] Cavalcanti | Data Flow coverage for Circus-based testing[END_REF] to facilitate the analysis of test coverage criteria.

We have translated each Circus operational semantic rule into some equivalent K-Framework rewrite rule or set of rules. The efforts were focused on keeping a close similarity between the rules of the formal semantics and the input format of the K-framework.

Most of the rules were translated in a straightforward way, permitting a crosscheck between the operational semantics and the designed rewriting version. Nevertheless, some behaviors, especially those related to the synchronization of nested concurrent processes, required the adoption of more complex strategies.

Non-determinism is allowed in Circus specifications and it was handled exploiting the backtracking mechanism of the K-framework, guaranteeing the coverage of all possibilities.

We have organised this document as follows:

• The statement of a simplified, machine readable, syntax for the Circus language is given in Section 3;

• The definition of a configuration to keep the necessary information for handling the state and other properties for Circus processes is given in Section 4;

• The adopted strategy to handle communications and synchronizations between concurrent processes is described in Section 5;

• The structural rules for dealing with structural issues, such as loading and optimizing the configuration, are presented in Section 6;

• The Circus operational semantics rules designed as K-Framework rewrite rules are presented in Section 7;

• Some examples of specification texts, used for validating the behavior of the transition system, and the corresponding traces are presented in Section 8.

Moreover, the next section contains a brief introduction to some background concepts.

2 Background

The K-Framework

The K-framework is presented by its authors as a rewrite-based definitional framework in which programming languages, calculi, as well as type systems or formal analysis tools can be defined [RS ¸10]. It provides many desirable aspects such as modularity, non-determinism and concurrency handling. The framework is presented formally [START_REF] Rosu | A rewriting-based framework for computationspreliminary version[END_REF] and packed in a reference implementation, offering tools to generate executable interpreters that allows state-exploration and reasoning about programs [START_REF] Ciobaca | A language-independent proof system for full program equivalence[END_REF].

Semantics for programming languages, calculi and other analysis tools are defined in the framework by using a set of rewrite rules and labelled, potentially nested, cell structures, refered to as the configuration. The content of the configuration cells keeps relevant information such as the state and general environment for the system/program. There are two types of rewrite rules: computational, which count as computational steps, and structural rules, which are used to rearrange the terms so that the computational rules can apply. A computation is an element or a sequential list of elements that carries "computational meaning", that is, a sequence of computational tasks. For instance, the assignment of the value of an expression to a variable is a computation, composed by a sequence of computations which are required to, first, compute the value of the expression and, then, perform the adequate changes to the affected environment configuration cells.

In the K-Framework, computations are syntactical elements of the sort K and they are stored and handled inside the configuration cell labelled as k . This cell is referred to as the k cell or the computation cell. Computations have a list structure, capturing the intuition of computation sequentialization, with the symbol ∼> as list the separator, to be read as "followed by" and the unit symbol "." (the empty computation).

In particular, computations extend the original language or calculus syntax. When necessary to avoid ambiguities, throughout this report we use the name k-computation when referring to a computation inside the k-cell. The kcomputations can be handled like any other terms in the rewriting environment, that is, they can be matched, moved from one place to another in the original term, modified, or even deleted.

In such a framework, it is important to distinguish between computations under treatment and computations already completed, for instance, between expressions and their values. To allow this distinction, the framework defines the KResult internal syntactic subcategory. Coming back to the variable assignment example, the treatment of the expression will be judged finished when the achieved result is classified under KResult category as, for example, an integer value.

The rewrite rules in the K-Framework are unconditional, although they may have ordinary side conditions, and they are context-insensitive, so the rules apply concurrently as soon as they match. They generalize conventional rewrite rules by making explicit which parts of the term is read, write, or ignored.

The framework has been developed with the mechanisation of structural operational semantics in mind. The correspondence can be summarised, in a nutshell, as:

• Computation terms and other auxiliary information such as environment and state, are contained in nested configuration cells. Computations are kept in special k-cells, and other information are organised and managed in cells and sub-cells, depending on the considered language.

• Rewrite rules correspond to transitions of the operational semantics. They describe the evolution of the top configuration cell. Computations progresses are reflected by evolutions of k-sub-cells. Changes of environment and state are reflected by changes of other cells.

• Structural rules describe computations rearrangements, so that rewrite rules can match and apply.

Such definitions can be processed by the rewrite engine that is the kernel of the K framework. As say the authors, "interpreters for free" can be obtained from formal language definitions, as well as various tools based on operational semantics. In this work, our immediate goal was symbolic traces generation for Circus, having in mind a test generation environment as described in [START_REF] Alberto | Formal mutation testing for circus[END_REF] 

Circus

This section is a slightly modified version of Section 2 of our paper [START_REF] Alberto | Formal mutation testing for circus[END_REF].

As exemplified in Figure 1, Circus makes it possible to model systems and their components via a set of interacting processes. Each process has:

a state and some operations for observing and changing it in a Z style. In our example, the state is a pair AState of variables named sec and min with integer values between 0 and 59 (as defined by RANGE ), and the data operations on this state are specified by the three schemas AInit, IncSec, IncMin.

actions that define communicating behaviours in a CSP style. In our example, the behaviour of the Chrono process is specified by the main action after the symbol •. It is a sequential composition of the schema AInit followed by the repeated execution of the Run action. Run starts with an external channel tick , time channel out

process Chrono = begin state AState == [ sec, min : RANGE ] AInit == [ AState | sec = min ∧ min = 0 ] IncSec == [ ∆AState | sec = (sec + 1)mod 60 ∧ min = min ] IncMin == [ ∆AState | min = (min + 1)mod 60 ∧ sec = sec ] Run = tick → IncSec; ((sec = 0) IncMin) ((sec = 0) Skip) time → out !(min, sec) → Skip • (AInit; (µ X • (Run; X ))) end
Figure 1: A Circus specification of a chronometer choice between two events tick and time; tick is followed by the increment of the chronometer, and time by the display of the values of min and sec.

Circus comes with a denotational and an operational semantics, based on Hoare and He's Unifying Theories of Programming (UTP) [START_REF] Hoare | Unifying Theories of Programming[END_REF], and a notion of refinement. We can use Circus to write abstract as well as more concrete specifications, or even programs. A full account of Circus and its denotational semantics is given in [START_REF] Oliveira | A UTP Semantics for Circus[END_REF].

The operational semantics for Circus is briefly introduced below, and a significant part is reproduced in Appendix A. It is defined as a symbolic labelled transition system between configurations. These are triples (c | s |= A), with a constraint c, a state s, and a continuation A, which is a Circus action. Transitions associate two configurations and a label. The labels are either empty, represented by , or symbolic communications of the form c?w or c!w, where c is a channel name and w is a symbolic variable that represents an input (?) or an output (!) value.

The first component c of a configuration (c | s |= A) is a constraint over symbolic variables that are used to define labels and the state. The constraints are texts that denote Circus predicates over these symbolic variables. We use typewriter font for pieces of text. The second component s is a UTP predicate, which defines a total assignment x := w of symbolic variables w to all variables x in scope, including the state components. State assignments, however, can also include declarations and undeclarations of variables using the constructs var x := e and end x. The state assignments define a value for all variables in scope. These values are represented by symbolic variables similarly to what is

c ∧ T = ∅ x ∈ αs (c | s |= d?x : T → A) d?w0 -→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A) c ∧ (s; g) (c | s |= g A) -→ (c ∧ (s; g) | s |= A)
Figure 2: Examples of two transition rules: for inputs, and for guards classically done in symbolic execution of programs [START_REF] King | Symbolic execution and program testing[END_REF].

Two examples of rules are given in Figure 2. The first rule defines the transitions arising from an input prefixing d?x : T → A; it is rule (A.5) of A. The label of the transition is d?w 0 , where w 0 is a symbolic variable. The constraint that w 0 is of the right type (w 0 ∈ T) is added to the constraint of the new configuration. The state of the new configuration is enriched, via the UTP sequence operator "; ", by a new component x , which is assigned value w 0 . The continuation of the new configuration is the action A in an environment enriched by x as defined by let x • A.

The second rule of Figure 2 defines the transitions for a guarded action g & A. The label of the transition is empty, since the evaluation of g is not an observable event; g is added to the constraint of the new configuration taking into account the assignments in the current state s. The continuation is A.

Traces of a process are defined in the usual way, that is, as sequences of observable events. Due to the symbolic nature of configurations and labels, however, we can obtain from the operational semantics constrained symbolic traces, or cstraces, for short. These are pairs formed by a sequence of labels, that is, a symbolic trace, and a constraint over the symbolic variables used in the labels. Roughly speaking, the constrained symbolic trace can be obtained by evaluating the operational semantics, collecting the labels together, and accumulating the constraints over the symbolic variables used in the labels. We give below some examples of cstraces of Chrono.

cst1 :( tick , true) cst2 :( time, out!α 0 !α 1 , α 0 = 0 ∧ α 1 = 0) cst3 :( tick , time, out!α 0 !α 1 , α 0 = 0 ∧ α 1 = 1) cst4 :( tick 60 , true) cst5 :( tick 60 time, out!α 0 !α 1 , α 0 = 1 ∧ α 1 = 0)
A trace is an instantiation of a cstrace, where the symbolic variables used in the labels are replaced by values satisfying the constraint. For instance, the two traces time, out!0!0 and tick , time, out!0!1 are instances of cst2 and cst3.

