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The 2E ′′ state of NO3, a prototype for the Jahn-Teller effect, has been an enigma and a challenge for
a long time for both experiment and theory. We present a detailed theoretical study of the vibronic
quantum dynamics in this electronic state, uncovering the effects of tunnelling, geometric phase, and
symmetry. To this end, 45 vibronic levels of NO3 in the 2E ′′ state are determined accurately and
analyzed thoroughly. The computation is based on a high quality diabatic potential representation
of the two-sheeted surface of the 2E ′′ state developed by us [W. Eisfeld et al., J. Chem. Phys. 140,
224109 (2014)] and on the multi-configuration time dependent Hartree approach. The vibrational
eigenstates of the NO−3 anion are determined and analyzed as well to gain a deeper understanding
of the symmetry properties of such D3h symmetric systems. To this end, 61 eigenstates of the NO−3
anion ground state are computed using the single sheeted potential surface of the 1A1 state pub-
lished in the same reference quoted above. The assignments of both the vibrational and vibronic
levels are discussed. A simple model is proposed to rationalize the computed NO3 spectrum strongly
influenced by the Jahn-Teller couplings, the associated geometric phase effect, and the tunnelling.
Comparison with the available spectroscopic data is also presented. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4973983]

I. INTRODUCTION

Nonadiabatic couplings among electronic states play a
crucial role in many photochemical processes and often in the
spectroscopy of electronically excited states. Thus, the nona-
diabatic dynamics of such chemical systems is a fascinating
topic and its fundamental understanding is of considerable sig-
nificance. A particularly interesting situation is the presence of
conical intersections and the resulting breakdown of the Born-
Oppenheimer (BO) approximation, which is of great interest.1

This means that the nuclear and electronic degrees of freedom
are coupled inseparably, which has to be accounted for in any
reasonable theoretical treatment.

A time-tested procedure to treat a molecular system the-
oretically is to first solve the electronic problem for fixed
nuclear geometries and then generate a single potential energy
surface (PES), which is finally used to solve the nuclear prob-
lem on this potential. However, the breakdown of the BO
approximation requires changing this scheme and computing
several electronic states for fixed geometries, then generating
a PES model that includes the state-state couplings induced by
the nuclear motions, and finally solving the nuclear problem
simultaneously on a coupled set of PESs. It is established by
now that a diabatic or rather quasi-diabatic representation of
the electronic Hamiltonian and corresponding PES matrix is
of considerable advantage in this scheme.1–12 Unfortunately,
most diabatic models like the ones based on the tremen-
dously successful linear vibronic coupling method13 are lim-
ited to processes that are dominated by short-time dynamics. In
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this case, only a rather small part of the coupled PESs is of
significance and needs to be described qualitatively correctly.
Many processes like nonadiabatic reactions or the dynamics
underlying strongly perturbed yet well resolved spectra are
not of this kind and do require accurate coupled PESs over an
extended region of nuclear configuration space. For this rea-
son, we and others have been developing methods to diabatize
electronic structure data14–28 and to generate and represent
coupled PESs that are accurate over a larger range of nuclear
configurations.29–54 We recently applied our methodology to
the development of a highly accurate diabatic representation
of the first excited electronic state 2E ′′ of NO3, which is a pro-
totypical Jahn-Teller system in which the proper treatment of
the direct dissociation asymptotes is very important.55 In the
present study, we utilize this PES model for a detailed analysis
of the nuclear dynamics in the 2E ′′ state.

Our system of choice, the nitrate radical (NO3), offers
a wide range of complications and makes it an ideal and
rigorous test case of our methodology.42,55 There is also con-
siderable interest in this radical due to its importance in
atmospheric chemistry,56 which we will not focus on in the
context of the present study. The first problem is the very
complicated electronic structure that requires special treat-
ments to avoid artifacts. Even the electronic ground state is
not easily computed by standard ab initio methods due to a
very strong tendency for the artificial symmetry-breaking of
the electronic wave function.57 The first two excited states
are both doubly degenerate, giving rise to fairly strong Jahn-
Teller couplings and the second excited state interacts strongly
with the ground state by the pseudo-Jahn-Teller coupling. A
reliable computation of the adiabatic PESs of this system
requires a fairly elaborate and computationally demanding
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multireference configuration interaction (MRCI) treatment of
the first five electronic states.58 A single-reference treatment
of the dissociative PESs is inappropriate and will lead to arti-
facts and qualitatively wrong results.59 The vibronic coupling
problem of the ground state has been treated successfully
before60–62 but no extended PES has been developed. The
treatment of the first excited state was by far less satisfac-
tory63–66 until very recently.55 This first excited state of 2E ′′

symmetry, though predicted before theoretically,67 was first
observed in a photoelectron detachment spectrum in 1991.68

Much later it was also measured in direct absorption by gas
phase cavity ring-down spectroscopy (CRDS)69–72 as well as
in a neon matrix at 4.3 K.73 These spectra are fairly resolved
but show very complicated line patterns due to the strong nona-
diabatic interactions. Thus, such spectra are an excellent test
for the accuracy of the coupled surfaces developed in our pre-
vious work55 and also will provide a lot of insights into the
nonadiabatic dynamics underlying such spectra.

In order to understand the absorption spectra, we study
in detail the vibronic levels corresponding to the isolated 2E ′′

electronic state of NO3. The Jahn-Teller effect active in this
state and the corresponding conical intersection result in the
phenomenon of the geometric phase effect within the adiabatic
representation.74 This effect together with the special shape of
the lower adiabatic PES, showing three equivalent potential
wells, which induces tunneling, have a strong impact on the
level structure of the vibronic eigenstates in the 2E ′′manifold.
We rationalize the corresponding effects by a simple model and
compare the derived predictions with the computed vibronic
eigenstates using our diabatic PES model. For comparison, we
also compute the eigenstates for the NO−3 ground state, which
does not present any Jahn-Teller or geometric phase effect.
We finally use the insights from the theoretical NO3 model
assisted by insights from the anion calculations to assign the
computed eigenstates of the radical and compare our vibronic
level assignments with the available spectroscopic data from
the absorption spectra.

The paper is organized as follows. Section II provides the
technical and numerical details of the vibrational and vibronic
level computations. Results of the numerical simulations are
given, analyzed, and discussed in detail in Section III and the
conclusions of this work are summarized in Section IV.

II. COMPUTATIONAL DETAILS

The powerful multi-configuration time dependent Hartree
(MCTDH) approach,75,76 suitable for the representation of
wave functions of large systems, is used to tackle the vibra-
tional and vibronic problems of the NO−3 and NO3 tetra-atomic
systems. The state average and block diagonalisation scheme
as described in Ref. 77 are used to compute NO−3 vibra-
tional and NO3 vibronic levels. The potential operator of the
Hamiltonian is given by the single NO−3 surface or by the dia-
batic 2× 2 potential matrix for the radical, respectively. Both
PES models have been described in detail in our previous
work.55 Some key features of the PESs of the NO3 radical are
provided in the supplementary material. Two kinetic energy
operators, id est two sets of coordinates, have been used. The
first set consists of the six internal stereographic coordinates

introduced in Ref. 78, which leads to an optimal expression
for the exact kinetic energy operator. The north pole projec-
tion version of the three radial r(st)

1 , r(st)
2 , r(st)

3 , the angular θ(st),

and the two orientational s(st)
3 , t(st)

3 stereographic coordinates is
employed as detailed in Ref. 79. In this coordinate set, planarity
corresponds to t(st)

3 = 0. The corresponding kinetic energy term
for a non-rotating NO−3 or NO3 given in Ref. 79 respects the
sum of products of single particle operators constraint imposed
by MCTDH to allow for a numerically efficient evaluation of
operators. The second set consists of the six internal curvilinear
coordinates as proposed in Ref. 80. These six internal curvi-
linear coordinates ρ(cu), ϑ(cu), ϕ(cu), θ(cu), φ(cu), χ(cu) are based
on the three Radau vectors of the AB3 system. Though not all
the actual coordinates can be visualised directly, Fig. 1 gives a
schematic view of the Radau vectors as well as the three angles
θ(cu), φ(cu), and χ(cu). Planarity is given for θ(cu) = π/2, where
θ(cu) is defined as the angle between each of the Radau vec-
tors and the trisector of the Radau vectors. The corresponding
quantum mechanical kinetic energy operator80 contains a non-
factorizable term in the MCTDH sense that is approximated
by a fourth order Taylor expansion as given in Ref. 47. This
quasi-exact kinetic energy operator yielded accurate results
when tested in calculations of CH3 vibrational eigenstates as
well as for the NO−3 first few vibrational levels.55

The reason for the introduction of the second curvilinear
coordinate set is twofold. First we expect that for the eigenvec-
tor representations, the correlation between the coordinates is
less pronounced than with the stereographic coordinates due
to the more physical nature of these coordinates. The conse-
quence is a faster convergence of the MCTDH scheme with
respect to the number of single particle functions. Second and
most importantly, when using this second set of coordinates,
one can easily evaluate the effect of the symmetry operators of
the C2v subgroup of the relevant D3h symmetry group. With the
xy plane being the molecular plane, see Fig. 1, theσxy reflexion
acts on the θ(cu) only around the π/2 symmetry point, the σxz

FIG. 1. Representation of the four atoms of NO3/NO−3 and of the three Radau
vectors in the xyz axis frame together with the 3 angular internal curvilinear
coordinates (the subscript (cu) has been dropped in the figure for readability).
ρ(cu),ϑ(cu), and ϕ(cu) (not depicted here) correspond to the transformation of
the three Radau lengths r1, r2, r3 in the hyperspherical representation as given
by the formulas.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-006704
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TABLE I. Wave function representations given by the number of single par-
ticle functions (n), the number of Fourier points (N), and the range of the
underlying box [in a.u.] for the six stereographic coordinates constructed using
mass weighted Cartesian coordinates for both NO−3 and NO3.

