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Abstract

In this paper, we study the extension of anisotropic metric-based mesh adaptation to the case of very high-order solutions in 3D.

This work is based on an extension of the continuous mesh framework and multi-scale mesh adaptation [10] where the optimal

metric is derived through a calculus of variation. Based on classical high order a priori error estimates [4], the point-wise leading

term of the local error is a homogeneous polynomial of order k + 1. To derive the leading anisotropic direction and orientations,

this polynomial is approximated by a quadratic positive definite form, taken to the power k+1
2

. From a geometric point of view, this

problem is equivalent to finding a maximal volume ellipsoid included in the level set one of the absolute value of the polynomial.

This optimization problem is strongly non-linear both for the functional and the constraints. We first recast the continuous problem

in a discrete setting in the metric-logarithm space. With this approximation, this problem becomes linear and is solved with the

simplex algorithm [5]. This optimal quadratic form in the Euclidean space is then found by iteratively solving a sequence of such

log-simplex problems. From the field of the local quadratic forms that representing the high-order error, a calculus of variation is

used to globally control the error in Lp norm. A closed form of the optimal metric is then found. Anisotropic meshes are then

generated with this metric based on the unit mesh concept [8]. For the numerical experiments, we consider several analytical

functions in 3D. Convergence rate and optimality of the meshes are then discussed for interpolation of orders 1 to 5.
c© 2016 The Authors. Published by Elsevier Ltd.
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Introduction

Anisotropic mesh adaptation have been an active field of research. However, it has been mostly restricted to the

case of linear interpolation. Indeed in this case, the interpolation error is expressed in terms of the Hessian of the

solution. From a practical point of view, a recovered Hessian is used [15] to derive an optimal metric-field. We have

in this case a natural connection between the metric-based generation algorithm and the error estimate [10]. However,

when dealing with k order interpolation (k > 1), a (k + 1) differential form is involved in the analysis [4]. The natural

link between the error estimate and the metric-based mesh generation procedure does not exist anymore.

Most of the work to address this issue is done in 2D. One class of techniques consists in approaching the error

map (homogeneous polynomial of order k + 1) by a metric tensor, see [2,3,9,13]. From a geometric point of view, the
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problem is equivalent to finding an ellipse of maximal area included in the iso-line of level one of the error. Several

improvements are possible by developing h− p method with shock fitting [6,7,14]. However, these methods are hardly

applicable numerically in 3D. In [16], an optimization framework is used to predict the behavior of any error systems

in 2D and 3D with respect to a change of the metric field. The approach provides a natural coupling with metric-based

mesh adaptation. However, the optimal mesh and metric may have a strong dependency on the initial mesh.

In this paper, we consider the 3D case while adopting the geometric point of view. We first recast the continuous

problem in a discrete setting in the metric-logarithm space. With this approximation, this problem becomes linear

and is solved with the simplex algorithm [5]. This optimal quadratic form in the Euclidean space is then found by

iteratively solving a sequence of such log-simplex problems. From the field composed of the local quadratic forms

that representing the high-order error, a calculus of variation is used to globally control the error in Lp norm. A closed

form of the optimal metric is then found. This extends the continuous mesh framework and multi-scale metric initially

derived for the linear interpolation [10,11] to high order interpolations.

Outline. The paper is organized as follows. In Section 1, we recall the basic notions on interpolation errors and

metric-based mesh adaptation that are used in the sequel. In Section 2, we introduce the log-simplex algorithm to

derive the local error model of a given initial k-order homogeneous polynomial. We then provide the optimal metric

minimizing the k-order interpolation error in Lp norm. In Section 3, several numerical experiments are discussed for

interpolation orders ranging from 1 to 5.

1. Interpolation errors and metric-based mesh adaptation

In this section, we introduce some basic background notions about Pk interpolation and Riemannian metric spaces.

