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ABSTRACT
Image memorability prediction is a recent topic in computer
science. First attempts have shown that it is possible to
computationally infer from the intrinsic properties of an
image the extent to which it is memorable. In this paper,
we introduce a fine-tuned deep learning-based computational
model for image memorability prediction. The performance
of this model significantly outperforms previous work and
obtains a 32.78% relative increase compared to the best-
performing model from the state of the art on the same
dataset. We also investigate how our model generalizes on
a new dataset of 150 images, for which memorability and
affective scores were collected from 50 participants. The
prediction performance is weaker on this new dataset, which
highlights the issue of representativity of the datasets. In
particular, the model obtains a higher predictive performance
for arousing negative pictures than for neutral or arousing
positive ones, recalling how important it is for a memorability
dataset to consist of images that are appropriately distributed
within the emotional space.

CCS Concepts
•Computing methodologies→Computer vision; Scene
understanding; •Human-centered computing → Human
computer interaction (HCI);
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1. INTRODUCTION
The study of image memorability has recently attracted

the interest of computer vision researchers [4, 13, 22]. Pre-
vious work has found that individuals share a tendency to
remember and forget the same images [12], which paves the
way for the design of frameworks predicting the image mem-
orability from intrinsic information. The first attempts at
such a prediction used a handcrafted set of low-level features
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extracted from images to predict their memorability scores
(i.e., the degree to which the image is remembered or forgot-
ten) [13]. Results show that image memorability prediction
is possible using intrinsic features only. However, this ap-
proach performs moderately and could be improved by using
higher-level – e.g. semantic – information. In particular, the
introduction of deep learning for memorability prediction
may disrupt this field of study by substantially increasing the
prediction performance of memorability prediction systems.

The second issue addressed in this work is the memora-
bility prediction performance for new images labeled with
emotional scores. The emotion a stimulus conveys can be
considered as a key element to predict how well it will be
memorized. The psychological literature provides evidence
that emotional images are generally associated with better
memory performance than neutral ones [5, 7, 15]. However,
datasets composed of images associated with memorability
scores are not designed according to their distribution in the
emotional space.

Our contributions mainly focus on these two aspects and
can be summarized as follows. In this work, we introduce
“MemoNet”: a deep learning-based computational model for
image memorability prediction significantly outperforming
the performance of the models proposed in previous work.
The performance of MemoNet is also evaluated on a new
dataset of 150 images, for which we collected through a labo-
ratory experiment emotional ratings and memorability scores.
Results show that the performance of the model is tied to
the emotional scores of images: the deep learning framework
obtains a higher predictive performance for pictures inducing
arousing and negative emotions than for pictures inducing
neutral or positive ones.

The paper is organized as follows. Section 2 provides back-
ground material on image memorability prediction work, as
well as Convolutional Neural Networks (CNNs). In Section 3,
a deep learning-based framework to predict image memora-
bility is introduced and its performance is compared with
previous work. The influence of emotions on the performance
of image memorability prediction is studied and discussed in
Section 4, while the paper ends in Section 5 with conclusions.

2. BACKGROUND
Isola et al. pioneered the prediction of image memorability

by mapping a combination of global image features using
a support vector regression (SVR) [12, 13]. These global
features are standard features that have been previously
found to be effective at scene and objects recognition tasks.
Indeed, Isola et al. shown that object and scene semantics



tends to be a primary substrate of memorability [12]. Thus,
the global features are GIST, spatial pyramid histograms of
SIFT, HOG2x2, SSIM, and pixel color histograms.

More recently, Mancas and Le Meur showed that attention-
related features can advantageously replace low-level features
in image memorability prediction by considerably reducing
the size of the input features while performing slightly bet-
ter [22]. Attention-based features perform 2% better by using
17 dimensions instead of the 512 dimensions of the GIST
feature, in addition to the other features introduced in [13],
namely SIFT, HOG2x2, SSIM, and pixel color histograms.