NO−3 NO3

Coordinates n N Range n N Range

r(st)
1 9 48 [352 : 522] 8 48 [348 : 522]

r(st)
2 9 48 [352 : 522] 8 48 [348 : 522]

r(st)
3 9 48 [352 : 522] 8 48 [348 : 522]

θ(st) 11 32 [1.80 : 2.40] 10 32 [1.78 : 2.45]

s(st)
3 11 32 [�0.76 : �0.36] 10 32 [�0.806 : �0.368]

t(st)
3 8 32 [�0.17 : 0.17] 8 32 [�0.25 : 0.25]

Electronic 1 1 2 2

reflexion acts on both ϕ(cu) and χ(cu) around the π/4 and the π
symmetry points, respectively, and the C2 rotation acts on the
three θ(cu), ϕ(cu), and χ(cu) angles. The use of two sets of coor-
dinates also is a stringent test of the numerical accuracy of the
energy levels. And the computation with the stereographic set
ensures that exact energy levels are computed since the kinetic
operator has no approximation in this case.

Although the kinetic energy terms fulfill the sum of prod-
ucts of the single particle constraint of MCTDH friendly
operators, the potential term does not respect this requirement.
Therefore, for the anion, the evaluation of the single-state (or
single-valued) potential term is carried out using the original
correlation discrete variable representation (CDVR) scheme.81

The generalized version of CDVR as detailed in the appendix
of Ref. 46 is employed for the evaluation of the diabatic two
by two potential matrix of the radical.

Tables I and II give the basis set details for both sets of
coordinates and both systems. The box range, underlying grid
size N, and number of single particle functions n have been
carefully converged to ensure the numerical accuracy of the
final results to be better than the wave-number for each case.

The labelling of the eigenstates of NO−3 and NO3 as exci-
tations in the 6 vibrational modes is not trivial except for the
low energy part of the spectrum. Both systems are represented
by D3h symmetric PESs and thus the eigenstates have to trans-
form like irreducible representations (irreps) of the D3h point
group. Unfortunately, only C2v irreps could be computed from

TABLE II. Wave function representations given by the number of single par-
ticle functions (n), the number of Fourier points (N), and the range of the
underlying box [in a.u.] for the six curvilinear coordinates constructed using
mass weighted Cartesian coordinates for both NO−3 and NO3.

NO−3 NO3

Coordinates n N Range n N Range

ρ(cu) 6 32 [640 : 800] 7 32 [640 : 800]
ϑ(cu) 7 32 [0.805 : 1.105] 10 32 [0.805 : 1.105]
ϕ(cu) 7 32 [0.615 : 0.955] 11 32 [0.615 : 0.955]
θ(cu) 6 32 [1.431 : 1.711] 7 32 [1.431 : 1.711]
φ(cu) 8 32 [0.860 : 1.235] 9 32 [0.860 : 1.235]
χ(cu) 8 32 [2.829 : 3.454] 9 32 [2.829 : 3.454]
Electronic 1 1 2 2

TABLE III. Relation between irreps in C2v and D3h within the orientational
convention of this work. The characters with respect to the two σv reflexions
of C2v are also provided for convenience.

ΓD3h ΓC2v σv (xy) σv (xz)

a′1 or e′ a1 1 1

a′2 or e′ b1 1 �1

a′′1 or e′′ a2 �1 �1

a′′2 or e′′ b2 �1 1

the MCTDH wave packets. The irreps ΓC2v of the eigenfunc-
tions alone, given in Table III, are insufficient to determine the
symmetry irrep in D3h. Either one of the two σv of the C2v

group can be matched to the σh of the D3h. The convention
used in this work is the natural one when coming from the D3h

view point where the C3 rotational axis is aligned along z. For
standard C2v , this is the less common convention and there-
fore we clearly indicate in the table the nature and characters
with respect to the reflections σv . In principle, from both the
energy degeneracy and ΓC2v of the eigenfunctions, ΓD3h could
be deduced. However, accidental degeneracies and numerical
errors pose a problem for the unequivocal symmetry assign-
ments. Moreover, the distinction between the 6 modes is not
possible from ΓD3h alone. Visual checks of two-dimensional
projections of the eigenfunctions are definitely of valuable
help but are still insufficient, especially for the assignment
of higher excitations. A complimentary way of computing
the energy levels for NO−3 is thus used. A time-independent
Hermite discrete variable representation (DVR) approach is
utilized82 and the corresponding Hamiltonian is diagonalized
by an exact short iterative Lanczos method. Normal coordi-
nates of the undistorted NO−3 are used and vibrational angular
momenta are ignored in the kinetic energy operator. Standard
harmonic oscillator functions are chosen for the finite basis
representation (FBR) and the kinetic energy is transformed into
the corresponding DVR grid point basis. The six coordinates
and their irreps in D3h correspond to totally symmetric stretch
(ν1, a′1), out-of-plane or umbrella bending (ν2, a′′2 ), asymmet-
ric stretch (ν3x

/
ν3y, e′), and asymmetric bend (ν4x

/
ν4y, e′),

respectively. The associated numbers of basis functions/DVR
grid points are 21, 19, 18, 18, 20, and 20, which yield total ener-
gies converged to better than 10�1 cm�1 when compared to a
basis with one basis function less in each mode. The degenera-
cies are reproduced to better than 10�2 cm�1 for all degenerate
levels. The diagonalization is carried out in the DVR basis
and the resulting eigenvectors are transformed back into the
FBR, in which the eigenstate composition can be analyzed
conveniently in terms of vibrational quanta in each of the
modes.

We could not compute the radical eigenstates using the
DVR method because the basis size required is far beyond
our computational capacity and the limitations of our code.
However, the possibility to solve the vibrational problem of
the anion by both DVR and MCTDH methods was instrumen-
tal for the analysis of the vibronic eigenstates of the radical
obtained by MCTDH. First, the DVR and MCTDH results of
the anion vibrational eigenstates were calculated in excellent
agreement. Since the DVR results can be assigned without any
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ambiguity, we know the assignment of the MCTDH eigen-
states for the anion as well. Due to the coordinate systems
used in the MCTDH calculations, the corresponding eigen-
states do not show simple nodal structures and thus are not
easy to interpret. But since we know the assignments for the
anion, certain structures of the eigenstates could be identified
and used for the interpretation of the radical eigenstates. This
is still not sufficient for a solid assignment but gives valu-
able additional evidence. This is particularly important since
the much more demanding calculations for the radical yield
larger energy deviations from the perfect degeneracies of e′

and e′′ states. Together with the very high density of states,
this hampers an unambiguous assignment of degenerate states.
The other important piece of evidence besides the comparison
to anion states is a simple theoretical model predicting the
level structure and accounting for tunneling and the geometric
phase. This model will be outlined below.

III. RESULTS AND DISCUSSION

In the following, we first present and discuss the vibra-
tional eigenstates of the NO−3 anion, which represents the
common case of an electronic ground state with a typical
single-sheeted PES. This way we obtain a detailed insight into
the symmetry properties of the eigenstates for such a proto-
typical D3h molecule. The results are also compared with the
previous findings for the NO3 radical ground state.61,62 The sit-
uation for the excited 2E ′′ electronic state of the radical is very
different due to the Jahn-Teller effect so that two coupled PESs
have to be accounted for. The consequences of this vibronic
coupling and the resulting geometric phase effect are rational-
ized by a simple model, which then is utilized to analyze the
computed eigenstates. The state assignments following from
this analysis finally are used to compare our theoretical results
with the available spectroscopic data.

A. Vibrational eigenstates in the NO−3
1A′1

electronic state

The 41 first energy levels for the anion, corresponding
to the lowest 61 eigenstates, are gathered in Table IV. The
MCTDH energies obtained using either the stereographic or
the curvilinear coordinates are the same to better than one
wave-number for the reported 61 energies. The details of the
basis sets are given in Tables I and II. For each calculation,
the number of iterations of the MCTDH scheme has been
optimized to ensure converged energies again better than one
wave-number. The automatic symmetry analysis in C2v of the
corresponding eigenfunctions and the degeneracy of the levels
help to obtain the corresponding D3h symmetry assignments
(fourth column of Table IV). The correct degeneracies are
reproduced by the MCTDH calculations to within 10�1 cm�1

and by the DVR calculation to better than 10�2 cm�1. For
the lower energy range, this is sufficient to clearly assign a
vibrational mode excitation to each level. When the excitation
energy is high enough to get double excitations in the asym-
metric degenerate ν3 and ν4 modes, the time-independent DVR
computation based on the exact diagonalization of the vibra-
tional Hamiltonian, for which a clear expansion in vibrational

harmonic oscillator functions is obtained, is crucial to get the
proper assignments. The symmetry labels and expected energy
levels for higher excitations in the degenerate modes and com-
bination bands involving them can be deduced from the proper
application of group theory and combinatorics.