1.1. Polynomial interpolation

We consider the classical Lagrangian interpolation over tetrahedra. For a given tetrahedron K ⊂ R
3, let x1, x2, ..., xn

be a set of points inside K, which we call interpolation nodes. Let Πk be the projection operator of C0(K) over the

polynomial functions of degree k of K such that for a function u:

Πku(xi) = u(xi) for all i ∈ {1, ..., n} . (1)

More precisely, if the interpolation nodes are well chosen, Πku is the only polynomial of order k satisfying (1). In

order to define Πk well and uniquely, the number of nodes must equal the number of needed coefficients to define a

polynomial function of degree k, which is:

n =
k∑

i=0

k−i∑
j=0

k−i− j∑
l=0

1 =

k∑
i=0

(k + 1 − i)2 + (k + 1 − i)
2

.

Although we could take these nodes anywhere in K, we have chosen to place them in a uniform way. Let a, b, c and

d be the four corners of K and xi be one of the nodes of K. In the barycentric coordinates with respect to (a, b, c, d),

one has x = (u, v,w, t) with u, v,w, t ∈ R and u + v + w + t = 1. One simple choice consists in considering every

combination (i, j, l,m) ∈ N4 such that i + j + l + m = k and to define the nodes such that:

x =
(

i
k
,

j
k
,

l
k
,

m
k

)
in (a, b, c, d). (2)

In particular, this ensures that the number of nodes defines well the interpolation operator Πk. Thus, with {x1, ..., xn}
given by (2), Πk is defined by

Πku(x) = P(x), for all x ∈ K,

where P is the polynomial of degree k such that P(xi) = u(xi), for all i ∈ {1, ..., n}. In what follows, Πk will denote

either the operator on a single tetrahedron and on a mesh composed of several tetrahedra. Notice that there is exactly
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k + 1 nodes on each edge of K and k2+3k+2
2

nodes on each face of K, which are the numbers of nodes needed to define

a Pk interpolation operator respectively in one and two dimensions. Consequently, with the choice (2), the operator

Πk preserves the continuousness of a function over the interfaces between tetrahedra. Notice also that another choice

of nodes or interpolation would not change the main results of this paper.

From a theoretical point of view, it is well known that the Pk interpolation error of a smooth function u is led by

the (k + 1)th differential of u, which we note d(k+1)u. For instance, for a smooth function u defined on a tetrahedron

K, the following inequality holds:

‖u − Πku‖Lp(K) ≤ C |K| k+1
3

∥∥∥d(k+1)u
∥∥∥

Lp(K)
, (3)

where C > 0, |K| is the volume of K and ‖.‖Lp(K) denotes the classical Lp norm on K. The proof of this inequality can

be found in a more general case in [4]. The mesh adaptation method that we investigate involves Inequality (3), but

consists in replacing the right member of (3) by a 2nd−order term, defined through a well chosen metric fieldM:

‖u − Πku‖Lp(K) ≤ CQ |K| k+1
3 ‖M‖ k+1

2

Lp(K)
. (4)

This choice is motivated by the need and the capacity of generating anisotropic meshes by using the metric-based

approach and unit-mesh concept.

1.2. Metric-based mesh adaptation

In this section, we recall the theoretical background of metric-based anisotropic mesh adaptation. It is closely

related to Riemannian geometry, and we refer to [10,11] for further details about these notions. In what follows,M
denotes a metric of R3, a symmetric positive definite matrix.

Definition 1.1. An Euclidean metric space (R3,M) is a finite vector space where the dot product is defined by means
of a metricM. More precisely, we set 〈u, v〉M = tuMv, for u, v ∈ R

3. SinceM is symmetric, positive and definite,
the product 〈., .〉M is a scalar product on R

3. The norm ‖.‖M results from this scalar product and is given by ‖u‖M =√
tuMu, for all u ∈ R3.

From a geometric point of view, in the space (R3,M) the unit ball BM of M is the sphere of radius 1. Since M
is positive and definite, BM can be defined by its eigenvalues {λ1, λ2, λ3} and the related normalized eigenvectors

{v1, v2, v3}, which are an orthonormal basis of R3. Let hi =
1√
λi

, i = 1, ..., 3 be the principal lengths ofM. The metric

can be writtenM = RΛtR, with

R = (v1 | v2 | v3) and Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
h2

1

0 0

0 1
h2

2

0

0 0 1
h2

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Working in an Euclidean metric space (R3,M) actually reduces to applying the mappingM 1
2 = tR

√
ΛR to R

3. For

later use, for s ∈ R, we also defineMs = tRΛsR, where Λs is obtained by replacing λi by λs
i , for i = 1, 2, 3.

