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Abstract—The new High Dynamic Range (HDR) technologies
intend to increase the immersiveness and quality of experience
of the observers thanks to much larger luminance and contrast
characteristics. This increase of the amount of information
requires the development of new sophisticated compression algo-
rithms. Moreover, well-known objective quality metrics designed
for Low Dynamic Range (LDR) systems may not be directly
used for assessing HDR videos. To address this issue, several
different ways have been proposed. However, their performance
and robustness in the context of the most recent HDR com-
pression software solutions need to be assessed and validated on
various types of content. In this paper, four objective metrics
are benchmarked from data obtained in a new subjective test
conducted on various HDR video sequences.

I. INTRODUCTION

High Dynamic Range (HDR) Imaging attempts to capture

and reproduce the exact luminance values of the real scene.

That enables us to maintain all the details which would be

lost in underexposed or overexposed areas if a classical Low

Dynamic range (LDR) imaging system was used. However,

together with the obvious advantages brought by the HDR

technology such as more realistic scene reproduction, higher

quality of experience (QoE) of the observers, more space for

post-processing, etc., it also brings several drawbacks. One of

these is the amount of information necessary for storing the

HDR images and videos. The estimated ratio between the file

size of a LDR and an HDR image is about 1:4 [1].

The development of sophisticated compression algorithms

for HDR videos is therefore essential. Currently, a lot of effort

has been dedicated to this topic and different schemes for

HDR compression have been proposed in order to address

the augmentation of information, the augmentation of contrast,

the backward compatibility with existing schemes, etc., As

a matter of fact, any new video compression technology

possibly introduces new artifacts and distortions which brings

the need to evaluate their impact on the video quality. This can

be done either subjectively or objectively. For the objective

quality assessment mainly full-reference objective metrics are

used. These metrics are designed to predict video quality by

comparing the original video signal against the encoded video

signal. In order to address the new possible artifacts, it is

necessary to evaluate the performance and the robustness of

these metrics in the recent HDR compression scenarios.

The goal of this study is to benchmark the existing objective

metrics for video quality and, more specifically, evaluate their

robustness in one of the most recent HDR compression solu-

tions. The rest of this paper is organized as follows: Section II

describes some previous work on the performance of objective

metrics for HDR video quality assessment; Section III presents

the subjective experiment; subjective results are analyzed and

metrics are benchmarked in Section IV; conclusion ends the

paper in Section V.

II. RELATED WORKS

There are two main approaches in full-reference objective

HDR image and video quality assessment. In the first one,

the metrics are applied on the physical luminance directly.

This is in parallel with processing in human visual system

(HVS), thus this approach is mostly called HVS-based. The

main representatives come from the work of Daly [2] and his

Visual Difference Predictor (VDP). The concept was adapted

for HDR images by Mantiuk et al. [3] and later on revised

in [4] and [5]. The second possibility is to work with the values

close to the perceived luminance rather than the physical

one. The advantage is that standard full-reference image/video

quality metrics can be used. The first HDR metric focusing

directly on video quality, HDR-VQM, proposed by Narwaria

et al. [6] belongs to this category. The approach is dependent

on what function is used to obtain the perceived luminance

values. One popular approach is employing the logarithmic

function with is in line with Weber’s law. More sophisticated

function, resulting in perceptually uniform (PU) values, was

proposed by Aydin et al. [7]. It should be noted that no matter

which of the approaches is selected, it is of crucial importance

to calibrate the metrics according to the truly displayed values

depending on the parameters of the screen.

Several studies have attempted to determine the abilities of

the metrics regarding HDR compression algorithms. Hanhart

et al. [8] compared 13 metrics on still images compressed

with backwards-compatible JPEG XT profile A algorithm. The

best performance was achieved by HDR-VDP-2 [4]. Valenzise



et al. [9] showed in a similar study that LDR metrics can

perform as well as complicated HVS-based algorithms when

the mapping to perceived luminance is performed. Recently,

Hanhart et al. compared the performance of 35 objective

metrics on 240 compressed HDR images [10]. They showed

that HDR-VQM, HDR-VDP-2 and MS-SSIM computed in the

PU space are the most reliable predictors of perceived quality.

Metrics performance on HDR video compression has been

studied by Azimi et al. [11]. Here, the best performing method

was also HDR-VDP-2 (if only compression is considered). The

same result was obtained also by Řeřábek et al. [12]. First

experiment including HDR-VQM performed by its authors

in [6] showed its superiority over HDR-VDP-2. In [13], the

performance of HDR-VQM, HDR-VDP-2.2 [5], as well as

LDR metrics SSIM [14] and VIF [15] (after the PU mapping)

are very similar. In [16], the authors compared the classifica-

tion errors of various different metrics. In terms of objective

measures, PSNR and HDR-VDP-2 can reliably differentiate

results between pair comparisons. However, the metric HDR-

VQM shows low performance and cannot distinguish differ-

ence of quality.