The assignments for the fundamentals, energy levels 1 to
4, are straightforward. Energy levels 5 and 6 both correspond
to two vibrational quanta in the degenerate bending mode, ν4.
The two quanta can be distributed over the two state compo-
nents x, y in exactly three ways (x2, y2, and xy), which form a
reducible representation of the D3h group. This is decomposed
into the irreducible representations a′1 and e′, in agreement
with the assignment based on the automatic C2v symmetry
analysis of the wave function. The detailed state composi-
tions in terms of the harmonic oscillator functions obtained by
the time-independent DVR calculation are given in the sixth
column of Table IV. The νi

α correspond to the ith harmonic
oscillator function in mode α. Note that we omit the normal-
ization of the linear combinations given in Table IV for the
sake of a compact representation. The proper linear combi-
nations are deduced from the analysis of the actual Hartree
products of harmonic oscillator functions and comparison with
the known symmetry polynomials of coordinates. For the D3h

point group, the latter can be found, e.g., in our previous
work.42,55 The assignment of levels 7 to 10 is straightforward
again because these states correspond to various combination
bands or higher excitations involving at most one quantum
in an e′ mode. By contrast, states 11 to 13 result from the
two quanta combinations of the two e′ modes, for which four
different configurations exist. The eigenstates corresponding
to irreps a′1 and e′ are equivalent to the second order terms

v (2,1)
ee , w(2,1)

ee , and z(2,1)
ee , respectively, as given in the appendix of

Ref. 55. The eigenstate corresponding to a′2 can be obtained
simply by orthogonality arguments. State 14 again is straight-
forward and results from the double excitation of the totally
symmetric stretching mode ν1. The next three eigenstates
belong to the manifold of triple excitations in the e′ asym-
metric bending mode, ν4, for which four configurations exist.
The a′1 state composition, belonging to state 17, corresponds
to the V (3) potential term as given in Ref. 42. Note, however,
that due to the normalization factors of the harmonic oscillator
functions a factor of

√
3 rather than a factor of 3 arises. State

16 is the a′2 counterpart to state 17 and its composition is eas-
ily obtained by exchanging the roles of x and y components
with respect to the a′1 state. Finally, state 15 transforms like
e′ as expected and the compositions of the two state compo-
nents can be found either by orthogonality or by combining
the Hartree products to yield theW (3)/Z (3) symmetry polyno-
mials of Ref. 42, respectively. The next energy levels, 18 to 29
are various combination bands or higher excitations for which
the wave functions can be explained in terms of the already
discussed states. The next interesting manifold of states origi-
nates from the configuration 3142, a higher combination mode
of the two e′ vibrations. The six possible configurations lead
to two e′ states, one a′1, and one a′2 state, respectively. The
expansion coefficients for the symmetrized Hartree product
transforming like a′1 are obtained by reproducing the sym-

metrized polynomial v (3,1)
ee of Ref. 55. The a′2 function simply
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TABLE IV. Vibrational eigenstates of NO−3 , zero-point, and excitation energies in cm�1, level symmetries in C2v and D3h, and state assignments including
dominant state contributions.

i E0 or Ei � E0 ΓC2v ΓD3h Assignment Composition

0 3038.8 a1 a′1 0

1 702.5/702.5 b1/a1 e′ 41 ν1
4y

/
ν1

4x

2 843.7 b2 a′′2 21 ν1
2

3 1040.1 a1 a′1 11 ν1
1

4 1352.9/1352.9 a1/b1 e′ 31 ν1
3x

/
ν1

3y

5 1403.2 a1 a′1 42 ν2
4y + ν

2
4x

6 1405.3/1405.3 b1/a1 e′ ν1
4yν

1
4x

/
ν2

4y − ν
2
4x

7 1544.4/1544.4 a2/b2 e′′ 2141 ν1
2ν

1
4y

/
ν1

2ν
1
4x

8 1683.8 a1 a′1 22 ν2
2

9 1740.4/1740.4 a1/b1 e′ 1141 ν1
1ν

1
4x

/
ν1

1ν
1
4y

10 1880.5 b2 a′′2 1121 ν1
1ν

2
2

11 2046.6 b1 a′2 3141 ν1
3xν

1
4y − ν

1
3yν

1
4x

12 2048.4/2048.4 b1/a1 e′ ν1
3xν

1
4y + ν

1
3yν

1
4x

/
ν1

3xν
1
4x − ν

1
3yν

1
4y

13 2049.2 a1 a′1 ν1
3xν

1
4x + ν

1
3yν

1
4y

14 2077.6 a1 a′1 12 ν2
1

15 2103.9/2103.9 b1/a1 e′ 43
√

3ν3
4y + ν

2
4xν

1
4y

/√
3ν3

4x + ν
1
4xν

2
4y

16 2107.8 b1 a′2 ν3
4y −
√

3ν2
4xν

1
4y

17 2108.4 a1 a′1 ν3
4x −
√

3ν1
4xν

2
4y

18 2190.5/2190.5 b2/a2 e′′ 2131 ν1
2ν

1
3x

/
ν1

2ν
1
3y

19 2243.2 b2 a′′2 2142 ν1
2ν

2
4x + ν

1
2ν

2
4y

20 2245.3/2245.3 a2/b2 e′′ ν1
2ν4xν

1
4y

/
ν1

2ν
2
4x − ν

1
2ν

2
4y

21 2380.2/2380.2 a1/b1 e′ 1131 ν1
1ν

1
3x

/
ν1

1ν
1
3y

22 2382.8/2382.8 b1/a1 e′ 2241 ν2
2ν

1
4y

/
ν2

2ν
1
4x

23 2438.7 a1 a′1 1142 ν1
1ν

2
4x + ν

1
1ν

2
4y

24 2440.3/2440.3 b1/a1 e′ ν1
1ν

1
4xν

1
4y

/
ν1

1 (ν2
4x − ν

2
4y)

25 2520.6 b2 a′′2 23 ν3
2

26 2579.0/2579.0 b2/a2 e′′ 112141 ν1
1ν

1
2ν

1
4x

/
ν1

1ν
1
2ν

1
4y

27 2679.7 a1 a′1 32 ν2
3y + ν

2
3x

28 2704.6/2704.6 b1/a1 e′ ν1
3yν

1
3x

/
ν2

3y − ν
2
3x

29 2717.5 a1 a′1 1122 ν1
1ν

2
2

30 2740.7/2740.7 b1/a1 e′ 3142 ν1
3y(ν2

4y + ν
2
4x)

/
ν1

3x(ν2
4x + ν

2
4y)

31 2743.6 a1 a′1 ν1
3xν

2
4x − ν

1
3xν

2
4y −
√

2ν1
3yν

1
4xν

1
4y

32 2743.9 b1 a′2 ν1
3yν

2
4y − ν

1
3yν

2
4x −
√

2ν1
3xν

1
4xν

1
4y

33 2745.5/2745.5 a1/b1 e′ ν1
3x(ν2

4x −ν
2
4y)+

√
2ν1

3yν
1
4xν

1
4y

/
ν1

3y(ν2
4y −ν

2
4x)+

√
2ν1

3xν
1
4xν

1
4y

34 2776.1/2776.1 a1/b1 e′ 1241 ν2
1ν

1
4x

/
ν2

1ν
1
4y

35 2802.8 a1 a′1 44 ν4
4x +

√
2
3ν

2
4xν

2
4y + ν

4
4y

36 2804.7/2804.8 b1/a1 e′ ν3
4xν

1
4y + ν

1
4xν

3
4y

/
ν4

4x − ν
4
4y

37 2810.8/2810.8 b1/a1 e′ ν3
4xν

1
4y − ν

1
4xν

3
4y

/
ν4

4x −
√

6ν2
4xν

2
4y + ν

4
4y

38 2882.4 a2 a′′1 213141 ν1
2 (ν1

3xν
1
4y − ν

1
3yν

1
4x)

39 2884.2/2884.2 a2/b2 e′′ ν1
2 (ν1

3xν
1
4y + ν

1
3yν

1
4x)

/
ν1

2 (ν1
3xν

1
4x − ν

1
3yν

1
4y)

40 2885.1 b2 a′′2 ν1
2 (ν1

3xν
1
4x + ν

1
3yν

1
4y)

results from exchanging the x and y components of the a′1 basis
function. The two different e′x symmetry functions are found
by correspondence to the two different polynomials w(3,2)

ee and
w(3,4)

ee , and the e′y basis functions arise from exchanging the x

and y components or by using the polynomials z(3,2)
ee and z(3,4)

ee .
The computed eigenstates of e′ symmetry both show a signif-
icant mixture of the two pairs of symmetrized basis functions
listed in the table. State 30 (re-normalized in the subspace of
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the two basis functions) shows coefficients of roughly 0.84
and �0.54 and state 33 is the orthogonal counter part. State
34 arises from a double excitation of the totally symmetric
stretching mode and one quantum in ν4, thus transforming as
e′. The next set of states (35-37) belongs to quadruple excita-
tions in ν4 for which five distinct configurations exist for the
distribution of four vibrational quanta over two mode compo-
nents. This results in one a′1 state and two e′ states, and the
symmetrized Hartree products are found in analogy to the pre-
viously discussed states from the symmetry polynomials V (4),
W (4,1)/Z (4,1), and W (4,2)/Z (4,2), respectively. In this case, the
compositions of the computed e′ eigenstates (states 35 and 36)
show hardly any mixing of the two sets of e′ basis functions
in contrast to states 30 and 33. The last three states of our
computations, 38-40, arise from a three mode combination
band with one quantum each in the umbrella, the asymmet-
ric stretch, and the asymmetric bending mode. This results in
states transforming as a′′1 , a′′2 , and e′′, and the symmetry func-
tions can be easily obtained from the results already discussed
above.