Let us now consider the case where the metric tensor is not constant over Ω. M = (M(x))x∈Ω denotes a continuous

metric tensor. Following the definitions related to the classical Euclidean metric spaces, one can define the length

between two points a, b ∈ R
3 with respect to M. Let γ(t) = a + t ab with t ∈ [0, 1] be the parametrization of the

segment ab. The length �(ab) of ab is then given by

�(ab) =

∫ 1

0

‖γ′(t)‖M dt =
∫ 1

0

√
tabM(γ(t)) ab dt.

From this formula, one can now state the notion of unit mesh with respect to a continuous metric. The following

definition establishes a relation between a metric field and a mesh.

Definition 1.2. A tetrahedron K is unit with respect to a metric M if the lengths of its edges equal 1 in the metric M.
If (ei)i=1,...,6 are the edges of K, one has �M(ei) = 1, for all i ∈ {1, ..., 6}.
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From this definition, it is clear that there is an analogy between a mesh and a metric field, as far as there is an analogy

between a tetrahedron and a metric. Indeed, one can express some classical notions concerning meshes in terms of

continuous metric field. For instance, in the case of a constant metric M, the volume of a unit element K equals

|K| =
√

2
12

det
(
M− 1

2

)
. Consequently, in the case of a continuous metric field, the volume of an element K can be linked

to the volume of the unit ball ofM(x), which is

∣∣∣BM(x)

∣∣∣ = 4π

3
det (M(x))−

1
2 .

Likewise, the complexity, which is the counterpart of the number of vertices of a mesh, can be now defined as the

quantity:

C(M) =

∫
Ω

√
detM(x) dx.

Indeed, if C(M) is large, the volumes of the units balls of M are small. This definition has the same meaning as the

classical notion of complexity in the case of a mesh, where a large complexity implies tetrahedra with small volumes.

In the following, the complexity is used as the main parameter to govern the desired accuracy.

2. High order error model

In this section, we describe the error model and the optimisation method that we use to approximate d(k+1)u. For

u ∈ Ck+1(Ω) and x0 ∈ Ω, one has, for all x ∈ Ω :

|u(x) − Πku(x)| ≤ C
∣∣∣d(k+1)u(x0)(x − x0)

∣∣∣ + o
(
‖x − x0‖k+1

2

)
, (5)

where C is a positive constant. In this inequality, we recall that d(k+1)u(x0) is a homogeneous polynomial function of

degree k + 1. The main idea to control the interpolation error consists in finding a metric field Q = (Q(x))x∈Ω such

that: ∣∣∣d(k+1)u(x)(y)
∣∣∣ ≤ ∣∣∣ty Q(x) y

∣∣∣ k+1
2 , for all x ∈ Ω, y ∈ R3. (6)

Once Q is found, one can deduce an optimal metric field M which minimizes the interpolation error, like in the case

of the P1 interpolation. In order to be as close as possible to the equality in (6), the volume of the unit ball of Q(x)

must be as large as possible, which is equivalent to consider that det(Q(x)) is minimal, for all x ∈ Ω. Consequently,

from a homogeneous polynomial p of degree k + 1, which stands for d(k+1)u, the problem can be reduced to find a

metric Q such that: {
det Q is minimal,

|p(x)| = 1 =⇒ t x Q x ≥ 1.
(7)

Indeed, since p is a homogeneous polynomial of degree k+1, if Q satisfies the second line of (7) for a point x ∈ R3\{0},
then we have

∣∣∣∣∣∣p
⎛⎜⎜⎜⎜⎝ x

p(x)
1

k+1

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣ = 1, and thus:

⎛⎜⎜⎜⎜⎝ t x Q x

p(x)
2

k+1

⎞⎟⎟⎟⎟⎠
k+1

2

≥ 1 ⇐⇒
(

t x Q x
) k+1

2 ≥ |p(x)| .

The initial condition (6) is verified. From a geometric point of view, we seek for the largest ellipsoid contained in the

level curve of p of level 1, see Figure 1.

For the linear case (k = 1), Q is simply the absolute Hessian of u, |Hu|. For higher interpolates, the main difficulty

is then to derive an optimal metric verifying (7). To do so, we devise a log-simplex algorithm.
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Fig. 1. Example of embedded ellipsoids (in red) into polynomial level curves (in grey) verifying the geometric inequality (6).