III. SUBJECTIVE EXPERIMENT

A. Dataset

The dataset used for this subjective test consists of HD

resolution HDR video sequences from the MPEG Call for

Evidence for HDR and WCG video coding [17] and from

EBU Zurich Athletics 20141. The length of video sequences

was between 4 and 18 seconds. The spatial and temporal

information of the HDR reference streams is presented Figure

2 (SI and TI are calculated as described in [18]). Sources 1 to

5 correspond to EBU streams and sources 6 to 15 correspond

to MPEG ones (Figure 1).

B. Compression scenario

We used the test model HEVC Main 10 Profile with

six fixed quantization parameters (QP) to compress videos.

The coding options are detailed in Table I. The used QP

values were 20, 24, 28, 32, 36 and 40 for each content. All

video sequences were non-linearly quantized (with PQ EOTF)

before compression. Inverse quantization was then applied to

transform uncompressed streams to linear RGB OpenEXR

format.

C. Test environment

The video sequences were displayed on the SIM2 Solar47

HDR dispay which has a maximum displayable luminance of

4000 cd/m2. The viewing distance was set to three times the

height of the screen, i.e., approximately 178 cm.

The experiments was conducted in a test environment

equipped with a controlled lighting system of a 6500 K color

temperature which fulfills the standard test condition according

to ITU-R BT.500 [19].

1https://tech.ebu.ch/testsequences/zurich athletics

Coding options Chosen parameters

Encoder Version HM 10.0

Profile Main

Level 4.1

Reference Frames 4

R/D Optimization On

Motion Estimation TZ search

Search Range 64

GOP 8

Hierarchical Encoding On

Temporal Levels 4 Intra Period 48 pictures

Deblocking Filter On

Coding Unit Size/Depth 64/4

Transform Unit Size (Min/Max) 4/32

TransformSkip On

TransformSkipFast On

Hadamard ME Enabled On

Asymmetric Motion Partitioning (AMP) On

Fast Encoding On

Fast Merge Decision On

Sample adaptive offset (SAO) 1

Rate Control Off

Internal Bit Depth 10

TABLE I
HEVC CODING OPTIONS.

D. Test methodology

For rating the stimuli, the absolute category rating with

hidden reference (ACR-HR) method was used [18]. It is

based on rating sequences independently on a 5-point category

scale from 5 (Excellent) to 1 (Bad). The hidden reference

condition means that the present test procedure includes a

reference (undistorted) version of each source sequence shown

as any other test sequence. This methodology allows the

direct computation of mean opinion scores (MOS) as well as

differential quality score (DMOS) between each test sequence

and its corresponding hidden reference. This method is more

suitable here because it evaluates perceived quality more than

perceived fidelity.

E. Participants

25 remunerated viewers participated in this subjective ex-

periment (13 female and 12 male), aged between 19 and 43

(mean= 26.56 ± 7.39SD). All are non-expert in subjective

experiment, image processing or HDR related fields. All

participants have either normal or corrected-to-normal visual

acuity which was assured prior to this experiment with a

Monoyer chart. Ishihara color plates were used to test color

vision. All of the 25 viewers passed the pre-experiment vision

check.

IV. RESULTS

A. Analysis of subjective results

A post-experiment screening of these subjects was em-

ployed to reject any outliers in accordance with the ITU 500



Fig. 1. Tone-mapped and resized versions of the first frames of the 15 reference HDR sources used in the experiment.

Fig. 2. Spatial and temporal information.

Fig. 3. Subjective scores distribution.

recommandation [19]. None of them was rejected. In addition,

as it can be observed in Figure 3, the test was well-balanced:

the subjective scores are quite equally distributed across the

five classes. The fact that some reference video sequences were

not evaluated as Excellent (5) but as Good (4) can explain the

superiority of the class 4.

From the observer results, the Mean Opinion Score (MOS)

as well as the associated 95% confidence interval were com-

puted for each video stimulus. Figure 4 shows the subjective

results for each content.

B. Benchmarking of objective metrics

In this study, the performance of the following full-reference

objective metrics is evaluated:

• PU-PSNR (#1): Peak Signal-to-Noise Ratio computed on

the perceived luminance (PU mapping),

• PU-SSIM (#2): Signal-to-Noise Ratio computed on the

perceived luminance [14],

• PU-VIF (#3): Visual Information Fidelity computed on

the perceived luminance [15],

• HDR-VDP2.2 (#4): High Dynamic Range Visible Differ-

ence Predictor for video [5],

Since the first three metrics are originally criteria of image

quality, they were calculated per frame and averaged.