Our results for the anion can be compared to the calcu-
lations of Stanton for the ground state of the radical.61 This
latter state of 2A′2 symmetry also has a single-sheeted PES
with a D3h symmetric equilibrium geometry like the anion.
For both systems, the lowest excitation is found for 41 but the
striking difference is that the frequency in the case of the anion
is almost twice that of the radical. Thus, the next levels in the
radical were found to be due to 42. We observe a fairly har-
monic progression for this state in the case of the anion with a
small splitting of 2.1 cm�1 between the a′1 and e′ levels, while
the radical shows a strong negative anharmonicity and a larger
splitting of 5.5 cm�1 for this set of states. The frequency for
the 11 level is about 11 cm�1 lower for the anion but the fre-
quency for the 31 asymmetric stretching excitations is almost
360 cm�1 lower for the radical. The latter is a very much dis-
puted number for the radical due to a controversy about the
interpretation of experimental results. It appears that the radi-
cal in its electronic ground state is much more easily deformed
asymmetrically than the anion, which has been explained by
the strong pseudo-Jahn-Teller coupling to the second excited
electronic state of 2E ′ symmetry. We note that the sets of states
arising from the same excitation configurations, like the three
states corresponding to 43, are in perfect agreement between
the radical and anion calculations. A striking difference is,
however, that the splittings between levels of the same set are
significantly larger in the case of the radical. There is only
one exception, namely, the 32 manifold, for which the split-
ting in the radical is less than half that of the corresponding
anion state. This state manifold also indicates a slightly neg-
ative anharmonicity in the case of the radical while a slightly
positive anharmonicity is found for the anion. In the light of
the new anion results, the radical ground state seems to behave
rather unusual and is certainly worth to be revisited with a more
sophisticated model in the future.

B. Vibronic eigenstates in the 2E ′′ electronic state

We now turn our attention to the 2E ′′ first excited
state of the NO3 radical. The global symmetry of the two
coupled PESs for the electronic state is D3h and thus the

vibronic eigenstates have to show the same fundamental
properties as those presented for the anion. However, the fairly
strong Jahn-Teller effect in this state leads to a much more
complicated situation as will be discussed below. Unfortu-
nately, the eigenstates could not be determined by the time-
independent DVR method. Therefore, the lowest vibronic
energy levels for the neutral NO3 radical are only computed
by the MCTDH method and are gathered in Table V. The table
presents 45 energies, obtained using each of the two coordi-
nate sets, as well as the C2v irreducible representation of the
corresponding eigenvectors. The comparison between the two
sets of computed energy values emphasizes the good numeri-
cal accuracy of the energies reported. Furthermore, two sets of
tentative assignments of the vibronic symmetry labels in D3h

are given.
When compared with the anion, a much more congested

spectrum is obtained for the radical with 36 levels below
1400 cm�1 of the excitation energy for NO3 and only 6 for
NO−3 . These numbers also can be compared with NO3 in the
2A′2 ground electronic state for which 12 levels are found below
1400 cm�1 of the excitation energy.61 This higher density
of states is in part due to the triple well shape of the lower
adiabatic PES sheet of this state and to the two intersecting
electronic surfaces for the radical. Due to the multi-sheeted
potential surface, the calculations are computationally much
more demanding than for the single D3h centered well of
the anion. A consequence is a somewhat less accurate rep-
resentation of the degeneracies as obvious already for the
ground vibronic state. We also were not able to use the time-
independent DVR method to compute the eigenstates and thus
are much more limited in the analysis of the eigenstates. The
labelling of the D3h irreps is not obvious due to the combina-
tion of the density of states and of the intrinsic complexity of
the spectrum as discussed below.

C. Tunnelling and geometric phase effect
in the 2E ′′ electronic state

The PESs for the 2E ′′ state of NO3 show some intriguing
features that are responsible for the complex and somewhat
enigmatic spectra. The lower adiabatic PES has three equiv-
alent and fairly pronounced minima due to the Jahn-Teller
effect, which are connected by rather low barriers to pseudo-
rotation. The barrier heights are only 1250.9 cm�1, which
is less than, e.g., the height of the barrier to inversion of
ammonia (1766–1777 cm�1).83,84 In the absence of spin-orbit
coupling, there is a two-dimensional intersection seam with
the upper adiabatic PES spanned by the nuclear coordinates of
a′1 and a′′2 symmetries and thus not lifting the D3h symmetry
of the system. The minimum of the seam of crossing is found
2850.6 cm�1 above the minima for a planar geometry with
N–O distances of 2.3860 bohrs compared to the equilibrium
distance on the ground state PES of 2.3444 bohrs for which
an energy of 3217.7 cm�1 above the minima is found. We
computed the spin-orbit splitting at the equilibrium geome-
try of the electronic ground state to be about 1 cm�1 for the
2E ′′ state, which is too small to lift the degeneracy effectively
and thus can be neglected for the present study. Each point on
the seam corresponds to a conical intersection with respect to
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TABLE V. Excitation energies in cm�1 for NO3 above the ground state
E(st)

0 = 2732.11 cm�1 and E(cu)
0 = 2732.13 cm�1 obtained with stereographic

(st) and curvilinear (cu) coordinates. ΓC2v is the irreducible representation
obtained from the symmetry analysis of the eigenfunctions when using the
curvilinear coordinates. For each assigned level, the corresponding D3h label
together with the corresponding mode excitations are provided in bold face.
The other labels given in the “key” and the “assignment” columns correspond
to tentative assignment (see text for discussion).

Key (Ei − E0)(st) (Ei − E0)(cu) ΓC2v Assignment

1α 0.00 0.00 a2 e′′ 0(a1) e′′ 0(a1)
1β 0.16 0.14 b2 e′′ 0(a1) e′′ 0(a1)
1γ 52.92 52.91 b2 a′′

2
0(a1) a′′

2
0(a1)

2α 549.09 549.07 a2 a′′
1

41(b1) a′′
1

41(b1)

2β 580.42 580.41 b2 e′′ 41(b1) e′′ 41(a1)
2γ 580.82 580.80 a2 e′′ 41(b1) e′′ 41(a1)
3α 602.22 602.23 b1 e′ 21(b2) e′ 21(b2)
3β 602.41 602.39 a1 e′ 21(b2) e′ 21(b2)
3γ 642.63 642.63 a1 a′

1
21(b2) a′

1
21(b2)

4α 642.83 642.84 b2 a′′
2

41(a1) a′′
2

41(a1)

4β 653.84 653.85 a2 e′′ 41(a1) e′′ 41(b1)
4γ 654.39 654.38 b2 e′′ 41(a1) e′′ 41(b1)
5α 809.47 809.49 a2 e′′ 11(a1) e′′ 11(a1)
5β 809.84 809.83 b2 e′′ 11(a1) e′′ 11(a1)
5γ 929.88 929.89 b2 a′′

2
11(a1) a′′

2
11(a1)

9α 1111.27 1111.22 b2 e′′ 42(a1) e′′ 42(a1)
9β 1111.76 1111.74 a2 e′′ 42(a1) e′′ 42(a1)

10α 1136.94 1136.96 a2 a′′1 42(b1) a′′1 42(b1)
6α 1156.49 1156.46 b1 a′

2
2141(a2) a′

2
2141(a2)

10β 1159.65 1159.64 a2 e′′ 42(b1) e′′ 42(b1)
10γ 1159.86 1159.83 b2 e′′ 42(b1) e′′ 42(b1)

9γ 1164.59 1164.54 b2 a′′2 42(a1) a′′2 42(a1)
6β 1177.69 1177.69 a1 e′ 2141(a2) e′ 2141(a2)
6γ 1178.22 1178.20 b1 e′ 2141(a2) e′ 2141(a2)

11α 1229.34 1229.32 a2 e′′ 22(a1) e′′ 22(a1)
11β 1229.66 1229.71 b2 e′′ 22(a1) e′′ 22(a1)
7α 1236.98 1237.00 b1 e′ 2141(b2) e′ 2141(b2)