2.1. The log-simplex problem

Numerically, we do not consider the entire level curve of P of value 1 but only a few points onto it. Let {x1, ..., xn}
be a set of points such that |p(xi)| = 1, for all i = 1, ..., n. The continuous problem (7) is thus replaced by the discrete

one {
det(Q) is minimal,
t xi Q xi ≥ 1, for all i ∈ {1, ..., n} . (8)

Unfortunately, this problem is always ill-posed, since we can build an ellipsoid passing between two points, with

arbitrary long principal length, which makes the determinant of Q converging to 0, or equivalently the volume of BQ

going to infinity.

Fig. 2. Sequence of diverging metrics, embedded into a set of points representing an error curve when solving direclty (8).

To overcome this difficulty, we propose another approach, which transforms the non-linear ill-posed optimisation

problem (8) into a well-posed linear one. For a metric Q = RΛtR, we define L = log(Q) the symmetric matrix given

by:

L = R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
log(λ1) 0 0

0 log(λ2) 0

0 0 log(λ3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ tR,

where {λ1, λ2, λ3} are the eigenvalues of Q. Notice thatL is no longer a metric, since it is generally neither positive nor

definite. One of the ideas that is largely used in this paper is to consider an optimisation problem for L instead of Q
itself. One property of log(Q) that we will take advantage is that det(Q) = exp (trace(L)). As a consequence, the non-

linear cost function Q → det(Q) of Problem (8) can be changed into the linear one L → trace(L). On the contrary,

the conditions t xi Q xi ≥ 1 which are linear in Q are replaced by t xi exp (L) xi ≥ 1, which are strongly non-linear in L.

One of the main ideas of this paper is to modify the conditions on L into approximated linear conditions.

Let x ∈ R3 \ {0} such that t xQx ≥ 1. Making the change of variables x̃ = tRx and setting {μ1, μ2, μ3} the eigenvalues

of L, we have:

t x exp (L) x ≥ 1⇐⇒
3∑

j=1

exp(μ j)x̃2
j ≥ 1⇐⇒

3∑
j=1

exp(μ j)
x̃2

j

‖x̃‖22
≥ 1

‖x̃‖22
,
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where ‖x̃‖2 is the Euclidean norm of x̃. In particular, it is clear that

3∑
j=1

x̃2
j

‖x̃‖22
= 1, and since R is a rotation matrix one

has ‖x̃‖2 = ‖x‖2. Consequently, the convexity of the exponential gives:

3∑
j=1

exp(μ j)
x̃2

j

‖x̃‖22
≥ exp

⎛⎜⎜⎜⎜⎜⎜⎝
3∑

j=1

μ j

x̃2
j

‖x̃‖22

⎞⎟⎟⎟⎟⎟⎟⎠ = exp

⎛⎜⎜⎜⎜⎝ t xLx

‖x‖22

⎞⎟⎟⎟⎟⎠ .
Thus, we can replace the second line of (8) by the approximated condition:

t xLx ≥ − ‖x‖22 log
(
‖x‖22
)
,

which is now linear in L.

Finally, the optimisation problem that we consider is the following:

Find a symmetric matrix L such that
{

trace(L) is minimal,
t xiLxi ≥ − ‖xi‖22 log

(
‖xi‖22
)
, for all i ∈ {1, ..., n} . (9)

This is actually well-posed, in the sense that the trace of L cannot go to −∞, which implies that the determinant of Q
cannot go to 0 and equivalently that the volume of BQ is bounded. This is stated in the next proposition.

Proposition 2.1. Let L be a symmetric matrix of Rn, with n = 2, 3. Assume that there exist n points x1, ..., xn ∈ R
n

such that:
t xiLxi ≥ − ‖xi‖22 log

(
‖xi‖22
)
, for all i ∈ {1, ..., n} . (10)

If (x1, ..., xn) is an orthogonal basis of Rn, then there exists a constant C ∈ R such that:

trace (L) ≥ C.

Proof: The proof of this proposition is done in 2D, but the extension to 3D is straightforward. Let L be a symmetric

matrix of R2. We write:

L =
(

a c
c b

)
, with a, b, c ∈ R.