To compare the performance of the metrics, criteria de-

scribed in ITU-T Rec. P.1401 [20] are used. These include

Pearson’s Linear Correlation Coefficient (PLCC) to mea-

sure linearity, Spearman’s Rank Order Correlation Coefficient

(SROCC) and Kendall’s Rank Order Correlation Coefficient

(KROCC) to determine the monotonicity, Root-Mean-Squared

Error (RMSE) and epsilon-insensitive RMSE (RMSE*), and

Outlier Ratio (OR) to determine the accuracy. Before the

calculation of PLCC, RMSE, RMSE* and OR, the objective

scores were mapped on the subjective scores using 3rd order

polynomial monotonic mapping.

Moreover, to gain more insight into the metrics’ behav-

ior, the performance evaluation methodology from [21] has

also been employed. This method provides information about

metrics’ abilities to distinguish between significantly different

and similar videos (Different/Similar analysis) and to rec-

ognize which video is better (Better/Worse analysis). The

performance is reported in the form of area under curve

(AUC) values. Higher AUC value signifies better performance.

For the Better/Worse analysis, also the percentage of correct

classification (CC0) is reported. For more information about

the analyses and interpretation of their results, refer to [21].

The results are depicted in Figures 5 and 6. Each per-

formance measure is accompanied with the indication if the

results are statistically significantly different. White rectangle



Fig. 4. Mean Opinion Scores for each content.

means that the method in the column performs significantly

better than the method in the row. Black rectangle signifies the

opposite case and gray rectangle identifies cases where the

performances are not significantly different. To compensate

for the multiple comparisons, the procedure proposed by

Benjamini and Hochberg [22] has been used.

The results indicate that PU-VIF and HDR-VDP2.2 perform

significantly better than PU-PSNR and PU-SSIM. The perfor-

mance of the two best performing metrics are not statistically

significantly different with respect to all the performance

measures with the exception of C0 for Better/Worse Analy-

sis, where PU-VIF significantly outperforms HDR-VDP2.2.

According to the SROCC, both AUCs, and C0, PU-SSIM

significantly outperforms PU-PSNR. Its results are also not

statistically different from HDR-VDP2.2 in terms of OR. The

good performance of HDR-VDP2.2 and PU-VIF is in parallel

with the related studies. However, the first one mostly works

slightly better than the latter. Our study therefore provides

a very interesting outcome, since the results suggest the op-

posite. Considering the higher computational requirements of

HDR-VDP2.2, PU-VIF seems to represent more than adequate

alternative.

1) Metrics performance within content: We also decided

to check the metrics’ abilities within the individual contents.

Given that there were only six compressed versions per source

content, we only report the results of the AUC measures which

allow us to meaningfully congregate the individual results.

The pairs for analyses were therefore taken from within

the content only (i.e. no cross-content pairs were considered).

The results are depicted in Figure 7. Because of much smaller

number of pairs, we were not able to find any statistically

significant differences in performance. Nevertheless, we can

observe some trends.

HDR-VDP2.2 seems to be very reliable in terms of distin-

guishing between different and similar videos when no cross-

content pairs are considered. We can also see than all of the

metrics are perfectly capable of recognizing more and less

distorted versions of the same content (as testified by 100%

correct classification in Better/Worse analysis).

2) Metrics performance according to the quality range:

Finally, we provide the results per quality range. We split

the dataset according to the MOS values into four intervals:

[1;2], [2;3], [3;4], [4;5]. Since many of the MOS values in

these intervals are expected not to be statistically significantly

different, correlation based measures not considering statistical

significance would be misleading. We therefore report only the

AUC measures again. The results can be found in Figure 8.

With respect to the Different/Similar analyses, no statisti-

cally significant differences can be seen. The performances

are generally very low (AUC around 0.5 corresponding to the

random guessing). In some cases they also drop under 0.5

indicating systematical errors in judgment which videos are

qualitatively different and which are similar. For the higher

qualities, only HDR-VDP2.2 reaches values higher than 0.5.

However, for the lower qualities, its reliability drops. This

could have been expected, since the metric is mainly focused

on the distortions around the visibility threshold.

In Better/Worse Analysis, the performance of the PU-VIF

is significantly better than the rest of the metrics in the lowest

quality range. In the higher ranges, results are not significant

but generally speaking, PU-VIF and HDR-VDP2.2 work better

than the other two criteria. Their performance also never drops

under 0.5 which corresponds to the systematical evaluation of

the better video as the worse.

V. CONCLUSION

In this paper, we have presented a benchmarking of four

objective metrics on a new HDR video dataset. This dataset
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is composed of 105 HDR video sequences subjectively as-

sessed by 25 observers with ACR methodology. Results show

that HDR-VDP2.2 and PU-VIF, i.e. VIF calculated on the

perceived luminance obtained with PU mapping, perform the

best. Considering the higher complexity of HDR-VDP2.2, PU-

VIF seems to be a good alternative to predict perceptual

quality of HDR videos. In addition, further analyses in term of

metric performance within content show that all the metrics are

perfectly enabled to detect the more distorted version between

any two of them of the same content. The performance analysis

on the different ranges of quality was performed as well,

providing more insight into metrics’ behavior.
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