In [CG10, CG14, CG13a] specification traces were defined. Their distinctive feature is their labels. They record not only events, like in the operational semantics, but also guards and state changes. Moreover, they are expressed in terms of the variables of the specification text, rather than symbolic variables. Such traces are necessary to take into account coverage criteria of the specification text. The syntax of the labels and the main transition rules are given in Appendix B.

In this work, we have developed, using the K-Framework a trace generator for Circus that produces both the cstraces and the specification traces of Circus specifications.

Limitations of current implementation

The current version of our symbolic trace generator is limited in dealing with certain aspects of Circus specifications:

Type checking is not yet implemented and, as a result, it is necessary to handle each desired type with specific rewrite rules. In the current version, we handle integers and sets, but it is trivial to expand the implementation with rules for more types;

Multiple valued communication is not available, for the moment, we only deal with single valued inputs or outputs;

Schema expressions are not treated in the current version. Besides, the formulas and expressions usable when writing Z schemas are restricted to the use of native types of the K-framework;

Parallel assignments are not correctly tracked into the specification trace output, but it is done for cstraces;

Specification traces for external choice contains specifications labels of discarded branches. Nevertheless, this undesired behavior is consistent with the operational semantics. It does not affect symbolic traces generation.

In Section 9 we introduce a brief discussion of the limitations that should be alleviated in future works. The next section contains the details of how we designed the simplified machine readable syntax for treating Circus specification texts.

Syntax

To establish a simple, text-only, machine-readable syntax for Circus specifications, we started from the syntax defined by Feliachi et al. [START_REF] Feliachi | Exhaustive testing in hol-testgen/cirta -a case study[END_REF] for processing the language in the proof assistant Isabelle/HOL [START_REF] Lawrence | Isabelle/HOL: a proof assistant for higher-order logic[END_REF]. We also drawn some inspiration from the machine readable language for CSP, namely CSP m [START_REF] Scattergood | CSPM: A Reference Manual[END_REF].

We have added some special syntactical constructs for internal use only:

they are not expected in the Circus specification input by the user, but they are needed as place marks to control the K rewriting engine while performing complex step sequences. When it is the case, such fact will be pointed out in the syntax and semantics descriptions given in the sequel. The syntax used in our implementation is organised in three modules: the main Circus syntax, the syntax for expressions, and a module of useful constructs shared between the other two. We refrain from presenting all modules in this section, focusing only on the elements of the first module. We present our Circus syntax in a BNF style as it is accepted by the K Framework. The root non-terminal element is CircusSpec (1), a complete Circus specification that is a sequence CircusPars (2) of Circus paragraphs. (2)

A Circus paragraph CircusPar (3) can represent a process declaration, a Z paragraph, a channel declaration, a channel set declaration, a name set declaration or the special internal use keyword ":run" (6) that allows the user to select which declared process initiates the execution.

syntax CircusPar ::= (3) ProcDecl | ZParagraph | "chanset" Id "==" SetExp [strict(2)] (4) | "nameset" Id "==" SetExp [strict(2)] (5) | CompleteCDecl | ":run" Id (6) 
The declaration of sets for channels (4) and names (5) associates an identifier with a set expression SetExp. This last element is tagged as strict, forcing the K-Framework to advance the computation of SetExpr before processing the declaration itself.

An element of the sort SetExpr is defined in the auxiliary syntax module for expressions, which is omitted here. In a brief description, a SetExpr allows the definition of sets of names using the Circus syntax, i.e., comma-separated and delimited by "{|" and "|}". It also allows expressions over these sets (such as union, intersection, exclusion, etc.) and identifiers to reference a previously declared named set.

syntax CompleteCDecl ::= "channel" MultiDecl (7) syntax Type ::= "Int" (8) syntax SimpleDecl ::= Id | Id ":" Type (9) syntax MultiDecl ::= List{SimpleDecl, ","}

Channel declarations are defined by CompleteCDecl (7). Prefixed by the keyword "channel", such paragraphs can contain one or multiple (10), typed (8) or untyped simple declarations SimpleDecl (9). The channel name is an identifier.

A process declaration ProcDecl (11) states the association between an identifier, that will reference the process throughout the environment, and a process definition ProcDef (13) or an action paragraph Action (20). For specifications that use the second variant, we define a transformation macro rule (12) that will convert it into a full process definition and place the given action paragraph as the so-called anonymous action of the process (see (13) below).

syntax ProcDecl ::= "process" Id "^=" ProcDef (11) |"process" Id "^=" Action rule process P:Id ^= A:Action (12) => process P ^= begin @ A end [macro]

A process definition ProcDef (13) consists in an optional sequence of process paragraphs PPars (15) followed by the mandatory anonymous action paragraph Action (20), after the "@" symbol. The definition is surrounded by the keywords "begin" and "end".

syntax ProcDef ::= (13) "begin" PPars "@" Action "end" | "begin" "@" Action "end" The ZParagraph (16) is either a schema or a state declaration. The state declaration is prefixed by the keyword "state" followed by an association between the state name identifier and a single schema definition. The standard non-state schema declaration also allows the association to a SchemaExp (17).

syntax ZParagraph ::= Id "==" SchemaExp (16) | "state" Id "==" Schema Although mentioned in this syntax, the current implementation offers no support to schema expressions. That explains the reason for the simple definition of SchemaExp (17). The extension to schema expressions is a subject for future work.

A Schema (18) has two parts: some variable declarations and a condition, which is a boolean expression. The second part is optional and, when omitted, a structural macro rule (19) introduces the "true" keyword at its place.

syntax SchemaExp ::= Schema (17) syntax Schema ::= "[" MultiDecl "]"

(18) | "[" MultiDecl "|" BoolExp "]" rule [ M:MultiDecl ] => [ M | true ] [macro] (19) 
The The syntax of the communication part of a prefixed action is given by Comm (30). It can correspond to synchronization events, i.e. channel name identifiers, or single valued inputs and outputs. The use of the strictness attribute in the output is required to force the calculation of the expression value before processing the output construct as a whole. The support for multi-valued inputs and outputs is let to future improvement.

syntax Comm ::= Id (30) | Id "?" Id | Id "!" Exp [strict(2)]
The Command non-terminal corresponds to Circus commands, such as variable assignment and variable scope finalization, and other special internal use constructs.

syntax Command ::= (31)

Id ":=" Exp [strict(2)] | "end" Id | InternalCommand
Such internal use constructs, showed in (32), are not meant for user input, but used for controlling intermediate steps of the rewriting engine. A complete description of these extra steps is given with the rules for the operational semantics in Section 7.

syntax InternalCommand ::= (32) | "choice" Set | "par" List "," Set "," Set "," Set | "hide" Int Set | "proc" Int | "state" BoolExp [strict] | "schema" BoolExp [strict]
At last, we need to put all the syntax elements that should be handled as actual values under the framework built-in category KResult (33). A kcomputation is considered completed as soon as the achieved result is of the sort of one of the elements listed under such category.

syntax KResult ::= Int | Set | Bool (33)
After parsing a well formed Circus specification, the K-Framework will begin the application of semantic rules. For instance, before evaluating the actual behavior of any processes, structural rules are applied to handle the loading of the input specification into the configuration cells. We present in the next section some relevant notions of the K-Framework configuration, along with the configuration structure that we have designed for holding the Circus specifications elements.

Configuration

A configuration in the K-Framework is a nested bag of configuration items (or of configuration item terms) referred as configurations cells. During the processing of a Circus specification, the configuration provides an abstraction of the state and of the infrastructure needed to process the continuation of the specification, i.e. to compute its subsequent behavior.

Depending on the considered semantics, configurations may contain cells that keep the current version of: the K-computation, the environment, the store, some analysis results, and various useful bookkeeping information [START_REF] Rosu | A rewriting-based framework for computationspreliminary version[END_REF]. Given its wide range of use, the K framework does not limit nor impose any restrictions over the design of such a structure, leaving it entirely as a subject of the needs of the semantics being treated and of the kind of tool being developed: interpreter, type checker, symbolic evaluator, compiler, trace generator, etc.

There are two kinds of rules describing transitions between configurations: structural rules, and computational rules. Structural rules process and organise the text of the specification in a way that fits the application of computational rules. Structural rules have no counterpart in the operational semantics; they can be seen as transformations, preserving the semantics of the text being treated, that aim at preparing and controlling the application of the computational rules. Computational rules correspond to transitions in the operational semantics and describe those changes of the configuration corresponding to computations, i.e. reduction steps.