Previous work thus relies on a predefined set of handcrafted
features extracted from images. However, building complex
handcrafted features requires strong domain knowledge and
is highly problem-dependent. Obtaining a satisfying feature
set is thus not a trivial issue. In contrast with previous
work using handcrafted features, in this work we focus on
CNNs to predict image memorability scores. Beginning with
LeNet-5 [20], CNNs followed a classic structure: they are
composed of stacked convolutional layers followed by one
or more fully-connected layers. So far, best results on the
ImageNet classification challenge have been achieved using
CNN-based models [17, 24]. However, large labeled datasets
are crucial to train such large CNN frameworks and there is
currently no large image datasets with memorability labels.
Nevertheless, fine-tuning is an effective paradigm for learning
high-capacity CNNs when data is scarce [9]. The fine-tuning
strategy consists in pre-training a deep CNN on a large-scale
external dataset (e.g., ImageNet) and fine-tuning the pre-
trained network by continuing the back-propagation on the
small-scale target data to fit the specific classification task.

3. MEMORABILITY PREDICTION
Fine-tuning pre-trained models originally predicting object

and scene semantics is particularly suitable for image memo-
rability prediction since both concepts are inherently related
to each other [12, 16]. Neural networks have also successfully
modeled the biologically inspired memory processes [1, 3, 23].
Consequently, we fine-tune the GoogleNet model introduced
by Szegedy et al., that became in 2014 the new state of the
art performance on the ImageNet dataset [24].

3.1 Fine-tuned Convolutional Neural Network
The GoogleNet architecture is a concatenation of nine

similar “Inception” networks. An Inception network consists
in 1×1, 3×3, and 5×5 convolutions stacked upon each other,
with max-pooling layers to reduce the resolution. Given the
depth of the network, two auxiliary losses are connected to
intermediate layers to increase the back-propagated gradient
and to prevent the vanishing gradient problem. During
training, the auxiliary losses are added to the total loss of
the network with a discount weight. Training is stopped after
a specific number of training iterations is reached. At test
time, the auxiliary losses are no longer needed and are thus
removed from the network. In our fine-tuning approach, the
two auxiliary and the final softmax activations are replaced
by a fully-connected layer composed of a unique neuron. The
loss functions associated to the model are the Euclidean loss.

All the layers of the pre-trained model are fine-tuned,
but the learning rate associated to the original layers is ten
times smaller than the one associated with the new last
neuron. Indeed, we want the pre-trained layers to change
very slowly, but let learn faster the new layer. The weights of

Table 1: Global performance for image memorability pre-
diction models in terms of Spearman’s Rank Correlation
Coefficient (ρ) and Mean Square Error (MSE)

ρ MSE

Isola et al. [12] 0.462 0.017

Mancas and Le Meur [22] 0.479 X

MemoNet 1k 0.522 0.017

MemoNet 10k 0.620 0.012

MemoNet 30k 0.636 0.012

the new layer are initialized using the xavier algorithm that
automatically determines the scale of initialization based on
the number of input and output neurons [10]. The biases are
all initialized as constant, with the default filling value 0.

The proposed fine-tuned model for image memorability
prediction is denoted MemoNet in the remaining of this
paper.

3.2 Experimental Results
In order to obtain results that are fully comparable with

previous work, we use in this paper the same data and the
same train/test protocol used by Isola et al. [12] and Mancas
and Le Meur [22]. The dataset is composed of 2,222 images
with memorability labels collected by Isola et al. using
crowdsourcing [13]. The images were randomly selected from
the SUN dataset [26] and represent various scene categories.
Object and scene categories are thus available for each image
(see [8] for details). A memorability score, used as “ground
truth”to train and test MemoNet, is defined as the percentage
of correct detections of an image when it is repeated once
in a stream of images by a set of participants. MemoNet is
trained 25 times using the training sets defined by Isola et
al. composed of one half of the images, and tested on the
other half of the images.

Similarly to Isola et al., global performance is defined as
the mean of the Spearman’s Rank Correlation Coefficient
(ρ) between the ground truths and the predictions obtained
for each of the 25 trained models [13]. In addition, global
Mean Square Error (MSE) is assessed. The performance of
MemoNet for several training iterations numbers (i.e., 1k,
10k, 30k), as well as the performance of previous work, are
indicated in Table 1.