Let (x1, x2) be an orthogonal basis of R2 satisfying (10). Up to a rotation, one assumes that x1 = (r1, 0) and x2 = (0, r2)

with r1, r2 > 0. The assumption (10) reads:

ar2
1 ≥ −r2

1 log(r2
1),

br2
2 ≥ −r2

2 log(r2
2).
⇐⇒ a ≥ − log(r2

1),

b ≥ − log(r2
2).

Consequently, we deduce:

trace (L) = a + b ≥ −
(
log(r2

1) + log(r2
2)
)
,

which achieves the proof of this proposition.

�

We have reduced the problem (8) which is non-linear and ill-posed into (9), which is a linear and well-posed under

linear constraints. We will see in the next section that, by approximating the constraints through the convexity of the

exponential, this problem can be far from the initial one, but an iterative process enables us to make it converge to the

initial one.

The resolution of (9) is done by the simplex algorithm. Indeed, the matrix L can be viewed as a vector wQ =

(a, b, c, d, e, f ) of R6,
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L =
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

a b c
b d e
c e f

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

For each i ∈ {1, ..., n}, xi denotes both a point of R3 and its coordinates (xi, yi, zi). The log-simplex problem (9) can be

rewritten: {
minimize a + d + f ,
x2

i a + 2xiyib + 2xiyic + y2
i d + 2yizie + f z2

i ≥ Ci, for all i = 1, ..., n,

with Ci = − ‖xi‖22 log
(
‖xi‖22
)
. With this formalism, each constraint corresponds to an hyperplane of R6, and the whole

set of constraints forms a simplex in R
6 in which the admissible solutions are taken. The cost function is nothing more

than
〈
v,wQ

〉
R6 with v = (1, 0, 0, 1, 0, 1). This illustrates that the direction −v prevails among the others to make the

cost function decrease. In particular, if there is an optimal admissible solution, it must be a node at the intersection of

six hyperplanes. More details on the numerical implementation of the simplex algorithm can be found in [5].

2.2. Resolution of the log-simplex problem

With the simplex algorithm, we are able to solve the log-simplex problem. But, since we make the convex approx-

imation (9) on the constraints, it is not always sufficient to obtain an accurate metric Q. Indeed, as we can see on

Figure 2.2, the log-constraints can be far from the initial ones when the level set of p is anisotropic.

Fig. 3. Illustration of the log approximation for the constraints for an error level 1 (in grey). The log-simplex optimal metric (in red) is far from the

boundary of the error due to the convexity approximation.

To avoid this problem, we consider an iterative process. The idea is to perform iteratively the change of variable

x̃ = Q
1
2 x on R

3. By doing this, we transform the ellipsoid BQ into the sphere S 2 ⊂ R
3. We then perform the simplex

method with a set of points chosen on the level set of level 1 of p◦Q−
1
2 and iterate the process, which gives a sequence

(Qj) j∈N of metrics.

More precisely, let {z1, ..., zn} be a set of points of the unit sphere S 2 ∈ R
3. Given a metric Qj, we obtain a set of

points {y1, ..., yn} of the level set of p ◦ Q−
1
2

j through the mapping :

yi =
zi∣∣∣∣∣∣∣∣∣∣∣∣∣p(Q−

1
2

j zi)

∣∣∣∣∣∣∣∣∣∣∣∣∣
1
k

.

Then, we perform the log-simplex algorithm and solve the problem (9) with the constraints points (yi)i=1,...,n and obtain

an optimal symmetric matrix L j+1. Finally, we recover Qj+1 in the original variables by the formula :

Qj+1 = Q
1
2

j exp
(
L j+1

)
Q

1
2

j .

The next theorem ensures that if this iterative process converges to a metric Q, then this metric approximates well the

level set of level 1 of p.

Theorem 2.1. Let p be a homogeneous polynomial and {z1, ..., zn} be a set of points of R3 such that ‖zi‖2 = 1 for all
i = 1, ..., n. Let (Qj) j∈N be the sequence of metrics of R3 defined by
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• Q0 = I3

• Qj = Q
1
2

j−1
exp
(
L j

)
Q

1
2

j−1
where L j is an optimal solution of the log-simplex (9) problem with the constraint

points {y j
1
, ..., y j

n} defined by:

y j
i =

zi∣∣∣∣∣p(Q−
1
2

j−1
zi)

∣∣∣∣∣
1
k

, for all i = 1, ..., n.