More precisely, structural rules yield some initial content of the < k >-cells (and of some auxiliary cells) called in the sequel the loaded specification that drives the computational rules to be applied. This section starts with an overview of the Circus configuration. Then we present in sub-section 4.1 the cells that correspond to the loaded specification. These cells memorise the way the Circus specification is structured into various processes and actions. Finally, in sub-section 4.2 we explain the local configuration that corresponds to the each of these processes or actions.

Figure 3 shows an overview of the configuration we have designed for representing and processing Circus specifications. It is presented using the same syntax as accepted by the framework: in a XML style where each tag represents a configuration cell. Such cells can be nested and replicated when explicitly annotated with the attribute "multiplicity".

Due to the size of the whole structure, the content of some cells is omitted in this overview and presented later.

The top cell encapsulates the whole configuration and contains cells that handle global information, such as: the next fresh integer reference in nextid ; the map of channel names into channel types in ch; the map of set names into the actual sets in nset; the structures of loaded processes in procstrs; the set of discarded processes references in discarded ; a temporary set used to convert Circus sets into native K-Framework sets in tempset; the particular configuration of every process in procs; non-resolved initials ready to be synchronised with some other process in inits; non-consumed notifications of resolved initials in oks; and finally, the results of the treatment of the Circus specification, i.e. specification traces and symbolic traces in the spectr and tr cells.

In the sequel of this section, we give a first glimpse of the roles of these cells. This will be made more precise when presenting the transition rules between configurations in Sections 6 and 7. 

Structures of loaded processes: the procstrs cell

The content of the cell procstrs is a sub structure that represents the processes loaded from the specification text. Presented in Figure 4, the subcell procstr , which actually is a bag of subsubcells, can be replicated as many times as processes are found in the specification text. It contains a name that identifies 350 the process, stored in pmodel cell, a map of named action identifiers to action texts in pact, a map of schema names to schema texts in psch, and the complete process text, which is stored in pdef . Whenever a K-computation involves an identifier referring to any such elements, e.g., named action call, schema or process inclusion, this structure is used to retrieve the required piece of For processes, sub-processes or actions under symbolic evaluation, we manipulate individual proc structures that are subcells of the cell procs. This construction is shown in Figure 5. A proc cell can be referred as an individual environment for each element that performs K-computations. This rather complex cell keeps all the elements needed to perform the Kcomputation that corresponds to the symbolic evaluation of a process or action and all the relationship to its context, i.e. other processes or actions.

The proc cells are spawned on demand whenever a new line of K-computation with its own environment is required, e.g., concurrent components in a parallel composition, alternatives of an external choice, inclusion of an independent state-isolated process, etc. These situations will be explained when the corresponding operational semantic rules are presented, in Section 7. The references between these cells reflect the hierarchical tree structures induced by the nested organisation of the processes and actions in the Circus specification. <top>... <procs> <proc color="green" multiplicity="*"> <model> .K </model> <k>$PGM:K</k> <id>0</id> <alt>0</alt> <parent>0</parent> <env> .Map </env> <postenv> .Map </postenv> <stack> .List </stack> <sync>false</sync> <const>true</const> <temp> .K </temp> </proc> </procs> ...</top>

Figure 5: The process cell procs

A proc cell contains: in the model subcell, an identifier that references the name of the process which originated it; in k , the K-computation cell itself; in id , an integer reference that is used to globally identify the current environment; in alt, a reference to an external choice alternative execution line, if any; in parent, a reference to the environment which spawned it; in env , a map that associates variable names to symbolic values; in postenv , the same sort of map as env , but specifically for manipulation of schema post conditions; in inv , the state invariant text as written in the process specification; in stack , a stack of env environments, used for managing nested variable scopes; in sync, a boolean flag that is used to put the process evaluation on hold until an adequate synchronization of an initial (see subsection 4.3 and section 5); in const, the constraint on the symbolic values in use by the env variables; and an auxiliary cell temp, buffering the specification text before outputting it in the generated traces.

Possible initials after a configuration: the inits cell bag

The initials cell bag inits, shown in Figure 6 is a buffer of observable events or communications that are ready to be performed by an action. Its content is a subset of the set of initials as it is defined in the Circus testing theory [START_REF] Cavalcanti | Testing for refinement in circus[END_REF]. The symbolic evaluation of an action can be ready to perform several observable events: it may be the case for actions involving multiple nested parallel compositions or there may be pending synchronizations, or explicitly hidden events or communications. These complications led us to design the configuration structure described below: it makes it possible to buffer and manipulate all events or communications that are potentially observable after the configuration. One <top>... <inits> <init multiplicity="*"> <iresp> 0 </iresp> <iev> .K </iev> <from> .Set </from> <ialt> .Set </ialt> </init> </inits> ...</top> Figure 6: The process initial structures cell inits init cell holds a reference in iresp to the proc cell that is currently responsible for its management. In iev is the description of the observable synchronization event or communication that is managed. Moreover, the set from holds references to all proc cells that are standing for the outcome of such initial, i.e. the cells of the action that originated it and of all other actions that might synchronize when this initial is resolved. Besides, ialt is a set of references to alternative proc cells, i.e. the ones corresponding to actions that may be discarded as results of external choices when the initial is resolved. We use the term resolved, rather than performed, since there are no guarantees that an initial posted during the symbolic ecaluation of an action will be actually performed: it might be held infinitively in a synchronized parallel composition, or hidden by a channel hiding operation.

The resolution of an initial creates an ok notification, described in Figure 7. Each ok notification contains the event or communication actually performed and the set to of the references of all proc cells that were standing for the outcome of the resolved init. We give more details on the way synchronizations are managed during the symbolic evaluation in the next section.

Symbolic evaluation of process synchronizations

As mentioned above, the behavior modeling part of Circus is founded over similar bases as the CSP process algebra [START_REF] Hoare | Communicating sequential processes[END_REF]. This long standing and well-known modeling algebra for processes provides a powerful set of constructs to precisely specify parallel behaviors and interactions.

Although allowing the interpretation of parallel computations (threads), as exemplified in [START_REF] Rosu | K overview and simple case study[END_REF] and [S ¸AL + 13], the K-Framework does not offer predefined resources to facilitate the control of synchronization between concurrent processes. It is left to the designer interested in entering an operational semantics with concurrent aspects to define a strategy and design the required configuration structures that will guide a semantically correct parallel behavior.

In the most complete available formal presentation of the K framework [START_REF] Rosu | A rewriting-based framework for computationspreliminary version[END_REF], two examples are briefly sketched to introduce the possibility of modeling process algebra semantics: for CCS and π-Calculus. But to the best of our knowledge, there is no published (or posted) operational semantics of CSP in K.

In our context, it was essential to develop in K a correct semantic representation of the Circus concurrent features. That motivated the design of a synchronization strategy that could be embedded in the K-Framework configuration cells and manipulated respecting its single step rewrite logic rules.

Our strategy consists in organizing the references between the proc cells in a tree structure that splits hierarchically the lines of execution for critical constructions, namely: parallel composition, external choice, channel hiding and independent process inclusion. Given this tree hierarchy, it is possible to manipulate the observable events or communications that may be produced at any depth in the tree and to manage potential synchronisations or deadlocks, and hiding. We show in Figure 8 a graphical representation of the rewriting steps that build the tree structure for a simple example, which contains a parallel composition inside a channel hiding action.

Starting from the text of the main action specification, in the top level proc cell, (globally identified with the integer reference Id 0), the first step gives to the action subjected to the channel hiding operation a lower hierarchical level.

Thus a new proc cell, identified with a fresh Id 1, is spawned and noted as a subtree of proc Id 0. For convenience, we will refer to an uniquely identified proc cell as proc # n, where n is its integer reference. The text of the action of the top-level proc # 0 is rewritten into an internal syntactical construction that indicates it as a subordinated hidden action, giving the reference to its proc cell and the set of hidden channels. The second rewriting step splits both sides of the parallel composition present in the recently created proc # 1 into two fresh proc cells, proc # 2 and proc # 3, respectively for left and right side that are noted as subtrees of proc # 1. The text of the parallel action inside proc # 1 is rewritten into an internal syntactical construction that keeps as parameters the references to the new subtree proc cells and the set of channels that must be used for synchronizing the corresponding parallel actions.

When a K-computation being processed in a proc cell involves an observable event or communication, this item is never immediately added to the traces cells tr and spectr : it is posted as a potential initial in a new init cell as seen in subsection 4.3. In our example, it is the case for proc # 2 and proc # 3. Once an initial is posted, the current K-computation remains on hold by lifting the boolean flag inside its sync configuration cell. It will remain standing by until a proper resolution of the initial is reached.

