
HAL Id: hal-01438198
https://hal.science/hal-01438198

Submitted on 17 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unknown Area Exploration with an Autonomous Robot
using Markov Decision Processes

Simon Le Gloannec, Laurent Jeanpierre, Abdel-Illah Mouaddib

To cite this version:
Simon Le Gloannec, Laurent Jeanpierre, Abdel-Illah Mouaddib. Unknown Area Exploration with an
Autonomous Robot using Markov Decision Processes. TAROS, Guido Bugmann; Tony Belpaeme,
Aug 2010, Plymouth, United Kingdom. �hal-01438198�

https://hal.science/hal-01438198
https://hal.archives-ouvertes.fr

Unknown Area Exploration with an Autonomous Robot using Markov
Decision Processes

Simon Le Gloannec and Laurent Jeanpierre and Abdel-Illah Mouaddib

Abstract— This paper addresses the problem of exploration of
an unknown area by an autonomous robot. The robot decides at
each step where it has to move, without any human intervention.
The Goal is to gather the maximum information in a minimum
time. This work is based on the Markov Decision Processes
framework. We focus on the decision problem : the robot
must automatically select points where it can maximize its
information gain. Even if the goal of the robot is to produce a
map of the environment, the localization aspect is not treated
in this paper. We divide the environment into three layers.
One Layer where the robot moves, another where the map is
constructed and a last layer where decisions are taken. As this
model is suitable for small robots with cheap sensors we present
some experiments on real robots, with very good results.

I. INTRODUCTION

We are considering an exploration mission with an au-
tonomous robot in an indoor unknown area. The robot
decides at each step where it has to move, without any
human intervention. The main objective of exploration is to
maximize the knowledge about the environment. The robot
has to move towards locations that maximize the information
gain. Controlling a robot for exploration consists of defining
exploration actions.

Actually, one cannot plan a static and deterministic path
from the actual position to another location, because one
cannot predict exactly the next position. Actions are not
deterministic and thus we have to account for uncertain
outcomes. For example, a robot may slip or stall during an
action, leading to a position longer or shorter than expected.
Furthermore, it is not always feasible to get the exact posi-
tion for the robot. The Markov Decision Processes’ (MDP)
framework produces a policy that tells the right action to use
from any situation in order to maximize the exploration gain
while considering the uncertainty of the actions.

The exploration model is fully subsumed by the (PO)MDP
(Partially Observable MDP) framework and applied in many
domains such as planetary exploration [1], search and
rescue[2] and abandonned mine mapping [3], [4]. However,
exploring using POMDPs meets the curse of dimensionality
and limits its application to exploration domains because
it considers uncertainty on observations, on outcomes of
actions and on its own state. Recent research has focused
on algorithms that scale up. The most popular algorithm is
QMDP, which transforms a POMDP into an MDP of beliefs
which has the same complexity as an MDP [5].

{slegloan,laurent,mouaddib}@info.unicaen.fr
All authors are with GREYC, Université de Caen Basse-Normandie,

UMR 6072, 14000 Caen, France

In POMDPs, beliefs represent the distribution probability
on states and their set is huge. To reduce this set, particle
filter versions of the POMDP algorithms approximate beliefs
by a finite set of states. This class of techniques is named
Monte-Carlo POMDP [6]. Other techniques based on specific
structure or augmented MDP allow to reduce the complexity
of POMDP. Recently, a new algorithm named TOP [7],
which is one of the most competitive algorithms, based on
topological organization of the space to better organize the
resolution, has been developped.

However, even state-of-the-art algorithms like TOP are not
able to cope with the complexity of realtime exploration
because of the combinatorial induced by the unknown en-
vironment. Therefore, in this work, we will consider that
the precise location of the robot is known thanks to any
possible way: Odometry, GPS, Scan-matching, ... Then, a
simple MDP is able to compute a relevant policy to choose
exploration actions. If the localization module is able to
produce a belief instead of a single position, a QMDP step
can use this information along with the MDP values to
provide an even better choice.

The approach we present can be extended to multiple
robots that explore the area collaboratively. The use of
several robots in this context shows several benefits such
as speeding up the exploration and improving the robustness
and the fault tolerance of the team. MDPs and POMDPs
have been extended to Decentralised MDPs (Dec-MDP)
and Decentralized Partially Observable Markov Decision
Processes (Dec-POMDP). Dec-(PO)MDPs are a smart way
to address this kind of problems using multiple robots but it
has an even higher complexity for computing a solution[8].
This typically limits the scalability in terms of number of
agents and of the size of the area to explore.