Results show that the performance of MemoNet signifi-
cantly outperforms the performance obtained by both Isola
et al. [12] and Mancas and Le Meur [22]. More particularly,
MemoNet 30k obtains a 32.78% relative increase in term of
Spearman’s Rank Correlation Coefficient compared to the
approach of Mancas and Le Meur. Table 2 shows the best
performing object and scene categories for categories com-
posed of over 100 pictures. Interestingly, best performing
object categories are similar to the best performing ones
obtained by Isola et al. [12]. No significant linear correlation
was found between the size of the object categories and their
performance (r = −0.018, t(25) = −0.092, p = 0.46).

4. THE ROLE OF AFFECT
Affect is a key factor in determining the memorability of

images [2, 5]. This section thus investigates if the perfor-
mance of trained models is the same no matter the emotion
elicited by the image given as input.



Table 2: Influence of the object and scene semantics com-
posed of over 100 pictures on the prediction performance of
MemoNet 30k. The size and the mean of the memorability
scores (GT) for each category are also indicated.

Rank Category Size GT ρ

1 person sitting 165 0.753 0.655
2 person 554 0.725 0.628
3 pole 108 0.667 0.613
4 mountain 272 0.593 0.606
5 painting 101 0.696 0.593
6 wall 989 0.718 0.581
7 window 589 0.662 0.580
8 table 212 0.703 0.580
9 sign 147 0.664 0.572
10 door 361 0.668 0.570
11 chair 268 0.712 0.564
12 fence 181 0.656 0.554
13 sky 1080 0.628 0.550
14 tree 814 0.630 0.548
15 plant 417 0.640 0.543
16 floor 766 0.727 0.537
17 ground 269 0.637 0.521
18 ceiling 571 0.713 0.514
19 water 151 0.631 0.511
20 road 297 0.647 0.497
21 sidewalk 163 0.643 0.493
22 building 699 0.630 0.492
23 ceiling lamp 289 0.713 0.491
24 box 121 0.719 0.489
25 steps 115 0.659 0.477
26 grass 341 0.630 0.464
27 car 192 0.649 0.464

4.1 Memorability for IAPS Images
A subset of 150 images randomly selected from the In-

ternational Affective Picture System (IAPS) dataset [19] is
used in this work to analyze the performance of MemoNet
for emotional images. Affective scores are available for these
images in terms of valence, arousal, and dominance [14, 19].
Valence ranges from negative (e.g., sad, disappointed) to
positive (e.g., joyous, elated), whereas arousal can range
from inactive (e.g., tired, pensive) to active (e.g., alarmed,
angry), and dominance ranges from dominated (e.g., bored,
sad) to in control (e.g., excited, delighted).

The experimental protocol presented by Isola et al. [13] is
reproduced in a laboratory environment to collect memora-
bility scores for each of the 150 selected images. Participants
had to perform a memory task and an emotional rating task.

4.1.1 Memory task
The memory task consists of a memory encoding phase

interlaced with a recognition memory test. The task instruc-
tion is to press the space bar whenever an image reappears
in a sequence of images. A black frame is displayed between
each image for 1 second. During the task, 50 targets (i.e.,
images repeated once selected from the subset of 150 images)
and 200 fillers are displayed, each of them being displayed for
2 seconds. The fillers, composed of other images randomly
selected from IAPS, provide spacing between the first display
of a target image and its repetition. Images are displayed
pseudo-randomly: the spacing between a target image and
its repetition has to be separated by at least 70 images (i.e.,

3.30 min) in order to measure memorability corresponding to
a long-term memory performance. Whenever the space bar
is pushed, the image is framed by a green rectangle to show
the participants that their answer is taken into account. Re-
sponses that may occur during the 1 second-long inter-stimuli
black frame following the target image are also considered.
The task is preceded by a training phase to familiarize the
participants with the task.