We say that an initial is resolved when it matches the criteria of a resolution rule: some semantic rule that will either suppress the initial (75) or write it into the traces (87). The resolution causes an ok notification inside the oks configuration cell. Each notification is accompanied by a to cell, that contains a set of references to all proc environments waiting for the initial resolution.

A posted initial will be manipulated and delegated to the upper tree levels by forwarding rules. Following the Circus operational semantics, there are different sorts of forwarding rules for each splitting construct.

The reason for having this life-cycle for initials, namely: posting, forwarding, resolving and/or discarding, is that the presence of an observable communication/event in a trace depends on the context of the action that triggers it. In two cases, such observable communications/events may never appear in the traces of the main process, i.e., the process under analysis.

First, it may appear in OPS rules where, above the rule, there is a nonlabeled transition but, under the rule, the transition is labelled with (silent). It is the case for the OPS rules A.24, A.25 and A.27, which defines channel hiding and parallel synchronization.

The other case is when an action present in the original configuration of a transition disappears in the target configuration, as in the case of the OPS rules A.18 and A.19, which defines the behavior for external choice. As a result, observable events/communications triggered by the discarded action will never be written in the traces.

In the following, we introduce the management of initials for the Circus constructions mentioned in the two cases above, namely: channel hiding, parallel composition and external choice. Channel hiding is modeled with rules that may selectively forward initials concerning non hidden channels (74) or instantly resolve an initial from the hidden ones (75), suppressing it and spawning the respective ok notification.

The parallel composition forwarding rules will pass by any initial that is not related to the channels listed in the synchronization set (80). Otherwise, the initial will be hold until another initial, matching the synchronization, is produced by the symbolic evaluation of the action at the other side of the composition (81).

An external choice operation will indiscriminately forward the initials from both sides, but an alternative reference is marked in the alt cell of each, pointing to the proc cell in the competing side: the first resolved initial will determine which side is chosen and, consequently, the discarding of all marked alternatives.

More details about these rules and the conditions for forwarding initials to upper levels are given in Section 7.

If an initial, after all the manipulations that it may receive in the lower levels, is finally delegated to the proc # 0 environment, then it is eligible for producing some observable event or communication. However, it is not assured that this will actually occur, since an initial might reach the top-level after the discarding of all those proc cells that were matching its outcome. In that case, the initial will be just discarded. Otherwise, the observable event or communication is appended to the traces and the respective ok notification is posted.

A proc on hold by the sync flag is ready to continue its K-computation once the appropriate ok notification exists. The continuation is triggered by a rule (88), which tries to match the references of standing-by processes with references in the addressing subcell of ok notifications: once matched, a reference is removed from the ok notification, the process sync flag is released and the standing by K-computation takes place. A synchronized ok notification might be addressed to more than one proc at the same time and, for that reason, they are not discarded in this step: it would prevent the continuation of the other standing by proc. After the removal of all standing-by proc references, there is a specific structural rule dedicated to the cleaning of ok notifications with empty addressing subcell.

The two last sections have presented the defined structure for the configuration. In the two next sections, we proceed to the description of the structural rules that link the text of Circus specifications to this structure, and then of the rewrite rules that describe the transitions between configurations according to the Circus operational semantics [START_REF] Cavalcanti | Data Flow Coverage of Circus Specifications-Extended Version[END_REF].

Structural and embedding rules

To handle the text of a Circus specification, it is necessary to write rules to process the input and organize it in a way that fits the designed configuration structure. We refer to them as structural rules, and they have neither semantic effect nor counterparts in the operational semantics.

Specification processing and loading

As seen in Section 3, the syntax for the source code of a Circus specification is a sequence of Circus paragraphs, i.e., non-terminals elements of the sort CircusPar . We start with a simple rule to enforce the sequential processing of all CircusPar that are present in the source code, displayed in (34).

rule P1:CircusPar P2:CircusPars => P1 ∼>P2

The "=>" symbol is the separator between the term matching and how it should be rewritten. The "∼>" symbol is the sequential list separator for Kcomputations. After explicitly stating the processing order for the top most structure, we give the rules to deal with the sorts of CircusPars expected to be found in a specification. The following rules deal with the declaration of channels.

Remark (K-Framework rewrite rules). Rewriting into the K empty symbol, i.e. the "." dot, means that the matched content will be erased. The triple dots "...", that may be present either in the beginning or the end of a mentioned cell, means that there may be more content that are not considered in the matching and will According to rule (35), a paragraph with a channel declaration will be removed from the top of the computation cell after the addition of the name of this channel and its type (for typed channels) to the global configuration cell < ch > as a map pair, with the given channel name as key and the channel type as value. When there is no type declared, the channel name is mapped to sync, as seen in rule (36).

To deal with multiple channel declarations in a single line, we profit from the technique referred as syntax desugaring [START_REF] Rosu | K overview and simple case study[END_REF], that rewrites a complex sequence of declarations into single-lined simple declarations. This is described in rule (37).

rule channel S1:SimpleDecl, S2:SimpleDecl, M:MultiDecl => (37) channel S1 channel S2, M
For paragraphs defining named sets, i.e., declaration of uniquely identified sets that holds channel and variable names, we use a strategy that embeds a Circus set construction into the representation of sets as used natively in the K-framework. To achieve that, when there is a channel set in the top of the computation cell, we move all its elements, one by one, to the < tempset > cell, as seen in rule (38). When the set being computed is emptied, it is replaced by the temporary one, which is a pure K-framework set construction, described in rule (39). Finally, in rules (40) for channels names and (41) for variable names, the named set declaration that now utilizes a K-framework set construction is loaded into the global cell < nset >, holding a map from declared set names to the actual K sets.

Rule (42), reverses the process: when an identifier that refers to a set name is found in the top of the computation cell, that identifier is replaced by the referred set, loaded from the map in < nset >. The embedding of native K-Framework set type allows the convenient use of internal operations, such as union, intersection, difference and comparisons. Moreover, the framework provides an interface to SMT solvers, in our case, Z3 [START_REF] De | Z3: An efficient smt solver[END_REF], which is invokable each time a formula involving native types needs to be solved. Here, we rely on the heating and cooling rules of the K-Framework [RS ¸10], i.e., when present in a syntax construction, named sets are marked as strict arguments and pushed to the top of the computation cell (heating). As sets are declared under KResult category, the processed native set in the top of the K cell is plugged back to its original syntactical place (cooling).

In order to support more than one process declaration per source text, each paragraph of such syntactical construct is loaded into a structure inside the configuration cell < procstrs >. These structures keep references between the declared process name and its textual definition body, named actions, or schemas. This is achieved by rule (43), that removes a process declaration from the top of the computation cell and places it into a new < procstr > cell. The process name identifier P is kept into the < pmodel > cell and its textual process definition PD is stored into the < pdef > cell. 

.</procstrs>

To select which process will be processed in the K simulation, we added the command keyword :run in the syntax of CircusPar (cf. rule (6)). As stated in rule (44), when the :run command is presented with an identifier naming a process model that already exists in some < procstr > structure, the body PD of such process is extracted from the < pdef > to the top of the computation cell, triggering its treatment. The rule also sets the < model > configuration cell of the current proc environment to the name of the loaded model. 

.</procstr>

Once loaded in the configuration cells, the next step is to deal with the presence or absence of process paragraphs in the header of the process (cf. rules (13) and ( 14)). Such paragraphs may declare a state, some named actions and Z schemas before the main action. Rule (45) deals with a process that contains only the main anonymous action, moving this action straight to the top of the computation cell and discarding the rest of the construct.

rule <k> begin @ Pa:ParAction end => Pa ... </k> (45)

Rules ( 46) and (47) deal with processes with process paragraphs. Such rules simply establish the sequential processing of the PPars before the main action (46) and enforces the natural processing order of each process paragraph (47). 

.</procstr>

Consequently, a rule is needed that takes the named action definition from its storage and places its body into the top of the computation cell: rule (50) is triggered by the occurrence of a named action, i.e., the next computation is an identifier that refers to a valid named action. Valid means that it exists in the named action map < pact > under the < procstr > configuration of the model PModel , from the process under treatment. 

.</procstr>

Rule (51) that fetches a schema by its name is similar to the one for actions, but it also requires the preparation of a new environment for treating the decorated Z identifiers. The conditions in an operation schema, i.e., schemas that may change state or local variables, can involve variable assignments from both before and after the schema application. For that reason, the current environment env is replicated into the postenv cell, and this replica can be manipulated and compared with the original env . If the schema condition is satisfied, the replica replaces the original copy. 

Configuration maintenance

The rules presented in this subsection are designed to maintain the structures of configuration cells, performing optimizations, and cleaning those pieces that are not required anymore, such as discarded processes and their initials.