However, new coordination mechanisms for several robots
have been developed recently using MDPs instead of Dec-
MDPs. One of these models, Vector Valued Decentralized
Markov Decision Process (2V Dec-MDP) [9], is based on
a two steps mechanism: the first one localizes areas with
a high information gain, while the second computes the
coordination with local observations and interactions limited
to these areas. In another model, Opportunity-Cost Dec-
MDP (OC-Dec-MDP) [10], the coordination is based on the
constraints between task executions, these tasks being spread
among lots of agents by the algorithm. These two approaches
are very interesting because we can compute solutions for
larger problems while keeping the Dec-MDP formalism.

In this paper, we work on a partially known environment,
in which a robot that knows its exact location has to decide

where to go to gather as much information as possible as
fast as possible. Therefore, the policy must be computed
frequently on-board with limited resources. Each time the
robot aquires new data, it has to find new goals and compute
a policy to reach them. Thus, the policy computation has to
be quick to avoid long pauses and wasting time while waiting
for the policy to be ready for use.

The outline is the following. We first present the model and
the algorithm the robot uses to explore its environement with
almost no knowledge of its stucture. This algorithm consists
in three steps: the data acquisition, the search for new goals
and finally the computation of the policy and its execution.
In section V, we show the experimental conditions of the
exploration and the results that we obtained with a single
robot. Finally, we present in section VI the model extension
to multiple agents.

II. CONTEXT AND TARGET APPLICATION

This work is a part of the French national challenge
”Cartographie par un Robot d’un Territoire” for exploring
and mapping an unknown area (CAROTTE), funded by the
”Agence Nationale de la Recherche” and the ”Direction
Générale de l’Armement”. In this project, a robot or multiple
robots must produce a map of the environment and must de-
tect instances of objects like chairs, books, furnitures, boxes,
etc. The mission lasts thirty minutes at most; during this time
robots work autonomously to map an area included in a 20
meters width square and to return to its starting position.
Several competitors will participate to this challenge where
the goal is to maximize the covered space, the precision of
the map and the number of detected objects.

The six wheels robot we use is equiped with a Led
Range Finder that detects obstacles in the environment as
a vector of distance measurements. This kind of robot has
several advantages as far as exploring is concerned. Its
main benefit is its moving pattern. It can go forward or
backward, rotate without moving or even rotate while moving
forward or backward. Additionally, it can climb over small
obstacles or cross over small holes in the floor. However, its
main drawbacks are a quite high energy consumption and
classically poor odometry.

The environment is static: several boxes, objects and
furnitures encumber the rooms to explore but do not move
during the experiment. The objective for the robot is to
produce a map of its environment, with as many details as
possible. In this article, we will focus more precisely on the
autonomous decision making and on the exploration strategy
rather than on the localisation. This part is left for future
work. Although the challenge includes taking pictures and
locating objects, we will not address this task in our current
presentation.

III. BACKGROUND ON MARKOV DECISION PROCESSES

An MDP [11] is a fully observable Markov Decision
Process represented by a tuple 〈S,A, T,R〉 where: S is the
finite set of states that represent the environment for an
agent; A is the finite set of possible agent actions; T :

S ×A→
∏

(S) is a state transition probability distribution,
T (s, a, s′) = Pr(st = s′|st−1 = s, at−1 = a) is the
probability of transitioning from state s to state s′ after doing
action a; R : S × A × S → < is the reward function
mapping S × A × S to a real number that represent the
agent’s immediate reward for making action a while being in
state s. To solve an MDP, we calculate a policy π that maps
each actual state of the system to the optimal action that
maximizes the long-term expected reward πMDP : st → a.

IV. OUR MODEL AND EXPLORATION ALGORITHM

In this part, we explain how our model is built upon the
MDPs framework to quickly build an exploration policy.

The main algorithm for exploration is an infinite loop
which consists of:
• acquiring data from the environment, typically with a

Laser Range Finder sensor,
• finding interesting locations to explore,
• computing a policy to reach one (or more) of these

points,
• executing the actual policy.
Each time the robot acquires new data, it has to find new

points of interest and it must compute a new policy to reach
them. These points are defined as poses, which are oriented
locations where it is best to gather new information. This
technique is classically named “Next Best View” (NBV). We
based the policy computation on Markov Decision Processes
(MDP), which are renowned for their ability to cope with
uncertainty. Additionnally, very efficient algorithms based on
Dynamic Programming are available to solve them quickly.