If the sequence (Qj) j∈N converges to a metric Q then the sequence (y j
i ) j∈N converges to yi ∈ R3, (L j) j∈N converges to

L = 0. Furthermore, we have:

tyiL yi ≥ − ‖yi‖22 log
(
‖yi‖22
)
⇐⇒ t xi Q xi ≥ 1,

where, for all i ∈ {1, ..., n}, xi = Q−
1
2 yi is a point of the level set of level 1 of p.

Proof: The proof of this theorem is almost straightforward. Assume that Qj → Q when j goes to infinity. Since

L j = log
(
Q−

1
2

j−1
Qj Q−

1
2

j−1

)
,

by passing to the limit when j→ +∞, we deduce that L j converges to a symmetric matrix L = log(I3) = 0. It is also

clear that, since (zi)i=1,...n is fixed, y j
i converges for every i to yi =

zi

p(Q− 1
2 zi)

1
k

when j → +∞. By passing to the limit

in the constraint inequalities of (9), we get:

0 ≥ − ‖yi‖22 log
(
‖yi‖22
)
⇐⇒ 0 ≥ − 1∣∣∣∣p(Q− 1

2 zi)
∣∣∣∣

2
k

log

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1∣∣∣∣p(Q− 1

2 zi)
∣∣∣∣

2
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⇐⇒ 0 ≥ log

(∣∣∣∣p(Q−
1
2 zi)
∣∣∣∣

2
k

)
⇐⇒ 1 ≥

∣∣∣∣p(Q−
1
2 zi)
∣∣∣∣

2
k
.

Since, ‖zi‖2 = tzi Q−
1
2 Q Q−

1
2 zi = 1, we have:

1∣∣∣∣p(Q− 1
2 zi)
∣∣∣∣

2
k

≥ 1⇐⇒
tzi Q−

1
2 Q Q−

1
2 zi∣∣∣∣p(Q− 1

2 zi)
∣∣∣∣

2
k

≥ 1⇐⇒ t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Q−

1
2 zi∣∣∣∣p(Q− 1
2 zi)
∣∣∣∣

1
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Q−

1
2 zi∣∣∣∣p(Q− 1
2 zi)
∣∣∣∣

1
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥ 1⇐⇒ t xi Q xi ≥ 1,

which achieves the proof.

�

2.3. Infinite branches

Another difficulty lies in the fact that the level set 1 of the homogeneous polynomial p can have infinite branches,

i.e., sub vector spaces such that for a non-zero vector x0 ∈ R
3, we have p(x0) = 0. In this case, the log-simplex

algorithm can produce a sequence of metrics (Qj) j∈N such that det(Qj) → 0 when j goes to infinity, or equivalently

the volume of the unit ball of Qj goes to infinity.

The strategy to get rid of those infinite branches is based on the factorization of the polynomial p to an approximated

version of it which does not have vanishing points. Notice that in the case of the P1 interpolation, this problem does

not occur, since we only have to take Q = |Hu|, with Hu the Hessian matrix of u. We take advantage of the next

proposition.

Proposition 2.2. Let p be a homogeneous polynomial of degree d given by

p(x, y, z) =
∑

i+ j+k=d

ai, j,k

(
d

i, j, k

)
xiy jzk, where ai, j,k ∈ R and

(
d

i, j, k

)
=

d!

i! j!k!
.



361 Olivier Coulaud and Adrien Loseille  /  Procedia Engineering   163  ( 2016 )  353 – 365 

Fig. 4. Grey: the level set of a polynomial of degree 2. Red: a sequence of metrics whose volume go to infinity

The polynomial p can be written:

p(x, y, z) =
∑

i+ j+k=d−2

xiy jzk
(

tX Hi jk X
)
,

where X = (x, y, z) and (Hi, j,k)i+ j+k=d−2 are explicit symmetric matrices given by

Hi jk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ai+2, j,k 2ai+1, j+1,k 2ai+1, j,k+1

2ai+1, j+1,k ai, j+2,k 2ai, j+1,k+1

2ai+1, j,k+1 2ai, j+1,k+1 ai, j,k+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Proof: This proposition is due to H. Borouchaki and P-L. George [1]. The proof is straightforward.