Rule (52) is designed to delete an ok notification structure when there are no more process references in the addressing set to. This is accomplished by matching the empty set (.Set) and rewriting the whole bag of cells to the empty cell bag (.Bag).

rule

(52) <oks> (<ok>... <to>.Set</to> ...</ok> => .Bag) ...</oks> Another rule, (53), deletes an init structure that became useless due to the discarding of all the processes referred in the from set. To check such property, we require the subset inclusion From ⊂ Disc, where Disc is the set of all discarded processes, registered in the discarded global configuration cell. 

rule

Operational semantic rules

Once the configuration is loaded and an action is present in the top of the computation cell, the rewriting engine is expected to proceed accordingly to the semantics of Circus: it is mandatory to keep the rewrite rules faithful to the formal operational semantics. Our implementation is based on such rules as given in [START_REF] Cavalcanti | Data Flow Coverage of Circus Specifications-Extended Version[END_REF] and recalled in Appendix A.

As usual, the operational semantics of Circus, abbreviated to OPS in the sequel, relies upon configurations and transition rules between configurations. As seen in subsection 2.2 configuration consists of three parts: a logical constraint between some symbolic variables, a state/environment definition mapping Circus variables into symbolic variables, and a continuation, i.e. the remaining Circus action. The application of an OPS rule will modify at least one of these parts. An OPS rule is defined by: a precondition, i.e. a logical expression on symbolic variables; an observable or an empty label, noted ; and two configuration patterns, for the configurations before and after the rule application.

Transposed into the K-Framework, i. e. in the configuration structure presented in Section 4, the constraint is a logical expression in the const cell, the state/environment is a map in the env cell and the remaining action is processed at the k computation cell. The rewrite rules take into consideration the current configuration cells and, if the logical precondition applies, the content of the cells is rewritten according to the patterns.

The rules presented in this section are paired with some reference to the original OPS rules that motivated them. Ideally, we would have exactly one rewrite rule in K for each OPS rule. However, due to particularities of the Kframework and the complexity of the semantics of Circus, this was not always feasible. In such cases, we report the reasons that motivated our decisions.

Internal progress

We present here the implementation of those OPS rules that does not produce observable labels, i.e., rules that guides the progress of processes while producing an label and, consequently, does not require any appending to the symbolic trace tr cell. Nevertheless, they may induce the appending of specification labels to the specification trace contained in the spectr cell.

The assignment of variables is described by the Circus OPS rule A.2. There is no precondition. A new fresh symbolic value (?W ) is assigned to the given variable identifier V and a condition (?W == E ) is appended to the constraint. This condition imposes an equality relation between the new symbolic value and the expression (E ) given in the right hand side of the assignment construct. As the syntax of variable assignment is tagged for strictness in its right side element, the value of the expression is evaluated before the treatment of the assignment itself. After this treatment, the action in the new configuration gets a Skip in place of the treated assignment.

We have two rewrite rules to accomplish this semantic behavior, due to the necessity of treating differently local and state variables. The first case is covered by rule (56), where the explicit requirement in (57) guarantees that this rule will only be applied for a variable V that is not a name in the set of keys from the state map St.

The assignment to state variables is treated by rule (58). This separation is motivated by the need of keeping the validity of the state invariant after changing the value of a state variable. After reassigning a symbolic value to a state variable, it is necessary to rewrite the state invariant into the constraint. This is The declaration and scope handling for local variables in Circus are described by OPS rule A.6, rule A.7 and rule A.8. In Circus, the precondition for a variable declaration concerns its type and name. As the current implementation does not handle type checking, the declared name is considered only. This precondition imposes V ∈ αs, i.e., the given name V for a variable is not already used in the alphabet αs. Since the parser already rejects identifiers that conflicts with syntactical tokens, the condition of the rule we introduce in (59) only checks if V is not a name of a state variable. The Circus OPS also requires every declared variable to be assigned to a fresh symbolic value, reflected in K by the use of the fresh identifier generator ?W.

OPS rule A.6 introduces the keyword let, to handle the scope of the declared variable in the remaining action. In our K-Framework implementation, we have considered that it is not necessary to use such keyword since the declared variables names are available in the environment env cell. As defined rule (59) <k> var V:Id @ A:Action => A ∼> end V ...</k> <env> Env => Env[V <-?W:Int] </env> <model> PModel:Id </model> <procstr>... <pmodel> PModel </pmodel> <pstate> St </pstate> ...</procstr> <stack> . => ListItem(Env) ... </stack> requires (notBool (V in (keys(St))))

by the original OPS rule, in rule (59) we state that the declared variable scope is restricted to the action A specified after the @ symbol. This is ensured by appending "end V" to be evaluated after the action A.

To guarantee the possibility of reusing variable names in nested scopes, a stack of environments is used and the current env configuration is pushed onto the stack cell at each new variable declaration. Once a scope ends, the previous environment is popped back into the env cell. The assignments of variables declared in the ending scope are lost. All the other assignments are kept by the updateMap operation, as shown in rule (60).

rule (60) <env>

RetEnv => updateMap(Env, removeAll(RetEnv, SetItem(V))) </env> <stack> ListItem(Env) => .List ... </stack> <spectr>... . => end V </spectr> For the sequential composition of processes, the Circus OPS includes the rule A.9 and rule A.10. The first defines the continuation of an action A1 in the left hand side of the operator while there are computations to be performed. The OPS rule A.10 defines the continuation with the right hand side action A2 once the computations in A1 finishes with a Skip. In our implementation, the described behavior is achieved by ordering the computations of two sequentially composed actions, as presented in (61). To guarantee the correct continuation after reaching Skip in the first executed action, we include rule (62). The guarded actions are defined in Circus OPS rule A.12. It states that the computation of an action A guarded by a logical condition G results in continuing the process with the action A while adding the condition specified in G to the constraint. The precondition for applying the rule requires that the constraint remains valid after adding G. Rule (65) strictly reproduces such behavior.

Remark (Guarded actions in specification traces). To write the specification text of a guard in a specification trace, we use an intermediary step that is not given here. It is available in the source code listing of the implementation. 

State and Z schema

Due to its richness and its complexity, the semantics of Z [Spi88] would deserve to be treated in a full companion project. In absence of such a project, we decided to give semantics to a subset of Z schema constructs in the K-Framework, allowing the declaration and handling of states for Circus processes. In a nutshell, we deal with Z constructs where variables and formulas are written using the K predefined types and operators.

We divide the schemas into two types: the state schemas and operation schemas. A process declaration can include a single state schema only and may contain multiple operation schemas. A state schema contains the declaration of state variables and an invariant, i.e. a logical expression involving these variables that should remain always valid throughout the evolution of the process configuration. Operation schemas define state changes via pre-and post-conditions. These are logical expressions on state variables and input/output schema variables (that may reference any variable name within the current environment). Variables are possibly decorated in the post-condition: they describe the effect of the operation on these variables.

The variables declared in the state schema are treated by rule (66), processing each name V in the list of multiple declarations M. The variable names and types are inserted both into the state and env maps. Since all Circus variables are arbitrarily initialised, a fresh symbolic value ?W is assigned to each declared variable. Once there are no more variable declarations to be processed in the declaration part of the schema, rule (67) is applied, storing the state invariant expression B into the inv cell and scheduling the evaluation of the invariant for the next computation step. Rule (68) triggers the evaluation of the state invariant using the current env variable assignment. If the invariant is valid within the context of the constraint in const, the rule is applied, the invariant expression is added to the constraint and the process continues. If the invariant is invalidated, no rule applies.

rule

rule

(68) <k> state B:Bool => . ...</k> <const> Const => Const andBool B </const> requires Const andBool B Note that rule (58) forces the computation of the invariant after the treatment of assignments to state variables, rule (67) here for operations schema.

The behavior induced by a reference to an operation schema inside a Circus action is given by the OPS rule A.1. In our implementation, once ready for computation, the schema is loaded according to the structural rule (51). Then, rewrite rule (69) begins a sequence of steps by processing the declaration part: each variable gets a fresh symbolic value into its postenv cell map entry. This is necessary for handling decorated identifiers in logical expressions involved in post-conditions. Similarly as ensured by the rewrite rule (67), when the variable declaration part of an operation schema is emptied, rule (70) takes place and puts the schema logical expression B to be processed in the ¡k¿ cell. The computation is triggered by the internal keyword schema followed by the logical expression. const is valid, the rule is applied and all the involved configuration elements are updated. The OPS rule A.3 of Circus operational semantics defines Skip as the continuation of a successful operation schema application. In rule (71), we force the reevaluation of the state invariant before Skip.

Observable progress

In this subsection we present the rules that model the synchronization strategy described in Section 5. Such rules are designed to post, forward and resolve the init structures that represents the potential initials after an action.

We refrain from presenting all the rules when subtle structural differences are necessary to handle initials for events, inputs and outputs. In such cases, only the rule for events is presented and further details can be obtained consulting the complete listing of rules.

Initial posting

The posting of an initial is necessary when the current computation involves a communication or an event. Rule (72) deals with the case of an event, following the Circus OPS rule A.4 for outputs, just omitting the value to be outputted. (actually, there is no specific rule for the case of event synchronisation in the version of the Circus operational semantics we use).