4.1.2 Emotional rating task
An emotional rating task was set up to collect arousal

and valence scores for 100 images displayed for 6 seconds.
Before the display of each image, the participant is invited
to get prepared for the rating process of the next image. The
ratings are collected on the 9-point Self-Assessment Manikin
(SAM) scales for arousal and valence [6], which is a powerful
and easy to use pictorial system regardless of age, educational
or cultural background due to its non-verbal design. The
images are randomly displayed, for a total task duration
of about 30 minutes. Similarly to the memorability task,
the emotional rating task starts with instructions, followed
by a training phase composed of training images spanning
the entire arousal-valence emotional space to familiarize the
participants with the task but also with the rating scales.

4.1.3 Procedure
The images were displayed on a 40 inch monitor (TV-

LOGIC LVM401) with a display resolution of 1,920 × 1,080.
The participants were seated at a distance of 150 centimeters
from the screen (three times the screen height). The 1,024
× 768 images were centered on a black background; at a
viewing distance of 150 cm, the stimuli subtended 18.85
degrees of vertical visual angle. Fifty participants (18-41
years of age; mean = 22.54; SD = 5.01; 60% of them female)
compensated for their participation were recruited in Nantes,
France. All participants have either normal or corrected-
to-normal visual acuity. Correct visual acuity was assured
prior to this experiment through near and far vision tests
using Parinaud and Monoyer charts respectively. The first
experimental phase was then launched, corresponding to the
memory task. The next day, participants performed the
emotional rating task. For each task, displayed images were
selected to ensure that each memorability score is generated
from at least 16 annotations and that each affective score is
generated from at least 32 annotations.

4.2 Results
From Section 4.1, a set of 150 images selected from IAPS

with memorability and emotional scores is created. The
150 images are pre-processed in order to be given as input
to MemoNet 30k. Indeed, MemoNet 30k is fed with the
resized 224 × 224 center crop of each image. Black bands
added to several pictures by Lang et al. [19] to obtain the
same ratio for each image are removed before cropping the
image. As expected, the global performance of MemoNet
30k for this new dataset is lower than the performance of the
model measured on the dataset created by Isola et al. [13]
(ρ = 0.251;MSE = 0.033).

A local performance of MemoNet 30k is defined as the
difference between the ground truth memorability score and
the mean of the predictions from the 25 trained models for
an image. Table 3 shows the rank correlation between the
local performances of MemoNet 30k and the affective scores



Table 3: Spearman’s Rank Correlation Coefficient (ρ) be-
tween the local performances of MemoNet 30k for the subset
of IAPS images and their affective labels (∗p < .05; ∗∗p < .01;
∗∗∗p < .001)

Dimension Data origin ρ

Valence

Lang et al. [19] -0.285∗∗∗

Ito et al. [14] -0.248∗∗

Ours -0.284∗∗∗

Arousal

Lang et al. [19] 0.096

Ito et al. [14] 0.222∗

Ours 0.198∗∗

Dominance Lang et al. [19] -0.221∗∗

collected either in the experiment detailed in Section 4.1, or
in previous work [14, 19]. These correlations measure the
relation between the considered emotional dimension and the
fact that the model predicts a memorability score higher or
lower than the ground truth. Please note that the local per-
formances using Ito et al.’s data are computed on the subset
of images from IAPS selected both in this work and Ito et
al.’s work, corresponding to 104 images. The local perfor-
mances of MemoNet 30k and the emotional scores collected
in this work are shown in Figure 1. The rank correlations
exhibit a moderate, but coherent, relationship between the
performance of MemoNet 30k and the valence, arousal and
dominance scores for the emotional ratings collected in both
previous work [14, 19] and our work. Valence is negatively
correlated with the local performances of MemoNet 30k,
while arousal is positively correlated. Similarly to valence,
dominance exhibits a negative correlation with the local per-
formances of MemoNet 30k. Valence and arousal account
for most of the independent variance [11, 18]. Consequently,
dominance is not taken into account in the following analysis.