�
When resolving the log-simplex problem, one replaces the homogeneous polynomial p of order k + 1 by the function

q(x, y, z) =
∑

i+ j+l=k−1

∣∣∣xiy jzl
∣∣∣ (tX ∣∣∣Hi jl

∣∣∣ X
)
,

where k is the interpolation order and (Hi, j,l)i+ j+l=k−1 is given by Proposition 2.2. Through this method, we are able to

avoid infinite branches in the resolution of the log-simplex problem.

2.4. Optimal multi-scale metric

Once we have computed the metric field Q = (Q(x))x∈Ω, we then have to derive the optimal metric field MLp =

(MLp (x))x∈Ω which minimizes the Lp−interpolation error when considering unit meshes with respect to MLp . To do

so, we follow the steps developed in [11]. In our case, we can show that for all H unit mesh with respect to a metric

field M = (M(x))x∈Ω with fixed complexity N, there exists a positive constant C such that:

‖u − Πku‖H ,Lp ≤ C
(∫
Ω

∣∣∣∣trace
(
M− 1

2 (x)Q(x)M− 1
2 (x)
)∣∣∣∣

p(k+1)
2 dx

) 1
p

= ELp (M). (11)

Then, by a calculus of variations that we solve by following [11], we obtain the optimal metric field MLp which

minimizes the right hand side of the inequality (11). It is given by

MLp = N
2
3

(∫
Ω

(det Q)
p(k+1)

2p(k+1)+6

)− 2
3

(det Q)
−1

p(k+1)+3 Q,

and satisfies the following equality:

ELp (MLp ) = 3
k+1

p(k+1)+6 N−
k+1

3

(∫
Ω

Q
p(k+1)

2p(k+1)+6

) p(k+1)+3
3p

.

In particular, if k = 1 and Q = Hu, one recovers the optimal metric obtained for the P1 adaptation. Notice also that

asymptotically, there exists a positive constant C such that

ELp (MLp ) ≤ C

N
k+1

3

when N � 1.
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3. Numerical simulations

For the numerical validations, the adaptive strategy is illustrated for interpolations of order 1 to 5. For each

function, only the discrete Pk solution is used to recover the differential form of order k + 1., i.e., we never used the

exact derivatives of the function, only its point-wise values are used. To do so, we have extended the L2 projection to

the case of high-order differential forms [15]. Once the numerical (k + 1) differential form is recovered, we apply the

log-simplex algorithm and derive the optimal Lp metric for a given complexity. The interpolation error ‖u−Πku‖L2(Ω) is

computed using a 10th order Gauss quadrature integration. To compare simultaneously different interpolation orders,

the degrees of freedom (DoF) are used instead of the number of the nodes. The error is then used to compare the

convergence rate to the optimal expected one. We also compare the interpolation error with respect to sequences of

uniform meshes. The anisotropic meshes are generated by using a unique cavity operator [12]. We now describe the

analytical functions.

The first function g is derived from the gyroid equation:

g(x, y, z) = 10 ( 500 cos(x) sin(y) + 50 cos(y) sin(z) + 10 cos(z) sin(x) )

−2 ( cos(x) cos(y) + 0.5 cos(y) cos(z) + cos(z) cos(x) ) − 10.

This function is very smooth. The iso-values are depicted in Figure 5 (left). For interpolation of order k with k ∈ [1, 5]

the asymptotic convergence order k+1 is reached very quickly for each k, see Figure 5 (middle). The finest P1 mesh is

composed of 606 834 vertices, 83 338 triangles and 3 536 090 tetrahedra. For an equivalent level of DoF, the P2 mesh

is composed of 68 578 vertices, 15 274 triangles and 390 385 tetrahedra, the P3 of 17 263 vertices, 5 606 triangles

and 95 359 tetrahedra, the P4 8 755 vertices 3 432 triangles and 47 348 tetrahedra and the P5 of 4 502 vertices, 2 218

triangles and 23 519 tetrahedra, see Figure 6. Due the high-regularity of the function, the level of anisotropy decreased

when k increases. To assess the optimality of the meshes, the comparison with the error obtained on uniform mesh is

depicted in Figure 5 (right). For each k, the adapted meshes are always below the error curves of the uniform meshes.

z=0
−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Fig. 5. From left to right, gyroid function g iso-values, rate of convergence for the optimal meshes for order 1,2,3,4 and 5 and comparaison

with uniform meshes. Uniform meshes correspond to plain lines while adapted meshes to dashed lines. The same color corresponds to the same

interpolation order.