When an identifier C referring to a channel name is in the top of the computation cell, i.e., an event on channel C is required, the sync flag is lifted and an initial is created inside the bag inits. This new initial refers in cell iresp to the proc environment currently responsible for it, namely PId. It keeps in iev the name of the potential event, namely C. The set of subscriber processes is in from, initialized by the reference to the current proc environment, and the set of references to alternatives, in ialt, is initialized with the empty set. The transition annotation is used because the order of unsynchronized communications is non-deterministic.

The rewriting engine should be MC: what do you mean? aware of potential different continuations that may arise from the non-determinism after the application of rule (72).

After a rule for posting the initial, we present the forwarding rules sketched in Section 5, first for channel hiding, then for parallel composition, and finally for external choice.

Channel hiding

The behavior induced by hiding observable communications of some channels is defined in Circus OPS rules A.26, A.27 and A.28. To correctly reproduce this behavior, we use the tree structure presented in Section 5: when a channel hiding operator is applied to an action A, a child proc environment is spawned to continue action A.

As shown in rule (73), the new environment gets a copy of all the semantically relevant configuration cells: env , model and const; a fresh integer reference is generated by incrementing the integer inside the global nextid cell; the reference to the parent proc environment is kept in the cell parent. The parent computation cell is rewritten into the internal construction hide with two parameters: the child proc environment reference (L +Int 1) and the set CS of channels to be hidden.

rule

(73) <k>A:Action /H CS:Set => hide (L +Int 1) CS ... </k> <nextid> L => L +Int 1 </nextid> <id> ParId </id> <model> PModel:Id </model> <env> Env </env> <const> Const </const> (.Bag => <proc>... <k> A </k> <model> PModel </model> <parent> ParId </parent> <id> (L +Int 1) </id> <alt> (L +Int 1) </alt> <env> Env </env> <const> Const </const> ...</proc>)

The forwarding of all the initials posted by the action in the child proc environment will necessarily pass through the responsibility of the parent environment for reaching upper levels and, if succeeding to reach the top level, being appended to the traces. The hierarchical structure allows the design of rewrite rules to filter the initials on their way to the top level according to the OPS rules A.26 and A.27.

The case covered by OPS rule A.26 is the occurrence of an event or communication that does not involve a hidden channel, i.e., a channel that is not an element of the hiding channel set CS. As shown in rewrite rule (74), the forwarding is performed by replacing the iresp reference of the matched init from the child CId to the parent PId.

OPS rule A.27 covers the case where the involved channel is a member of the hiding set. No observable label is produced, but the evaluation of the action proceeds. Thus, in rule (75) the initial is resolved before reaching the top level environment, therefore canceling its potential writing into the traces. This removes the matched init cell and spawns the corresponding ok notification, allowing the action to continue as if the initial was actually written into the traces. The rewrite rule contains some additional conditions to avoid posting ok notifications to discarded processes. The finalization of a hidden action is defined in OPS rule A.28: when the hidden action reaches a Skip, this closes the scope of the hidding. Thus the hiding operator and channel set are removed from the action text, which is reduced to a single Skip. This is ensured by rule (76), where the semantically relevant configuration cells are copied from the child environment under finalization back 865 to the parent for continuing the remaining evaluations.

Parallel composition

The parallel composition operator is defined by the Circus OPS rules A.20 to A.25. The evaluation of such a structure begins with the spawning of two parallel actions A1 and A2 inside new children proc environments: each one will We designed the rewrite rule (77) to match OPS rule A.20. The context of each child proc environment replicates the semantically relevant configuration cells from the parent proc. The computation cell of the parent is rewritten, starting with the internal keyword par, followed by: the fresh references to the left (L +Int 1) and right (L +Int 2) child proc environments, the set CSet of synchronization channels, two disjoint sets X1 and X2 of variable names to handle the parallel assignment of variables.

We also provide two complementary structural rules: rule (78) accepts the syntax for parallel composition with no parallel state writing; and rule (79) transforms the syntax of an interleaving in a parallel composition with no synchronizations. Once spawned, both actions are evualated independently until the posting of an initial occurs. Forwarding of initials inside a parallel composition takes into consideration the synchronization of the concurrent actions when there are events or communications over channels in the CSet synchronization set.

Initials involving a channel name C that is not in CSet are forwarded according to the OPS rules A.22 and A.23, i.e., they are forwarded immediately. Since we do not discriminate which side of the parallel composition is treated, only one rewrite rule is necessary for defining the behavior of both OPS rules. Rule (80) matches a proc environment CId that is a child of a parallel composition environment PId and has an initial that respects the condition notBool (C in CSet). Once matched, the rule forwards it, rewriting the responsible iresp from the child to the parent (CId => PId). For initials over channel names in the synchronization set, the forwarding is postponed until there is another initial, posted by the environment at the opposite side of the parallel composition, configuring one of the synchronization behaviors as defined in OPS rulesA.24 or A.25.

Rule (81) handles the forwarding of two synchronized initials: it matches two children environment, the left side LId and the right side RId; a parent parallel composition proc environment PId; and two initials, one for each child proc. The two initials involved in a synchronization are merged into a single one that will carry in its from and alt sets all the references to the standing by environments from both. The initial carrying all the references is forwarded and the other is removed. An input/output synchronization, as defined in OPS rule A.24, establishes the communication of a value between the two sides of a parallel composition. Such cases are treated by rule (82). We omit the proc environment matching part, since it is identical to rule (81). The difference is the explicit requirement of matching an input value with an output value over the same synchronized 910 channel. The initials are merged within the output communication, since the output label is the correct observable behavior accordingly to the Circus OPS. 

External choice

Starting an external choice, as defined in the OPS rule A.13, is similar to starting a parallel composition: the Circus process is split into two actions and, as given in OPS rules A.16 and A.17, they can proceed until an initial is posted. Rule (84) 925 implements the behavior of OPS rule A.13, spawning two proc environments to evaluate each action, and rewriting the computation cell into the internal keyword choice followed by a set of two elements containing the fresh references to the spawned environments. Actually, the Circus OPS rules A.16 and A.17 do not require an explicit rewrite rule, since they deal with internal progress, and As stated by OPS rule A.18 and rule A.19, once an observable event or communication is performable at one of sides of the external choice, the other side is no more considered. The Circus process continues with the observable event or communication and its continuation. To achieve such a behavior, the forwarding of initials inside an external choice is handled by rule (85). Initials are forwarded as soon as they are posted by one of the sides. For each forwarded initial, we mark in the set alt of alternatives the reference to the proc environment in the other side of the choice. When an initial with a non-empty set of alternatives is resolved, all proc environments referred in the set are discarded and only the The finalization of an external choice is given by the OPS rules A.14 and A.15. When one of the choice sides reaches its final Skip, the external choice ends, and the Circus process continues with the assignments and constraint from the successfully finished side. By using the transition annotation, we capture 

Initial resolution

As explained in Section 5, the resolution of an initial is the end of its life-cycle. It is removed from the set of initials and two consequences may follow: the appending of its content to the traces and the generation of an ok notification to allow the continuation of proc environments affected by this initial.

The resolution rewrite rules are triggered in two cases. The first one is when an initial is embedded in the scope of a hiding operation. This case is treated in rule (75). The other one is when an initial has reached the top level, i.e. its iresp sub-cell references the proc Id 0 environment. It is treated in rule (87), which ensures the removal of the init, the appending of the event iev to the trace tr and specification trace spectr and, finally, the spawning of the ok notification, addressed to all the proc environments listed in the set from of the resolving init. Extra precautions are taken to avoid the resolution of an initial that concerns only discarded processes, such cases are treated by the structural rule in (53). When an ok notification is available and addressed to a standing-by proc environment, i.e., holding true in its sync flag sub-cell, rule (88) is triggered. It matches such standing-by proc PId referenced in an ok structure and its event oev with the proc current computation. As result, the current computation 965 is concluded and the sync flag is set to false, allowing the continuation of the remaining computations in proc. The reference PId is also removed from the to set of the ok notification. The notification itself remains available to match possible other proc environments in the remaining references. When the to set becomes empty, the structural rule in (52) removes the ok structure from the 

rule

. </oks>

This section presents some examples of Circus specifications that we used for checking the resulting traces from our K-Framework implementation against the ones expected following the formal operational semantics.