Our representation is based on an occupancy grid. More
precisely, we divide the model in three layers (see Figure 1).
The real environment is represented in the first layer. It
mainly includes the interface with the physical robot. The
map is stored in the pixel layer, which is a human-readable
picture. This intermediate layer is both close to the real
world and to the decision layer. The MDP computation
occurs in the third layer that we have divided into hexagons.
Since hexagons have six natural orientations, the robot has
a smoother behaviour while applying the movement actions
in our model. Moreover, the transition matrix, which models
the effects of the robot’s actions, is easier to define.

real world layer

pixels layer

hexagons layer

Fig. 1. Hexagonal occupancy grid. The real world features are projected
simultaneously onto a pixel map and onto a hexagonal decision map.

free pixel
unknown pixel
occupied pixel

occupied cell (> 0)

free cell

legendunknown cell

LR
F

LRF ray

Fig. 2. Occupancy update with Bresenham’s algorithm. Pixels update from
a single laser ray.

A. Data acquisition

Data are acquired with a ten meters Led Range Finder
sensor (LRF). This cheap version of a Laser Range Finder
measures 102 distances, every 0.7 seconds approximately.
Data come from the real environment and are stored into
the pixel layer according to Figure 1. Since we base our
approach on the occupancy grid technique, each pixel has
a value φ ∈ [0..255] with a starting value equal to 128:
fully unknown. The LRF throws rays that may hit features
in the environment. Therefore, the robot receives a measured
distance for each ray cast. The pixels related to a particular
ray are updated with the help of Bresenham’s algorithm [12].
Figure 2 describes this operation. Each time a ray passes
through a pixel, its value increase up to 255: totally free.
Each time a feature is hit in the environment, an obstacle
is detected. On the pixel layer, the associated pixels’ value
decrease down to 0: totally occupied. Any pixel will be
considered as occupied if its value is lower than a Threshold
To. On the contrary, it will be considered as free if the value
is higher than the threshold Tf . Other pixels are considered
as unknown (Tf < φ < To).

While the data acquisition process updates the pixel layer,
it also updates the hexagon layer as soon as a given pixel
crosses one of the thresholds. This handles the uncertainty of
the perception by delaying the update of the decision layer
until the new information are confirmed.

The robot uses the hexagon layer to make decisions
(see IV-C). An hexagon is composed of a set of pixels. It
will be considered as occupied if at least one of its pixels is
occupied. This represents the obvious risk for colliding with
objects. If the ratio of unknown pixels in a given hexagon is
less than a threshold Tr, the hexagon cell will be considered
as free. Other cells will be considered as unknown.

The LRF data acquisition is done repeatedly, almost 1.5
times per second. When the hexagon layer has been updated,
the algorithm has to compute the next interesting points to
visit based on those new data.

B. Searching for interesting points
The robot has to explore the whole environment. Each

time it receives new data, it has to look for new interesting
destinations. The best view pose is a location that is close
enough and an orientation that allows gathering lots of new
information about the environment.

In this part, we work on the hexagon layer which is used
to make decisions. We forbide the robot to move directly to
unknown cells, because it may be dangerous. We also forbid
the robot to hit the walls, because this is clearly dangerous.
However, it is possible to go through free cells.

The frontier between unknown cells and free cells are con-
sidered as interesting, because looking at unknown cells well
probably provide the robot with new information. However, it
is not necessary to reach such a cell to obtain the information.
It is generally sufficient to look straight at it. Additionally,
unknown cells neighbouring with obstacle cells would not
be interesting because the robot cannot move to it without
collision. Therefore, we put some positive reward values on
free cells that are in the unknown cells neighbourhood. This
way, the robot comes into free cells that will provide new
information when facing the right direction.

Fig. 3. Propagating the reward into the environment. Here, an unknown
cell propagates its reward over a radius. White arrows show impossible
propagations whereas black ones represent active propagations. Stars are
the resulting rewards.