The second function oscillates at high frequency and contains small details, it is given by :

fr(x, y, z) = 8 xyz sin(5 π xyz)4 +
1

10

(
1 − (sin(5 π xyz)4

)8
cos(100 π xyz).
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Fig. 6. P1, P3 and P5 meshes for an equivalent level of DoF.

The high frequencies variations of the function is depicted in Figure 7 (left). In this case, the asymptotic rate of

convergence is not reached directly due to the small details of the function that are captured for sufficiently small sizes

of the mesh, especially for k > 1. This does not appear for the linear case as the finest mesh is still too coarse with

respect to these variations of small amplitudes. The final mesh for P1 contains more that 2 000 000 vertices while the

equivalent mesh for P5 in term of DoF contains 19 779 vertices, 11 214 triangles and 101 592 tetrahedra for a error

level 3 orders of magnitude below the linear curve. The uniform meshes have a similar behavior, see Figure 7 (right).

Again, the sequence of adaptive meshes have lower error curves and the error is 2 order of magnitude smaller in the

asymptotic range for P5 interpolation. Contrary to the gyroid function, a high level of anisotropy is kept for all k due

to the small frequencies, see Figure 8.

Fig. 7. From left to right, 1D extraction along the line xyz = cst, rate of convergence for the optimal meshes for order 1,2,3,4 and 5 and comparisons

with uniform meshes. Uniform mesh correspond to plain lines while adapted meshes to dashed lines. The same color corresponds to the same

interpolation order.

The last function represents a smooth shock function:

fs(x, y, z) = 10 atan
( x
ε

)
+ cos(y z) with ε = 0.01.
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Fig. 8. P1, P2 and P4 adapted meshes respectively for the same number of DoF for fr function.

In this case, the asymptotic rate of convergence is reached for larger DoF for k = 3, 4, 5 due to the Gibbs phenomena

that occur on small complexity (coarse) meshes. The most interesting feature is to see that the asymptotic rate of

convergence is not reached for practical sizes in the case of uniform meshes, see Figure 9 (right) whereas this order is

captured far earlier with adaptivity. For P5, almost we have 10 order of magnitudes gain for the adaptive mesh with

respect to the uniform one. For the first 3 meshes for k = 3, 4, 5, the meshes are extremely coarse, less than 3 000

nodes.

Fig. 9. From left to right, 1D extraction along x-axis, and iso-values in yz-axes, rate of convergence for the optimal meshes for order 1,2,3,4

and 5 and comparison with uniform meshes. Uniform meshes correspond to plain lines while adapted meshes to dashed lines. The same color

corresponds to the same interpolation order.

Conclusion

An adaptation procedure to generate anisotropic mesh with Pk interpolation has been introduced. It is based on

iterative algorithm to derive a local optimal metric to approximate a given (k + 1) differential form. At each step, a

simple linear log-simplex problem is solved in the logarithm space of metric fields . This optimal local metric is then

globally optimized via a calculus of variation to obtain the optimal distribution of the DoF in Lp norm. This strategy
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Fig. 10. P1, P3 and P4 adapted meshes for fs function for the same level of DoF.

has been tested on various 3D examples where the optimal rate of convergence was exhibited. For all the adaptive

cases, the adaptive meshes have a lower level error and reach faster the asymptotic rate of convergence.

The current work is directed at (i) extending this strategy to h − p adaptation and (ii) coupling this strategy with

automatic shock detection for solution involving both smooth and sharp features. The current procedure can take as an

input curved meshes as this consists in adding the element mapping in the procedure to compute the k + 1 derivative.

Consequently, the only limitation to employ curved meshes is in the mesh generation phase. This crucial point is

currently investigated.
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