To provide a deeper analysis of the relationship between
the accuracy of the predicted memorability scores and the
affective properties of the pictures collected in this work,
the k-means clustering algorithm is used to separate the 150
images into three clusters in the valence-arousal space (see
Figure 1(c)). The three clusters separate the images inducing
arousing and negative emotions (cluster 1) from the images
inducing neutral emotions (cluster 2) and from those inducing
moderately arousing and positive emotions (cluster 3). It
is important to note that arousal and valences scores of the
150 images are significantly correlated (r = −0.522, t(148) =
−7.445, p < .0001). A one-way ANOVA revealed that the
local performances of MemoNet 30k is significantly different
for the three clusters (F (2, 147) = 5.82; p < .005). The
Tukey’s multiple comparison test confirmed that the local
performances for the pictures in the first cluster is in average
closer to zero – i.e. the optimal performance – (mean =
0.0298) than for images in the second (mean = −0.0536)
or third (mean = −0.0847) clusters. In other words, this
result shows that MemoNet 30k has the highest predictive
performance for arousing negative pictures. For the other
groups (i.e., neutral and positive) the model is less reliable
to predict the memorability.

The results suggest that affect should be taken into account
in datasets of images labeled with memorability scores to
ensure they induce a large variety of emotions. Indeed,
emotion and memorability being related, the performance of
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Figure 1: Local performance of MemoNet 30k with (a) va-
lence and (b) arousal scores collected in our experiment for
each of the 150 images selected from IAPS, as well as (c) the
result of the k-means clustering (k = 3).

a memorability model depends on the emotions induced by
the images used to train the model. The results also suggest
that emotional information could be a valuable feature to
increase the performance of the model for neutral and positive
pictures, especially as it is possible to computationally infer
emotional information from pictures [21, 25].

5. CONCLUSIONS
The study reported in this paper focuses on the image

memorability prediction using deep learning. The proposed
model significantly outperforms previous work and obtains a
32.78% relative increase in performance compared to the best-
performing model from the state of the art. An experimental
protocol has also been set up to collect memorability and
emotional scores in a laboratory environment. However, the
generalization of the performance of the deep learning model
to this new dataset is a mitigated success. In particular,
an emotional bias appears to influence the performance of
the proposed model: the deep learning framework obtains a
higher predictive performance for arousing negative pictures
than for neutral or positive ones. This underlines the impor-
tance for an image dataset used for memorability prediction
to consist in images appropriately distributed within the
emotional space.

Because memorability is also subjective, the memorability
prediction is doomed to inaccuracy if one is only interested
in the intrinsic information of the images. Our current work
focuses on the integration of context-dependent and observer-
dependent information for the purpose to personalize the
memorability prediction.



6. REFERENCES
[1] W. C. Abraham and A. Robins. Memory retention–the

synaptic stability versus plasticity dilemma. Trends in
neurosciences, 28(2):73–78, 2005.

[2] J. Abrisqueta-Gomez, O. F. A. Bueno, M. G. M.
Oliveira, and P. H. F. Bertolucci. Recognition memory
for emotional pictures in alzheimerŠs patients. Acta
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[21] N. Liu, E. Dellandréa, B. Tellez, and L. Chen.
Associating textual features with visual ones to
improve affective image classification. In 4th
International Conference on Affective Computing and
Intelligent Interaction, pages 195–204, Oct 2011.

[22] M. Mancas and O. L. Meur. Memorability of natural
scenes: The role of attention. In 2013 20th IEEE
International Conference on Image Processing (ICIP),
pages 196–200, Sept 2013.

[23] J. L. McClelland, B. L. McNaughton, and R. C.
O’Reilly. Why there are complementary learning
systems in the hippocampus and neocortex: insights
from the successes and failures of connectionist models
of learning and memory. Psychological review,
102(3):419–457, 1995.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9, June 2015.

[25] W. Wang and Q. He. A survey on emotional semantic
image retrieval. In 2008 15th IEEE International
Conference on Image Processing, pages 117–120, Oct
2008.

[26] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and
A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In 2010 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3485–3492, June 2010.