Figure 3 shows the reward propagation mechanism we
implemented. For any unknown cell the reward is propagated
in a neighbourhood with a given radius (the grey dotted circle
int he figure). Starting from a cell, the algorithm propagates
rewards if the line of sight is free (black arrows) and it stops
the propagation if it encounters an occupied or an unknown
cell (white arrows). The reward value of each free cell is
increased each time we add a reward to it. With this method,
free cells in the neighbourhood of unknown cells have a
high amount of reward and free cells in front of walls does
not have reward. This update is done all over the map, but
it could be narrowed to the immediate neighbouring of the
robot.

We can note that rewards will never be gained by the
robot. In fact, as it comes close enough, its LRF will gather
new information and unknown cells will hopefully become
known before they are reached. Therefore, the rewards will
disappear before the robot can claim them. The side effect
of this is that the orientation of cells is not necessary as far
as rewards are concerned. Formally :

R(s) = R(xH , yH , θ) = R(xH , yH)

=

 r > 0 if (xH , yH) is free
& (xH , yH) is near an unknonw cell

0 otherwise

The fact that all unknown cells are simultaneous sources of
reward removes the obligation of choosing Best View Points
(BVPs), and then computing a path to reach all of them
before choosing the most interesting one. The Value Iteration
algorithm, which is described in the next section, computes
simultaneously the paths to all the frontier cells, along with
their costs. As a matter of fact, it even chooses which is
the most interesting BVP for all the known positions and
orientations.

Once we have computed the rewards for all the cells, the
robot is able to compute its policy, so that it will be able to
act optimally in the discovered environment.

C. Computing the robot’s policy

The decision making process is based on the Markov
Decision Processes (MDP) framework. Here, the MDP is
a tuple {S,A, T,R} where :
• the states space S represents all possible poses (oriented

locations) for the robot,
• the actions set A contains available actions (described

in Figure 4),
• the transition function T : S×A×S → [0, 1] describes

the probability to be in the state s′ after having executed
action a in state s,

• the reward function R : S → R indicates the value the
robot gains in each possible state.

The policy is computed with the Value Iteration algorithm
[13], that applies Dynamic Programming to solving MDPs
efficiently. A policy is a mapping from S to A; it indicates
the best action for the robot in each possible state. This policy
maximizes the value function, which is the solution of the
Bellman equation system.

When the policy is calculated, the robot executes the action
that correspond to its oriented position (state). Then it reads
the new position, and performs the corresponding action until
a new policy is ready.

1) The state space: The state represents the robots pose. It
includes the coordinates of the robot center and its orientation
in the hexagonal grid: S = {(xH , yH , n), n ∈ [0..5]}.

The choice of the hexagon size really matters in this
application. If we chose too small hexagons, we would have
a very large state space. This would have increased the
computing time since the complexity of Value Iteration is
S2 · A. On the other hand, if we chose too large hexagons,

they would cover a lot of real space. Since we consider that
the robot cannot cross a cell if there is at least one pixel
occupied, it would severly reduce movement possibilities.
For example, with a 50 centimeters hexagon configuration,
it would happen that hexagons overlap an open door on both
sides. In this case, an open door would be seen as a wall.
For these reasons, we choose 15cm large hexagons.

forward right

forward

forward left

turn right turn left

current pos

next pos

legend

Fig. 4. The robot actions. Solid lines represent current pose while dashed
lines figure the pose resulting from the actions.

Fig. 5. The robot mask. Dark cells show the robot’s current position. Gray
cells show the required free cells for the “forward” action to succeed.

2) The 5 actions: The 5 actions we have implemented
are described in Figure 4. They model the movement of the
robot’s center.

3) The transition function: An action’s outcome depends
on the cells that the robot will cross during it’s movement.
Since the robot can be so large that its body overlaps several
cells, we have to test if any of the robot’s mask cell will hit
an occupied or unknown cell during its movement to decide
if the action is likely to succeed or not. The robot we use
covers 18 hexagons (see Figure 5).

We introduce an action mask for each of the actions. As
an example, the mask for the “forward” action is depicted
in the light grey cells of Figure 5. If there is at least one
occupied or unknown cell into the action mask, we consider
that the action will fail: the robots stays in place. Otherwise
the robot goes to its intended new position and orientation.
Considering all these assumptions, we obtain a factored
transition function representation with a sparse transition
matrix.

This function is updated as soon as the map is modified
due to the robot exploration. When new cells are uncovered
as free, relevant transitions are updated to allow the robot
to go through. When new obstacles are discovered, relevant
transitions are updated so that the robot avoids them and
chooses an alternative path.