11γ 1237.09 1237.06 b2 a′′2 22(a1) a′′2 22(a1)
7β 1237.74 1237.74 a1 e′ 2141(b2) e′ 2141(b2)
7γ 1243.70 1243.72 a1 a′

1
2141(b2) a′

1
2141(b2)

12α 1250.25 1250.30 a2 e′′ 42(a1) ◦ e′′ 31(a1)
12β 1250.44 1250.47 b2 e′′ 42(a1) ◦ e′′ 31(a1)
13α 1270.23 1270.24 a2 e′′ 31(a1) e′′ 1141(a1)
13β 1270.32 1270.31 b2 e′′ 31(a1) e′′ 1141(a1)
12γ 1274.84 1274.93 b2 a′′2 42(a1) ◦ a′′2 31(a1)
14α 1300.06 1300.04 a2 a′′1 1141(b1) a′′1 31(b1)
13γ 1366.27 1366.26 b2 a′′2 31(a1) a′′2 1141(a1)
8α 1407.28 1407.33 b1 e′ 1121(b2) e′ 1121(b2)
8β 1407.54 1407.54 a1 e′ 1121(b2) e′ 1121(b2)

14β 1407.66 1407.65 b2 e′′ 1141(b1) e′′ 31(b1)
14γ 1407.98 1407.93 a2 e′′ 1141(b1) e′′ 31(b1)
15α 1465.78 1465.77 a2 a′′1 31(b1) a′′1 1141(b1)
15β 1481.52 1481.57 a2 e′′ 31(b1) e′′ 1141(b1)
15γ 1482.62 1482.63 b2 e′′ 31(b1) e′′ 1141(b1)
8γ 1495.96 1495.98 a1 a′

1
1121(b2) a′

1
1121(b2)

the four-dimensional coordinate space of the two e′ modes,
thus inducing a geometric phase effect (GPE). The vibrational
zero-point level at 2732.1 cm�1 is found noticeably above the
barriers to pseudo-rotation but just barely below the minimum
of the seam of crossing and the energy of the conical inter-
section at the equilibrium geometry of the electronic ground

state. The vibronic ground state is found to be doubly degener-
ate and of e′′ symmetry. This can be understood by considering
the shape of the lower adiabatic PES and will be explained in
the following.

Figure 2 displays schematic views of the NO−3 anion on
the single-sheeted ground state PES and of the Jahn-Teller dis-
torted radical on the lower sheet of the 2E ′′ state adiabatic PES.
The PES corresponding to the anion’s ground state has a single
well and the equilibrium geometry thus stays D3h symmetric.
By contrast, the Jahn-Teller effect active in the 2E ′′ state of the
radical results in the triple-well structure of the lower adiabatic
PES depicted in the right panel of Fig. 2. The corresponding
three equivalent equilibrium geometries result from distortion
along each of the three N–O bonds, respectively, and are also
depicted in the figure. The distortion affects the ONO angles
as well of course. Though the global symmetry of both PESs
obviously obeys the threefold rotational symmetry invariance,
this is not true for the isolated distorted configurations in each
of the wells. When looking at the system in one well and ignor-
ing the existence of the two equivalent configurations in the
other wells, the local environment and nuclear configuration
are only C2v symmetric. It turns out that the level structure can
be understood in terms of corresponding symmetrized local
vibrations and tunnelling among the three equivalent potential
wells. Assume an artificial potential with C3v or D3h symme-
try and infinitely high barriers between three equivalent wells.
It is clear that in this case, we can treat the local vibrations sep-
arately. However, since the eigenstates need to transform like
an irreducible representation of the symmetry transformation
group, which the local solutions do not, we need to symmetrize
them. The three local solutions form a basis for a 3-dimensional
reducible representation, which can be decomposed into irre-
ducible representations a ⊕ e. The eigenvalues of the three
symmetrized solutions will remain degenerate unless the bar-
rier heights become finite, like in a real system. This means
that the local vibrations do interact via tunnelling and thus that
the degeneracy is lost. However the global D3h symmetry still
imposes that the eigenstates transform as irreducible repre-
sentations of a and e types leading to the level structure of the
resulting spectrum. This can be rationalized quite nicely by a
next neighbour model similar to Hückel models.

Assume we have a n-fold symmetry axis and correspond-
ing Ĉn symmetry operator transforming one local state into the
other. After n operations of Ĉn on any local state, one arrives
at the same potential well but the wave function has changed

FIG. 2. Pictorial views of the NO−3 anion (left panel) and distorted NO3 rad-
ical (right panel) geometries superimposed on potential contour plots (NO−3
ground state on the left and lower adiabatic sheet of the 2E′′ state on the right).
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sign due to the geometric phase effect. If we further assume
that the local states can only interfere with the ones in the
neighbouring wells, we can write the Schrödinger equation in
the next neighbour approximation as

*.......
,

α − E β 0 0 . . . β∗

β∗ α − E β 0 . . . 0
0 β∗ α − E β . . . 0
...

. . .
...

β 0 0 . . . β∗ α − E

+///////
-

*.......
,

c1

c2

c3
...

cn

+///////
-

=

*.......
,

0
0
0
...
0

+///////
-

. (1)

Here α stands for the expectation value of the vibrational
Hamiltonian over a purely local eigenstate and β for the over-
lap integral corresponding to the tunneling interaction with the
next neighbour local state. This yields the relation

β∗ cj−1 + (α − E) cj + β cj+1 = 0, with 1 < j < n − 1, (2)

with the restriction of j in Eq. (2) originating from 4π rather
than 2π periodicity. One full rotation by 2π around the conical
intersection corresponds to n operations of Ĉn on cj and the
geometric phase requires that Ĉn

ncj = −cj and Ĉ2n
n cj = cj.

Thus, there are n solutions for any cj reading

cj = eijkπ/n, k = 0, 1, . . . n − 1. (3)

With β = rβeiφβ , the solutions of Equation (1) are

Ek = α + 2rβ cos

(
kπ
n
+ φβ

)
, k = 0, 1, . . ., n − 1. (4)

The above symmetry considerations require that

φβ = σiνiπ −
(n − 1)π

2n
, (5)

where σi is one if i corresponds to a local vibration that for-
mally would be degenerate and of ey type in a single-well
PES and two for formally non-degenerate or ex local modes.
νi is the corresponding vibrational quantum number. σi is
deduced from the general properties of idealized E ⊗ e Jahn-
Teller systems for which Ham gave an elegant proof for the
sequence of states.85 Details about this reasoning are given in
the supplementary material.

At this point, the relation to the typical perspective from
standard idealized vibronic coupling treatments should be
pointed out. It is customary to restrict the Jahn-Teller prob-
lem to linear and quadratic couplings only and to analyse the
vibronic states in terms of coupling strengths. In the absence
of quadratic coupling, the adiabatic PESs show cylindrical
symmetry and the nuclear dynamics is best interpreted (and
treated theoretically) as an angular and a radial motion. All
vibronic states can be classified by a corresponding vibronic
angular momentum j = ± n

2 (n = 1, 2 . . . ). In the absence
of any vibronic coupling, the problem resumes to the stan-
dard 2D isotropic harmonic oscillators for each surface. The
states are thus 2(v + 1)-fold degenerate with v being the usual
vibrational quantum number. The linear coupling splits lev-
els of different vibronic angular momenta |j | = n

2 but does
not lift the degeneracy among j = ± n

2 states.86 When con-
sidering the correlation to the D3h/C3v picture, these degen-
erate pairs transform either as e or as a pair of a1 and
a2, which are degenerate because the true symmetry of the
PES model is higher (D∞h/C∞v). This is independent of the

linear coupling strength, which only increases the depth of
the rotationally symmetric moat around the conical intersec-
tion point (so-called the Jahn-Teller stabilization energy). As
long as the linear coupling is weak, the nuclear dynamics
can be interpreted in terms of normal modes corresponding
to a geometry with the highest symmetry and the associ-
ated vibrational quantum numbers. In our case, this would
mean small nuclear oscillations around the D3h symmetric
atomic positions. This picture looses validity with increas-
ing linear coupling since the amplitude of the eigenfunctions
near the D3h point decreases notably. The dynamics then
is best interpreted in terms of an angular motion, charac-
terized by vibronic angular momentum j, and radial oscil-
lations with the associated quantum number vr . Increasing
linear coupling lowers the level energies for higher �� j �� val-
ues, and for strong linear coupling, the first few levels all
correspond to excitations in the angular motions while the
radial motion is not excited (see the supplementary material
and Ref. 86). The quadratic coupling destroys the cylindrical
symmetry and leads to multiple equivalent potential wells as
discussed above. This also lifts the degeneracy of the pairs
transforming as a1 and a2. As long as the quadratic cou-
pling is weak and thus the barriers between the equivalent
wells are low, an interpretation of the nuclear dynamics as
now hindered pseudo-rotational (angular) and radial excita-
tion is still reasonable. However, this view looses validity
with further increasing quadratic coupling, which leads to
deeper wells separated by higher barriers. In such a case, the
dynamics is better interpreted as the nuclei carrying out small
oscillations around the positions within the local minima of
reduced local symmetry.86 The emergence of this situation
(relatively deep wells separated by substantial barriers) has
been shown long ago utilizing simple vibronic coupling mod-
els. In our three-well case, and for finite quadratic coupling,
only the set of half-integer j mod 3 will remain good vibronic
quantum numbers. States with ±j mod 3 = 3