The first example, shown in Figure 9, specifies a Circus process containing in the main anonymous action a parallel composition with a defined synchronization set and two concurrent external choices. The initials of events from channels that are not elements of the synchronization set are forwarded as soon as they are posted. The non-deterministic search finds all the possible solutions, including the partial ones, i.e., traces which do not reach the final Skip. channel a1,a2,a3,b1,b2,b3,c1,c2 channelset SyncSet == {|a1,b1|} In Figure 13 we show a specification that exercises the concurrent assignment to state variables. The main action begins by assigning 0 to all the three variable names. Then it splits into two parallel actions: the left part is allowed to write to x and the right part is allowed to write to z. The left and right parts assigns, 995 respectively, 1 and 2 to all the three variable names. The parallel composition finishes with the assignments and the main action continues communicating the values of the three variables through the channel out.

process proc3 ^= begin @ ((b2 -> b3 -> Skip) [] (a1 -> a2 -> a3 -> Skip)) [|SyncSet|] ((c1 -> b1 -> Skip) [] (c2 -> a1 -> Skip)) end
values of x, y and z, respectively, 1, 2 and 0. It means that x and y were changed by the left and right parts of the parallel composition while z remained with its original assignment. The output is given by symbolic values that are referenced in the constraint Const. In this work, we have established a set of rewrite rules within the K-Framework, which automates the behavior of the transition system defined by the formal operational semantics of Circus. We also embedded a subset of the operational semantics of the Circus specification traces.

The current result is an executable interpreter, which accepts an input specification text and enumerate its constrained symbolic traces and specification traces. Presently, the tool is the first symbolic specification traces generator for the Circus language.

Beyond providing interpreters based on formal semantics, the K-Framework has proven to be usable for other static analysis and state-exploration purposes: once introduced the rewrite rules of the operational semantics, it is possible to extend the configuration and the structural rules in order to develop a wide class of tools. Pursuing the original motivation of our work, as described in [START_REF] Alberto | Formal mutation testing for circus[END_REF], we plan to exploit the symbolic trace generators for the development of a test platform for Circus specification. With this goal in mind, we have plans to work on guided trace generation, aiming at ensuring the pertinence of a trace set with respect to a testing criterion (for instance, the coverage of mutations in a specification text).

We also plan to alleviate some current limitations of the tool: covering the whole specification traces semantics, handling multivalued communications, and accepting Z schema expressions. Moreover, the current version of the implementation does not includes type checking, which is easily supported by the K-Framework. This is another considered extension.

Most of the rewrite rules are very close to their counterparts in the operational semantics. Nevertheless, some adaptations were needed and they complicate the establishment of the correctness of the implementation. Clearly, some proofs need to be conducted.

When dealing with Circus, parts of CSP and Z semantics were introduced in the rule set. It would be an interesting exercise to implement the whole semantics for both specification languages in the K-Framework. And more generally, we believe that this piece of work brings some insights to the automation of process algebra operational semantics in the K-Framework. The above rule uses a new parallel construct that keeps track of the new input variable declared and the new state obtained as a consequence. It is used to ensure that, as required here, all transitions have a single label, and the label contains a guard, a communication, or an action. The next rule ensures that in the next step of the evaluation of the parallelism, the variable declaration and state change are recorded. This concern was not present in [START_REF] Cavalcanti | Specification Coverage for Testing in Circus[END_REF]. Above, we assume that, if l is not a communication, then chan l is some special channel that does not belong to any synchronisation set cs.

  syntax CircusSpec ::= CircusPars (1) syntax CircusPars ::= CircusPar | CircusPar CircusPars

A

  process paragraph PPar (14) contains either a Z paragraph ZParagraph (16) or a named action declaration. syntax PPar ::= ZParagraph | Id "^=" Action (14) syntax PPars ::= PPar | PPar PPars (15)
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 3 Figure 3: Overview of the configuration
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 4 Figure 4: The process textual structures cell procstrs

  Figure 7: The process initial notification structures cell oks
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 8 Figure 8: Sample graphical representation of a synchronization tree

  rule <k> channel C:Id : Type:Id => . ...</k> (35) <ch> ... .Map => C |-> Type ...</ch> rule <k> channel C:Id => . ...</k> (36) <ch> ... .Map => C |-> "sync" ...</ch> remain unchanged after the rewrite step. The "| ->" symbol is the constructor of map pairs.

  rule <k> {| Xi:Id, Xs:CommaIds |} => {| Xs |} ... </k> (38) <tempset> ... . => SetItem(Xi) </tempset> rule <k> {| .CommaIds |} => TempSet ... </k> (39) <tempset> TempSet => .Set </tempset>

  rule <k>chanset CSName:Id == CSet:Set => . ... </k> (40) <nset>... .Map => CSName |-> CSet </nset> rule <k>nameset NSName:Id == NSet:Set => . ... </k> (41) <nset>... .Map => NSName |-> NSet </nset> rule <k>NSetId:Id => CSet ...</k> (42) <nset>... NSetId |-> CSet:Set ...</nset> Remark (Strictness).

rule ( 43 )

 43 <k> process P:Id ^= PD:ProcDef => . ...</k> <procstrs>... (.Bag => <procstr>... <pmodel> P </pmodel> <pdef> PD </pdef> ...</procstr>) ..

  rule <k> :run ProcId:Id => PD ... </k> (44) <model> _ => ProcId </model> <procstr>... <pmodel> ProcId </pmodel> <pdef> PD </pdef> ..

  rule <k> begin P:PPars @ A:ParAction end => P ∼> A ... </k> (46) rule P1:PPar P2:PPars => P1 ∼> P2 (47) Rule (48) deals with the declaration of a named action in a process paragraph. It removes the declaration from the computation cell and inserts the action body into the < pact > map of the correct < procstr > structure, using the model of the process and the name of the action as references. Similarly, rule (49) describes how the declared Z schemas are processed and loaded. rule (48) <k>N:Id ^= A:Action => . ... </k> <model> PModel:Id </model> <procstr>... <pmodel> PModel </pmodel> <pact> LMap => LMap[N <-A] </pact> ...</procstr> rule (49) <k> N:Id == S:SchemaExp => . ... </k> <model> PModel:Id </model> <procstr>... <pmodel> PModel </pmodel> <psch> LMap => LMap[N <-S] </psch> ..

  <k> A:Id => (B) ...</k> <model> PModel:Id </model> <procstr>... <pmodel> PModel </pmodel> <pact>... A |-> B ...</pact> ..

rule ( 51 )

 51 <k> A:Id => B ...</k> <model> PModel:Id </model> <procstr>... <pmodel> PModel </pmodel> <psch>... A |-> B ...</psch> ...</procstr> <env> Env </env> <postenv> _ => Env </postenv>

rule ( 61 )

 61 <k> A1:Action ; A2:Action => A1 ∼> A2 ... </k> rule (62) <k> Skip ∼> A:Action => A ... </k> The behavior of the internal choice construction is given in Circus OPS rule A.11, consisting in two parts: the process unconditionally behaves as the left hand side action or the right hand side action of the operator. This choice is made non-deterministically and, for that reason, the rules in (63) and (64) are tagged with the [transition] annotation. When a transition is specified, the rewriting engine marks the current step for backtracking when searching for alternative executions [S ¸AL + 13]. rule (63) <k> A1:Action |-| A2:Action => A1 ... </k> [transition] rule (64) <k> A1:Action |-| A2:Action => A2 ... </k> [transition]

rule ( 65 )

 65 <k> G:Bool & A:Action => A ... </k> <const> Const => Const andBool G </const> requires Const andBool G

rule ( 69 )

 69 <k> [ (V:Id , M:MultiDecl => M) | B:BoolExp ] ...</k> <postenv> Postenv => Postenv[V <-?W:Int] </postenv>

  rule (70) <k> [ .MultiDecl | B:BoolExp ] => schema B...</k> rule (71) <k> schema B => state Inv ∼> Skip ...</k> <const> Const => Const andBool B </const> <env> _ => PostEnv </env> <postenv> PostEnv => .Map </postenv> <model> PModel:Id </model> <procstr>... <pmodel> PModel </pmodel> <pinv> Inv </pinv> ...</procstr> requires Const andBool B Rule (71) defines the evaluation of the schema logical expression B in the context of the current environment env and the post-condition environment in postenv . If the conjunction of the condition with the current constraint

  rule (72) <k> C:Id ... </k> <sync> false => true </sync> <id>PId:Int</id> <ch> ... C |-> _ ... </ch> <inits>... .Bag => <init> <iresp>PId</iresp> <iev>C</iev> <from>SetItem(PId)</from> <ialt> .Set </ialt> </init> </inits> [transition]

  [|CS:Set|] A2:Action => A1:Action [|.Set|CS|.Set|] A2:Action ... </k> [structural] rule (79) <k> A1:Action ||| A2:Action => A1:Action [|.Set|] A2:Action ... </k> [structural]

  <k> C:Id => . ... </k> <sync> true => false </sync> <id>PId:Int</id> <oks>... <ok> <oev>C:Id</oev> <to>... SetItem(PId) => .Set ...</to> </ok> ..