Since the transition matrix is really sparse, it is straight-
forward to reduce the complexity of Value Iteration from
S2 ·A down to B · S ·A, B being the maximum branching
factor, that is the maximum number of states reachable from
a single start state.

This brings up another possible enhancement. If we sup-
pose that the transition function is deterministic, we can
drastically reduce the complexity of the algorithm since
B = 1. However, it must be understood that this may degrade
the policy since the robot would not consider anymore
that its actions may fail. One possible way to overcome
this limitation would be to increase the actions’ mask to
provide more safety. However, this increases the complexity
of computing the transition function, and does not account
for slipping or drifting, for example.

4) The reward function: The reward function is computed
according to the section IV-B. This reward is negative when
the robot encounters walls, and high rewards are located
around frontier cells, between free and unknown cells.

Since the robot has to return at its starting point, we
added a reward to the initial position. This reward grows
exponentially with time so that it become more interesting
as the deadline approaches. this prevents the robot from
exploring a new path to the end point. However, this allows
for a simpler scheme, with exploration as the only goal until
it decides leaving the area. This avoids tuning the usual
exploration/exploitation problem stated in [14]

5) Choosing the horizon: The last two parameters of any
MDP are the discount factor, and the horizon. The discount
factor γ is a weighting factor that reduces the value of future
events. The horizon H is the number of actions that are
considered when making the decision.

In our model, the discount factor has little influence on
the model. It weights the attractiveness of far rewards with
respect to close ones. However, if gamma is set to a value
too close to 0, the robot may not be able to reach rewards
if they are too far.

The main parameter of interest is the horizon. When
the policy is computed with Value Iteration, H actions are
considered before making a decision. Any reward that is
farther will not be considered. This is not a big problem
since new rewards are generated when the robot uncovers

fresh unknown areas. Actually, the frontier between known
and unknown areas, which is the source of the rewards, goes
back as the robot moves toward it.

In general, there are lots of rewards all around the robot
because it goes toward them. When the robot moves closer
of the frontier, new unkwown areas are uncovered, and the
state space has to be updated. Therefore, a new policy will
be computed after a few actions. Anyway, any increase of H
also increases the computing time because another iteration
must be computed for each new action. Thus, H should be
kept as low as possible, so that policies may be computed
more quickly.

However, when the robot has reached a dead end, for
example a corner of the room, the frontier goes behind
the walls. At this time, it does not generate new rewards
anymore. Then, there are two distinct situations. If there are
some reachable rewards around the robot, the new policy
will automatically bring the robot to them. If there is none,
the robot may be trapped in a area where no action if better
than the others.

To account for this situation we dynamically change the
horizon H depending on the value function. Let’s remember
the value function is the discounted sum of all the rewards the
robot expects to gain when following the policy. Therefore,
if the value function measured at the current location of the
robot is below some threshold, H is increased so that rewards
generated earlier become reachable. At this time, a lengthy
policy computation occurs and the robot obtains a policy that
allows it for exploring unknown distant areas.

When the robot finally comes back to an area where
rewards are close enough, H can be brought back to a lower
value to save computation time and to increase reactivity
while computing short-term policies more frequently.

V. EXPERIMENTS

During the challenge, the robot must explore an area of
120 m2 in less than 30 minutes. It must also take pictures
of the environment to detect some objects. We use is a
Koala robot equiped with a Led Range Finder PBS-03 from
Hokuyo Automatic LTD. The LRF spans a measure of the
environment every 1.8 degrees. Each measure ranges up to
10 meters but experiments show it is only reliable under
5 meters. The room in which the robot evolved in this
experiment was partially closed. Some doors (on the left of
the map and also in the picture) were partially closed so
that the robot cannot cross through them. The robot can still
detect some free space in these rooms but cannot reach them.
Some boxes had been scattered in the environement to make
walls, objects and such other things (see Figure 11).

We instanciate our three-layer architecture as follows:
The first layer is a 20 × 20 m square. The robot moves
autonomously in this square. The second layer contains a
1024×1024 pixels map. Each pixel represent 2×2 cm square
in the real world. This map is one of the challenge expected
result. The third layer contains 183 × 156 hexagons. Each
hexagon is 15 cm width (between two opposite edges) and
contains approximately 40 pixels.