2 transform as
a1 or a2 and are split by the quadratic coupling. This split-
ting increases with the quadratic coupling strength, and for
large quadratic coupling, the a1 and a2 levels come close to
e levels.86

This caused to some confusion in the literature because it
can be mistaken as a vibrationally excited state (in the sense
of a normal vibration) approaching the ground state level. But
in fact, this is the ���vr = 0, j mod 3 = 3

2

〉
level (a1 or a2) com-

ing close to the ���vr = 0, j mod 3 =
{

1
2 , 5

2

}〉
level (e). This is

exactly the situation, which calls for a change of perspective
and an interpretation in terms of multiple potential wells and
tunnelling as outlined above. Clear evidence for this is given
in the supplementary material. This effect is known for the
ground state triplet of vibronic states since the 1960s86 but
to the best of our knowledge was hardly discussed for vibra-
tionally excited states. Originally, the impact of the geometric
phase effect on the level structure had been unknown. Much
later Ham analysed this effect in an elegant way85 and we use
these results in our analysis. As we will show in the following,
the situation in the 2E ′′ state of NO3 is such that both linear
and higher order Jahn-Teller couplings are large and that the
vibronic eigenstates are most naturally interpreted in terms

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-006704
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-006704
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-006704
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of the tunnelling interaction of local vibrations including the
geometric phase effect.

The consequences of the adiabatic PES topography and
the geometric phase are illustrated by representative examples
in the following. We focus first on the vibronic ground state
manifold. No vibrational motion of the molecule is excited and
thus one would expect the symmetry of the lowest vibrational
level to be totally symmetric, a′1 in the case of D3h. This is
exactly what is found for the anion ground vibrational state
(cf. Table IV). However, in the 2E ′′ state of the radical, the
Jahn-Teller effect couples electronic and nuclear motions and
thus, strictly speaking, only vibronic states but no vibrational
states can be specified because the motions are inseparable.
Nevertheless, the level structure of the NO3 spectrum can
be rationalized based on a local separation of electronic and
nuclear motions. The Jahn-Teller effect is reflected by the fact
that the molecule is distorted resulting in the three equivalent
minima of C2v symmetry (see above). Locally in one well,
ignoring the existence of the other wells, we can envision the
vibrational motions of the molecule as usual and classify them
by the local symmetry of C2v . Then the electronic part of the
wave function is accounted for in two steps. First, the E charac-
ter is reflected by the diabatic Hamiltonian, which at first does
not distinguish E ′ and E ′′ but correctly leads to the triple-well
topography of the lower adiabatic PES. In effect, that means
that the local vibration needs to be symmetrized according to
the C3 rotation operator of D3h. Second, the anti-symmetry
with respect to the reflection on the molecular plane, σh, of
the electronic part of the wave function is included. One way
to visualize this more easily is to use orbitals of appropriate
local symmetry to represent the local vibrations. In the current
case, one can use an s orbital in a local well corresponding to
a1 in C2v to represent a nodeless vibrational ground state. So,
symmetrizing the s orbital with respect to C3 rotation leads
to a set of e′ and a′1 orbitals. Second the anti-symmetry with
respect to σh is included to account for the corresponding
symmetry of the 2E ′′ electronic state. This can be achieved
by replacing the s orbitals by pz orbitals yielding e′′ and a′′2
vibronic labels. Of course, the order of the two steps is arbi-
trary and one could also start from the pz orbital of local b2

symmetry to include the electronic symmetry with respect to
σh first and then symmetrize with respect to the C3 rotation.
Finally, due to the geometric phase effect, sets of states cor-
responding to local non-degenerate vibrations or even quanta
in the angular part of a motion correlated to formally an e
vibration always have an energy ordering sequence of e below
a. By contrast, sets of states corresponding to odd quanta in
the angular motion correlated to formally an e vibration are
ordered a below e. This effect is displayed schematically in
Fig. 3 for the vibronic ground state manifold of the NO3

2E ′′

state. This analysis is coherent with the numerical result of
a doubly degenerate e′′ vibronic ground state and its tun-
neling pair 52.8 cm�1 above (see the three levels 1α,β,γ of
Table V).

The same reasoning can be applied to the fundamentals
of the system. The symmetric stretch vibration, ν1, is strictly
identical to the ground state case. Such a case is found for
the three levels 5α,β,γ of Table V, which therefore we assign
to the excitation 11. Excitations in the umbrella mode, ν2, the

FIG. 3. Schematic level structure of the ground state manifold. Left are state
labels according to D3h vibrational modes corresponding to a single-well D3h
PES, middle are state labels corresponding to local vibrational modes in one
of the three equivalent wells at reduced local symmetry (C2v ), right are the
correct vibronic levels including tunnelling splitting and GPE in terms of the
global D3h symmetry of the PES and specified for an electronic state of E′ or
E′′ symmetry, respectively.

asymmetric bending mode, ν4, and the asymmetric stretching
mode, ν3, lead to the level structures depicted in Figs. 4–6.
Detailed derivations of these results are provided in the
supplementary material.

What remains is the analysis of low-lying higher excita-
tions and combination bands of which the first is expected to
be the (ν4)2 manifold. Since this involves formally degener-
ate e vibrations of which the degeneracy is lifted by the local
C2v symmetry, a more complicated pattern will result. The
corresponding scheme is given in Fig. 7.

Finally, we analyze the level structure of supposedly low-
lying combination bands. The candidates expected in the range
of our computations are (ν2)1(ν4)1, (ν1)1(ν4)1, and (ν1)1(ν2)1.
The resulting level schemes are given in Fig. 8 for the three
combinations. The mode-mode combination between ν2 and
ν4 leads to a new pattern not contained in the above examples.
The umbrella motion, ν2 corresponds to a local symmetry of
b2 and combined with the local b1 symmetry of the presum-
ably lower component of the ν4 mode in the local well, this
results in a2 local symmetry. This yields vibronic states of
a′2 and e′ according to our scheme, and since there are odd
quanta formally in an ey mode (ν4) belonging to angular exci-
tation, the state ordering is a′2 below e′. The upper triplet
corresponds to a pure radial excitation and thus is ordered
e′ below a′1. By contrast, the corresponding combination of ν2

with the upper component of local a1 symmetry of ν4 yields

FIG. 4. Schematic level structure corresponding to odd quanta inν2 (umbrella
mode). Explanation as in Fig. 3.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-006704
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FIG. 5. Schematic level structure corresponding to one quantum in ν4
(degenerate asymmetric bending mode). Explanation as in Fig. 3.

a vibronic triplet of e′ below a′1 because the a1 local vibra-
tion corresponds to a pure radial excitation. The mode-mode
combination of ν1 and ν4 will lead to an already seen kind of
level pattern since ν1 is totally symmetric in D3h as well as in
the local C2v symmetry. Thus, two triplets of vibronic states
are obtained with the ordering a′′1 below e′′ and e′′ below
a′′2 . Finally, the mode-mode combination of ν1 and ν2 will
result in the same pattern as a single excitation in ν2, namely,
e′ below a′1. These schemes of level patterns will be very
helpful in the analysis of the spectrum simulation in order
to analyze the dynamical nature of the vibronic states com-
puted. However, they are deduced from an idealized E ⊗ e
Jahn-Teller model and the real system may deviate from those
patterns.

The level structure of NO3 as derived by us above is mostly
in agreement with the one discussed, for example, in the work
of Codd et al. in terms of a simple vibronic coupling model.72

However, comparison with the notation of the levels as indi-
cated by Codd et al. must be taken with great caution because
the meaning of the quantum numbers referring to the tunnelling
model is rather different from their use of similar quantum
numbers (see above).

We proceed with a systematic analysis of the computed
levels ordered by energy. The numerical degeneracy for the
lowest triplets is sufficiently good to solve the non-bijective

FIG. 6. Schematic level structure corresponding to one quantum in ν3
(degenerate asymmetric stretching mode). Explanation as in Fig. 3.