Figure 9 :

 9 Figure 9: Synchronization test specification

Figure 10 :

 10 Figure 10: Synchronization test output result

Figure 16 :Figure 18 :

 1618 Figure 14: Parallel state assignment output result

(d

  c1 | s1 |= A1) -→ (c3 | s3 |= A3) c1 | s1 • A1) (loc c2 | s2 • A2) c3 | s3 • A3) (loc c2 | s2 • A2) s2 |= A2) -→ (c3 | s3 |= A3) c1 | s1 • A1) (loc c2 | s2 • A2) c1 | s1 • A1) (loc c3 | s3 • A3) s1 |= A1) l -→ (c3 | s3 |= A3) l = (c | s |= (loc c1 | s1 • A1) (loc c2 | s2 • A2)) l -→ (c3 | s3 |= A3) (A.18) 1150 (c2 | s2 |= A2) l -→ (c3 | s3 |= A3) l = (c | s |= (loc c1 | s1 • A1) (loc c2 | s2 • A2)) l -→ (c3 | s3 |= A3) (A.19) c (c | s |= A1 x1 | cs | x2 A2) -→   c | s |= (par s | x1 • A1) cs (par s | x2 • A2) s1 | x1 • Skip) cs (par s2 | x2 • Skip) c | (∃ x 2 • s1) ∧ (∃ x 1 • s2) |= Skip) (A.21) (c | s1 |= A1) l -→ (c3 | s3 |= A3) l = ∨ chan l ∈ cs s1 | x1 • A1) cs (par s2 | x2 • A2) s3 | x1 • A3) cs (par s2 | x2 • A2) s2 |= A2) l -→ (c3 | s3 |= A3) l = ∨ chan l ∈ cs s1 | x1 • A1) cs (par s2 | x2 • A2) s1 | x1 • A1) cs (par s3 | x2 • A3) s1 |= A1) d?w1 -→ (c3 | s3 |= A3) ∧ (c | s2 |= A2) d!w2 -→ (c4 | s4 |= A4) ∨ (c | s1 |= A1) d!w1 -→ (c3 | s3 |= A3) ∧ (c | s2 |= A2) d?w2 -→ (c4 | s4 |= A4) ∨ (c | s1 |= A1) d!w1 -→ (c3 | s3 |= A3) ∧ (c | s2 |= A2) d!w2 -→ (c4 | s4 |= A4) ∈ cs c 3 ∧ c 4 ∧ w 1 = w 2 s1 | x1 • A1) cs (par s2 | x2 • A2) ∧ c4 ∧ w1 = w2 | s |=   (par s3 | x1 • A3) cs (par s4 | x2 • A4) s1 |= A1) d?w1 -→ (c3 | s3 |= A3) (c | s2 |= A2) d?w2 -→ (c4 | s4 |= A4) d ∈ cs c 3 ∧ c 4 ∧ w 1 = w 2 s1 | x1 • A1) cs (par s2 | x2 • A2) ∧ c4 ∧ w1 = w2 | s |=   (par s3 | x1 • A3) cs (par s4 | x2 • A4) (c | s; end v, y |= A1) d?a =⇒ P (c3 | s3 |= A3) (c | s; end v, x |= A2) d!e =⇒ P (c4 | s4 |= A4) d ∈ cs c 3 ∧ c 4 ∧ ∃ w 0 • (s 3 ; (w 0 = a)) ⇔ (s 4 ; (w 0 = e)) (c | s |= (spar v | x | y | x1 := z1 • A1) cs (spar v | y | x | x2 := z2 • A2)) ∧ c4 ∧ ∃w0 • (s3; (w0 = a)) ⇔ (s4; (w0 = e)) | s |=   (spar v | x a | y | x1 := z1 • A3) cs | var a := e | s3 ∧ s4 ∧ s; end x, y (spar v | y | x a | x2 := z1 • A4)

  v | x | y | x1 := z1 • A1) cs | var a := e | s1 (spar v | y | x | x2 := z2 • A2) s1 |= (spar v | x | y | x1 := z1 • A1) cs (spar v | y | x | x2 := z2 • A2)) (B.15) 1185Rules similar to those above for parallelism are needed for external choice.

(

  c1 | s1 |= A1) l =⇒ P (c2 | s2 |= A2) chan l ∈ cs (c1 | s1 |= A1 \ cs) l =⇒ P (c2 | s2 |= A2 \ cs) (B.16)

  The rule that removes the proc environments of discarded processes is shown in (54). It requires the matching of the process reference PId with an element of the set inside the discarded cell.It is possible that a discarded process leave children environments. For such cases, rule (55) performs the removal of these orphans proc environment and add the reference of the removed orphan to the set of discarded processes.

		(53)
	<discarded>Disc</discarded>	
	<inits>...	
	(<init>... <from> From </from> ...</init> => .Bag)	
	...</inits>	
	requires (From <=Set Disc)	
	rule	(54)
	<discarded> ... SetItem(PId) ... </discarded>	
	<procs>...	
	<proc>...	
	<id>PId</id>	
	...</proc> => .Bag	
	...</procs>	
	rule	(55)
	<discarded>	
	Disc SetItem(PId:Int) => SetItem(PId) Disc SetItem(Orphan)	
	</discarded>	
	<procs>...	
	<proc>...	
	<id>Orphan:Int</id>	
	<parent>PId</parent>	
	...</proc> => .Bag	
	...</procs>	

  adding these conditions and, relying on SMT optimizations, to remove the old clauses that are no more required in the configuration. To trigger this extra step, we insert the construction state Inv in the resulting action before the Skip originally required by the OPS rule A.2. The computation triggered by this auxiliary construction is further described within the rules concerning state evaluations (rules (68) and (67)).

	rule	(56)
	<k> V:Id := E:Int => Skip ... </k>	
	<model> PModel:Id </model>	
	<procstr>...	
	<pmodel> PModel </pmodel>	
	<pstate> St </pstate>	
	...</procstr>	
	<env> Env => Env[V <-?W:Int] </env>	
	<const> Const => Const andBool (?W ==Int E) </const>	
	<spectr>... . => V := E </spectr>	
	requires (notBool (V in (keys(St))))	(57)
	simply achieved by rule	(58)
	<k> V := E:Int => state Inv ∼> Skip ... </k>	
	<model> PModel:Id </model>	
	<procstr>...	
	<pmodel> PModel </pmodel>	
	<pstate> ... V |-> _ ... </pstate>	
	<pinv> Inv:BoolExp </pinv>	
	...</procstr>	
	<env>... V |-> (_ => ?W:Int) ...</env>	
	<const> Const => Const andBool (?W ==Int E) </const>	
	<spectr>... . => V := E </spectr>	

  The finalization of a parallel composition is given in the OPS rule A.21. When both parallel actions reach their final Skip, the whole parallel composition continues as a single Skip and the variable assignments performed in the parallel 915 branches are merged accordingly to the name sets X1 and X2. Only assignments made in the left (resp. right) side to variable names listed in X1 (resp. X2) are kept.Rule (83) performs this step, removing the two finished children environments and merging both assignment maps in the env cells into the parent proc

	rule rule	(82) (83)
	(...) (<proc>...	
	<inits>... <id>LId:Int</id>	
	<init>... <k> Skip </k>	
	<iresp>LId => PId</iresp> <parent>PId:Int</parent>	
	<iev>C:Id ! E:Exp</iev> <const> LConst </const>	
	<ialt> LAlt => LAlt RAlt </ialt> <env> LEnv </env>	
	<from> LFrom => LFrom RFrom </from> ...</proc> => .Bag )	
	...</init> (<proc>...	
	(<init>... <id>RId:Int</id>	
	<iresp>RId</iresp> <k> Skip </k>	
	<iev>C:Id ? _</iev> <parent>PId:Int</parent>	
	<ialt>RAlt</ialt> <const> RConst </const>	
	<from>RFrom</from> <env> REnv </env>	
	... </init> => .Bag) ...</proc> => .Bag )	
	... </inits> <proc>...	
	requires (C in CSet) <id>PId</id>	
	<const> Const =>	
	Const andBool LConst andBool RConst	
	</const>	
	<env> Env =>	
	updateMap(Env,	
	removeAll(LEnv, keys(LEnv) -Set X1)	
	removeAll(REnv, keys(REnv) -Set X2)	
	)	
	</env>	
	<k> par ListItem(LId) ListItem(RId),	
	CSet:Set, X1:Set, X2:Set => Skip ...</k>	
	...</proc>	

environment, taking into consideration the name sets X1 and X2.

chosen side of each external choice gets an ok notification to proceed.
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The generated output can be seem in Figure 14, showing a result accordingly to the expected: the sequence of the three out communications containing the that parallel composes Chrono and Ticker , setting the synchronization channels and hiding the output of the channel tick . The line :run Clock defines Clock as the process to be evaluated. We 1020 shown the resulting output in Figure 18, that is correct in consideration to the operational semantics analysis presented in [START_REF] Alberto | Formal mutation testing for circus[END_REF].

A Operational semantics: table of selected transition rules

B Specification-oriented transition system: labels and rules

The syntax of the labels of specification traces is given below, followed by the transition rules.