Visual attention modeling for stereoscopic video - Archive ouverte HAL Access content directly
Conference Papers Year : 2016

Visual attention modeling for stereoscopic video


In this paper, we propose a computational model of visual attention for stereoscopic video. Low-level visual features including color, luminance, texture and depth are used to calculate feature contrast for spatial saliency of stereoscopic video frames. Besides, the proposed model adopts motion features to compute the temporal saliency. Here, we extract the relative planar and depth motion for temporal saliency calculation. The final saliency map is computed by fusing the spatial and temporal saliency together. Experimental results show the promising performance of the proposed method in saliency prediction for stereoscopic video.
Fichier principal
Vignette du fichier
w83.pdf (631.2 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01438315 , version 1 (17-01-2017)



Yuming Fang, Chi Zhang, Jing Li, Matthieu Perreira da Silva, Patrick Le Callet. Visual attention modeling for stereoscopic video. 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Jul 2016, Seattle, United States. pp.1 - 6, ⟨10.1109/ICMEW.2016.7574768⟩. ⟨hal-01438315⟩
284 View
232 Download



Gmail Facebook Twitter LinkedIn More