FIG. 7. Schematic level structure corresponding to two quanta in ν4 (degen-
erate asymmetric bending mode). Explanation as in Fig. 3.

relation between the ΓC2v of the MCTDH calculation and of the
correct ΓD3h of the system (see Table III). With the various pat-
terns provided in Figures 3–8 as well as the ab initio harmonic
frequencies’ calculation,57 we could easily assign the few low-
est eigenstates. The ground state clearly corresponds to the
triplet 1α,β,γ. These “keys” 1α,β,γ are given in the first column
of Table V. They help to pinpoint the tunnelling triplets of the
assignment proposed in the 5th column. The ordering ofα, β, γ

FIG. 8. Schematic level structure corresponding to various combination
modes. Explanation as in Fig. 3.
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in each triplet is based on energy only and the numbering of the
triplets themselves is based on the assignment procedure we
followed. The two single excitations in ν4 are found as triplets
2α,β,γ and 4α,β,γ. This assignment minimizes the energy differ-
ence between the non-degenerate and the doubly degenerate
levels of the same local excitation 41(b1) and 41(a1). An alter-
native grouping of the 2 times 3 energies is proposed in the
last column of Table V. This alternative assignment follows
the level ordering of Fig. 5 for each 41(b1) and 41(a1) exci-
tation. Triplet 3α,β,γ is assigned to be the excitation in the
umbrella out-of-plane mode. The umbrella excitation is clearly
anharmonic and the corresponding energies lie in between the
two 41 triplets. For the next triplet, 5α,β,γ, an additional visual
inspection of 2D projections of the wave-functions helps to
assign this state manifold with confidence to a single excita-
tion in the totally symmetric stretching mode, ν1. Combination
bands including a single excitation of the umbrella mode are
identified easily when checking the MCTDH ΓC2v . The cor-
responding energies are thus the next ones to label with little
ambiguity. The assignments of the triplet 6α,β,γ to 2141(a2), the
triplet 7α,β,γ to 2141(b2), and 8α,β,γ to 1121(b2) are thus made
based on assuming the minimal tunnelling splittings possible
given the symmetry constraints. Due to the noticeable tun-
nelling splitting of about 20 cm�1 and the very high density of
states, the two levels of the triplet 6α,β,γ are interlaced by two
other states of e′′ and a′′2 symmetries, which cannot be assigned
with certainty. The triplet 9α,β,γ corresponding at that point to
three low energies which are not yet assigned is attributed to
the 42(a1) double excitation of ν4 given the e′′ below a′′1 pat-
tern. Up to here the assignments are based on a solid analysis
of the available data and are made with confidence. All fur-
ther states cannot be assigned with such certainty because of
the very high density of states and the complexity of the 6D
wave functions prohibiting a deeper insight into the involved
nuclear motions. We nevertheless propose two possibilities of
assignments of the remaining energies in the two last columns
of Table V, which are based only on vibronic symmetry argu-
ments following the predicted patterns and assumptions about
the probable state energies and tunnelling splittings. These
tentative assignments are printed in normal face while the
sure assignments are indicated by bold face symbols. In the
fifth column of the table, we distinguish the two assigned
triplets 42(a1) (see Fig. 7) by using the ◦ symbol for the upper
triplet.

We summarize the tunnelling splittings and the mid-
frequencies of the fundamentals in Table VI. The tunnelling
splitting of the ground state is remarkably large, amounting
to 53 cm�1. The tunnelling splittings of the excited states
are strongly dependent on the mode excited. The largest one
obtained for one of the unequivocally assigned levels is for the
totally symmetric stretch, with a value of 120 cm�1. Excita-
tions in the umbrella mode or in the bending modes reduce
the tunnelling splittings by a factor of up to five. Strong differ-
ences are observed between the (a1) and the (b1) components
of 41 for the two proposed assignments, which is to be expected
given the different orientations of the molecular displacements
with respect to the local C2v wells. For the two assignments,
41(b1) manifold exhibits a 1.7–2.8 times larger splitting than
the 41(a1) triplet. For the anti-symmetric stretching mode

TABLE VI. Tunneling splitting values in cm�1 for the ground state and the
singly excited vibronic levels and the corresponding mid-frequencies shifted
by the ground state mid-frequency value of 17.6 cm�1.

Key Assignment ∆E Emid

1α,β,γ 0 53 0
5α,β,γ 11(a1) 120 832
3α,β,γ 21(b2) 40 598

Proposition i

13α,β,γ 31(a1) 96 1285
15α,β,γ 31(b1) 16 1459
2α,β,γ 41(b1) 31 552
4α,β,γ 41(a1) 11 632

Proposition ii

31(a1) 24 1241
31(b1) 108 1354
41(a1) 62 584
41(b1) 105 601

ν3, the values resulting from the two propositions of the
assignment are given. They correspond to quite different values
for both the tunnelling splittings and the mid-frequencies. The
values of the tunnelling splittings are quite large, which is rea-
sonable given the effect of stretching modes on the tunnelling
splitting as seen for 11.

D. Comparison between experiment and theory

According to Fermi’s golden rule, the absorption prob-
ability (or the transition rate) of a transition is propor-
tional to the absolute square of the transition matrix element
|〈Ψfn

��~µ��Ψim〉|
2. Often only electric dipole transitions due to

~̂µe are considered because magnetic dipole transitions due

to ~̂µm or higher moments are generally much weaker. Usu-
ally, the states can be represented in terms of electronic (ψ)
and nuclear (ϕ) wave functions yielding for the transition
probability

pfn←im ∝
(���〈ϕn〈ψf

��~µe
��ψi〉ϕm〉

���
2
+

���〈ϕn〈ψf
��~µm

��ψi〉ϕm〉
���
2
)

× δ(Ef − Ei − hν), (6)

in which the delta function represents Einstein’s resonance
condition between initial and final energy levels and the fre-
quency of the light interacting with the molecule. However,
as pointed out above, the separation of electronic and vibra-
tional states is inappropriate due to the vibronic coupling in
the final states. Therefore, the vibronic states Ψfn and their
symmetries have to be used to analyze the transition prob-
abilities. The symmetry of the system is utilized to identify
the vanishing or non-vanishing matrix elements by evaluat-
ing the direct products of the irreducible representations Γ of
wave functions and operators, which must contain the totally
symmetric Γa′1

. The operators transform like a′′2 and e′ for

~̂µe and a′2 and e′′ for ~̂µm, respectively. The electronic ground
state is 2A′2 and we considered the most relevant initial vibra-
tional states which are the ground state of a′1 symmetry or
the lowest excited state of e′ symmetry. The corresponding
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selection rules for the allowed transitions are summarized in
Table VII for all possible symmetries of the final vibronic
state, the ground vibrational initial state of a′1, and the first
excited vibrational initial state of e′ symmetry, respectively.
This table allows to see easily, which levels can be reached by
parallel or perpendicular dipole or magnetic transitions and to
match this with the experimental results of Refs. 71 and 72.
If we also take into account the next higher electric moment,
namely, the quadrupole moment, only one additional symme-
try of the final vibronic states would become accessible, which
is a′2. In our calculations, there is only one vibronic state that
certainly is of this symmetry, 6α, which does not match any
of the experimental lines better than other states accessible
by electric dipole transitions. Quadrupole transitions were
not included in the discussion by the experimental groups
analysing their CRDS data. We agree with the assessment that
quadrupole transitions do not play a role in these experimental
spectra.

We first consider the vibronic ground state 1α,β of e′′

symmetry. The 0-0 transition is electric dipole-forbidden but
allowed as a perpendicular magnetic dipole transition. On the
other hand, the hot band transition 40

1 is dipole allowed and
parallel. Both types of transitions have been found as very
weak and weak signals, respectively, in the CRDS study of
Takematsu et al.71 At the temperature of that experiment, the
41 vibrational level of the electronic ground state is populated
to 20%–30% of the ground state population, explaining why
the hot band transition is quite strong compared to the 0-0 line,
which is due to the magnetic transition.

We now focus on the dipole allowed transitions into higher
vibronic levels. The first of those we find at 549 cm�1 above
the vibronic ground state (2α), which we assign to the parallel
41

0(b1) transition due to the a′′1 symmetry. The e′′ component of
this vibronic state triplet could only be reached by a perpendic-
ular magnetic transition from the ground state. Note that this e′′

component, however, is accessible as a hot band starting thus
from an initially excited NO3. There are two possibilities to
assign the e′′ component of the 41

0(b1) manifold. The one with
the lower tunneling splitting would be at 580 cm�1 (2β,γ) but
would result in an incompatible level ordering for 41

0(a1) (see

TABLE VII. Allowed and forbidden electric and magnetic dipole transi-
tions as a function of the final vibronic state symmetries for two initial
vibrational states. Allowed transitions are distinguished as parallel (‖) or
perpendicular (⊥).

ΓΨfn ΓΨim ~̂µe ~̂µm

a′1 a′2 0 ‖

a′2 a′2 0 0
e′ a′2 ⊥ 0
a′′1 a′2 ‖ 0
a′′2 a′2 0 0
e′′ a′2 0 ⊥

a′1 e′ ⊥ 0
a′2 e′ ⊥ 0
e′ e′ ⊥ ‖

a′′1 e′ 0 ⊥

a′′2 e′ 0 ⊥

e′′ e′ ‖ ⊥

Fig. 5). By contrast, the compatible assignment at 654 cm�1

would lead to considerably larger tunneling splittings (see
Table VI). Our result for the dipole allowed transition at
549 cm�1 compares very well with the experimental assign-
ment and value of 540 cm�1.71,72 The next vibronic state, 3α,β ,
is of e′ symmetry and is assigned to the perpendicular dipole
transition 21

0(b2) at 602 cm�1. The a′1 component, 3γ, of this
vibronic triplet would only be visible as a parallel magnetic
transition or as a perpendicular electric hot band transition.
The experiments report energies of 678–682 cm�1 above 0-0
transition for this state, so the agreement is not that impressive.
Note that the diabatic PES model we use for the present calcu-
lations does not include the 2A′2 and 2E ′ electronic states, which
couple to the 2E ′′ state through ν2. Therefore, some deficien-
cies of the PESs along this mode may be expected. The next
five vibronic levels are all dipole-forbidden and thus are not
likely to contribute to the experimental spectra. By contrast,
the a′′1 state at 1137 cm�1 associated with the parallel transition
42

0(b1) is dipole-allowed. The computed energy of 1137 cm�1

is somewhat higher than the experimental value of 1057 cm�1.
What is more peculiar is that the computations obviously pre-
dict a negative anharmonicity in contrast to the experimental
result. We have no explanation for this discrepancy but the
negative anharmonicity of course is easily explained by the
broad triple-well structure of the lower adiabatic PES sheet.
The four following levels are again dipole-forbidden and are
not discussed in detail. The 6β,γ state of e′ vibronic symme-
try can be reached by a perpendicular dipole transition and
is assigned to the combination band 21

041
0(a2) at 1178 cm�1

above 0–0. The next dipole-allowed perpendicular transition
we find for 21

041
0(b2) corresponding to the e′ vibronic state

7α,β at 1237 cm�1. The corresponding energy obtained from
the measured spectrum is 1221 cm�1 in reasonable agreement
with our calculations for either of those two allowed transi-
tions. It remains an open question why only one of the two
levels is observed experimentally. The next transition can be
assigned in two ways and our assignments are only tentative.
The a′′1 state could be assigned either to the parallel dipole
transitions 11

041
0(b1) or 31

0(b1), which we find at 1300 cm�1.
The experimental value of 1271 cm�1 has been assigned to 31

0,
which would be in agreement with one of the two possibili-
ties. The next dipole allowed state is found at 1408 cm�1 and
is assigned to the perpendicular transition 11

021
0(b2). An exper-

imentally observed perpendicular transition at 1464 cm�1 has
been assigned to 11

021
0 in reasonable agreement with our com-

putation. Finally, one more a′′1 state is computed at 1466 cm�1

that corresponds to a parallel dipole transition. We have two
tentative assignments for this state, either 31

0(b1) or 11
041

0(b1).
The experimental spectra do not show any parallel transition
between 1297 cm�1 and 1603 cm�1, though. The dynamics
calculations on our pure ab initio PES model yield a quite
reasonable agreement with the experimental CRDS observa-
tions, confirming most of the assignments made previously.
The remaining deviations should be mostly due to the limited
accuracy of the ab initio calculations on which the diabatic
PES model is based. Table VIII summarizes the comparison
of the computed and assigned levels with the experimental
data.
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TABLE VIII. Summary of the comparison between experimental and computed transitions. The first 4 columns
report the data of Table VI of Ref. 72 together with our theoretical energies obtained for these assignments.
Energies in cm�1 are followed by the deviation to the experimental values. In columns “Case 1” and “Case 2,” we
propose two alternative assignments based on the computed energies and eigenstate analysis. The parallel (‖) or
perpendicular (⊥) character of the unobserved levels are also given.

Assignment of Ref. 72 Case 1 Case 2

Eexp Type Label experiment Eth Energy Assignment Energy Assignment

540 ‖ 41
0 549 (9) 549 (9) 41

0(b1) 549 (9) 41
0(b1)

682 ⊥ 21
0 602 (80) 602 (80) 21

0(b2) 602 (80) 21
0(b2)

1057 ‖ 42
0 1137 (80) 1137 (80) 42

0(b1) 1137 (80) 42
0(b1)

1178 (⊥) 21
041

0(a2) 1178 (⊥) 21
041

0(a2)

1221 ⊥ 21
041

0 1178 (43) 1237 (16) 21
041

0(b2) 1237 (16) 21
041

0(b2)

1271 ‖ 31
0 1300 (29) 1300 (29) 11

041
0(b1) 1300 (29) 31

0(b1)

1464 ⊥ 11
021

0 1407 (57) 1407 (57) 11
021

0(b2) 1407 (57) 11
021

0(b2)

1466 (‖) 31
0(b1) 1466 (‖) 11

041
0(b1)

IV. CONCLUSION

In the present study, the vibronic eigenstates of the first
electronically excited 2E ′′ state of the NO3 radical and the
vibrational eigenstates of the NO−3 anion electronic ground
state have been investigated thoroughly. Special attention has
been paid to an understanding of the states in terms of sym-
metry and of the topography of the PESs, respectively, as well
as the influence of tunnelling and the geometric phase effect.
To this end, first the lowest 41 vibrational levels of NO−3 have
been computed with two different approaches, namely, a time-
independent DVR computation using a harmonic oscillator
basis expansion and the MCTDH based state average and block
diagonalization approach. All states have been analyzed and
assigned in terms of excitations and state symmetry. For the
higher excitations, an analysis of the symmetrized harmonic
oscillator basis is particularly helpful for these assignments.
The results are compared to those of an earlier study of the
vibrational levels of the electronic ground state of neutral NO3.
The same types of low-lying vibrational states are observed
because both systems are represented by a single-sheeted PES
with a single D3h symmetric potential minimum. However, we
note that much lower frequencies for the radical and a different
anharmonicity is found for the two asymmetric e′ modes, ν3

and ν4, when compared to the anion. We also observe that the
splittings between the different states arising from higher exci-
tations of e′ modes, e.g., a′1, a′2, and e′ corresponding to a 33

or 43 configuration, are very different between the anion and
neutral system. It appears that the radical is much more eas-
ily deformed asymmetrically along the ν3 and ν4 modes than
the anion, which can be explained by a strong pseudo-Jahn-
Teller coupling to the second excited state of 2E ′ symmetry, an
interaction which is certainly not present in the anion. Since
the 31 fundamental found for the anion is 1353 cm�1 accord-
ing to our calculations, it is very reasonable to assume that
the corresponding fundamental for the radical will be even
lower, in agreement with previous calculations of Stanton.
This strengthens the interpretation that the band at 1492 cm�1

observed experimentally for the radical cannot be due to this
fundamental but must be a combination band.

In a second step, vibronic levels of the NO3 radical in
the 2E ′′ electronic state have been determined accurately. The
computation is carried out using a diabatic representation of the
electronic two-sheeted 2E ′′ state potential previously derived
by us and the MCTDH algorithm is utilized to solve the corre-
sponding vibronic Schrödinger equation in full dimensionality.
Due to the strong vibronic coupling present in this state, the
level structure is very different compared to that of the anion
or the 2A′2 ground state of the radical. An interpretation of
the computed levels is proposed based on a simple model. It
relies on a local separation of the electronic and vibrational
degrees of freedom, on a model of the tunnelling effect due to
the topography of the lower adiabatic PES sheet, and on the
symmetrization of localized wave functions to yield the cor-
rect vibronic eigenstates. The vibronic coupling leads to three
equivalent potential wells on the lower adiabatic PES sheet,
which are connected by rather low barriers to pseudo-rotation.
Each of the wells only shows a local symmetry of C2v , though
the global symmetry of the PES is D3h of course. This leads to
a splitting of vibrational modes corresponding to e′ vibrations
in the conventional D3h sense. The symmetrization over the
local wells results in tunnelling triplets of vibronic states of
symmetries a′1 or a′2 and e′ or alternatively a′′1 or a′′2 and e′′

each. Whenever formally e′ symmetric modes like ν3 or ν4 are
involved, the geometric phase effect has to be accounted for,
which alters the succession of a and e states depending on the
excitation.

With this scheme, we can firmly assign 8 triplets (thus 24
energies, 8 of them doubly degenerate). They correspond to the
ground state but also to excitations of the umbrella, the totally
symmetric and/or the bending asymmetric modes. Quite large
and mode specific tunnelling splittings are obtained. From
symmetry considerations of the transition probabilities, we
found that these tunnelling splittings are not directly observ-
able experimentally with electric dipole transitions from the
ground state of 2A′2. Some of them are, however, accessible
when considering hot band transitions with an initial state
excitation in an e′mode. Experimental access to magnetic tran-
sitions also would be of great value to verify our predictions
on the tunnelling splittings.
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The numerical results and theoretical assignments are
compared to experimental results from a jet-cooled cavity ring-
down spectroscopy study. We assign the transitions 41

0(b1),
21

0(b2), 42
0(b1), 21

141
0(b2), and 11

021
0(b2) in agreement with the

experiment and with deviations between 9 and 80 cm�1 in the
level energies. One level assigned experimentally to 31

0 could
be assigned from our theoretical results either to 11

041
0(b1) or

to 31
0(b1). Given the tremendous difficulties in both electronic

structure calculations and PES development, this seems to be
a quite satisfactory result.

For a more accurate comparison with the CRDS spectra, a
representation of the electronic ground 2A′2 surface is manda-
tory. However, this electronic state is coupled to the 2E

′

second
excited state and both of them are coupled to the 2E ′′ state,
thus a five-sheeted potential surface is required. Work on get-
ting such a representation of NO3 is currently in progress in
our groups.

SUPPLEMENTARY MATERIAL

See supplementary material for graphical representations
of key features of the NO3 PESs, evidence for the pro-
posed tunnelling model, and detailed derivations of the level
ordering.
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