We obtain the map depicted in Figure 6. The grey area
represents the unknown space. Walls, boxes and other ob-
stacles are painted with black dots while free space is filled
with white. On the left of the map, the robot has seen some
free space, but it is unable to reach it because doors are not
opened large enough for a robot.

Fig. 6. Resulting map. Pixels’ colour ranges from Black (obstacle) to
White (free). Gray shades represent the uncertainty.

Fig. 7. Decision layer. Each hexagon is labelled (coloured) as Free (White),
Unknown (Gray) or Occupied (Black).

In the lower-right corner of the map, there is a fontier
between unknown cells and free cells that is still reachable.
As a result, the reward function in this area is high. Rewards
are depicted in Figure 8. White hexagons correspond to
negative rewards, black hexagons represent zero reward cells
and grey hexagons are cells with positive rewards. The
robot has computed a new policy with these data. The
corresponding value function is depicted in Figure 9. This
is a far-reward situation with H > 100. We can see that

Fig. 8. Reward function. Each hexagon is coloured by the reward the robot
gains for being there. Pure White is really bad (walls), Black is neutral,
Grays are positive rewards (the brighter the greater).

Fig. 9. Value function (1 angle out of 6). Each pose is coloured by the
value the robot would gain following the optimal policy starting from there.
Brighter shades represent greater values.

the expected value becomes greater and greater as the robot
comes closer the the unknown area. This effectively brings
the robot to this area so that it gets explored.

In this experiment, the explored area is approximately
six meters large and seven meters long. It represents ap-
proximately 100000 pixels. We measure the time that is
necessary to discover the whole area. The results are depicted
in Figure 10, it represents the number of explored pixels in
the map versus time. Each time step is during 1.8s. We have
made several experiments in this room, that show similar
results. In the two runs shown here, we separate free pixels
from occupied pixels. We observe that the robot has explored
the whole area in less than 10 minutes (300-350 time steps).
After 10 minutes no new areas are discovered except in the
second experiment : the robot unfortunatelely gather some

”new information” through the windows and half-opened
doors. This information is not accounted for, since it does
not belong to the room to explore.

0

20000

40000

60000

80000

100000

120000

0 200 400 600 800 1000

Free cells
Occupied cells

n
u
m

b
e
r

o
f

c
e
ll

s

time

Fig. 10. The number of cells discovered during exploration

Fig. 11. Picture of the koala robot when the exploration starts

VI. FUTURE WORK

The exploration mechanism currently works with a cheap
odometric system. In this paper, we didn’t focus on the
localisation aspect but more on the autonomous decision as-
pect. The localisation can be improved using a Simultaneous
Localization And Mapping module, before integrating new
data into the pixel layer. With a SLAM module, the robot
will be able to explore larger areas with less positional drift.
We could also consider using active localization [15], that is
choosing actions so that the localization can be improved.

We propose an extension to multiple robots. Multiple
robots exploration is more robust. It also permits to distribute
the exploration task among the robots. Thus, we expect a
quicker exploration. We have to decentralize the decision.
We think about a model where any robot shares its position
and its map from time to time. This model can be view as
a mixture between QMDP and Dec-MPDs.

VII. CONCLUSION

In this paper, we adress the problem of exploring an
unknown indoor area by an autonomous robot. The robot
must gather information with its Led Range Finder and
produces a map of the environment. We are facing the
problem of autonomous decision: the robot must maximize
the information gain by moving to interesting points in
the environment. We use Markov Decision Processes, that
are renowed for planning and accounting for uncertainty
outcomes. Our Model is divided in three layers: the physical
layer, the acquisition layer and the decision layer. We don’t
focus on the localization aspect but more on the decision
aspect. We experimented with real robots to proove the
feasability and obtained good results: Even using only its
odometric sensor, the robot actualy maps its environment
within a few minutes, with no prior knowledge of the
environment but its size. Now, we want to improve the
localization system and extend the approach to multiple robot
with a decentralized approach.

REFERENCES

[1] E. Gat, R. Desai, R. Ivlev, J. Loch, and D. Miller, “Behavior control
for robotic exploration of planetary surfaces,” IEEE Transactions on
Robotics and Automation, vol. 10, no. 4, pp. 490 – 503.

[2] R. Murphy, “Human-robot interaction in rescue robotics,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews,, vol. 34, no. 2, pp. 138 – 153.

[3] S. Mahadevan and N. Khaleeli, “Robust mobile robot navigation using
partially-observable semi-markov decision processes,” 1999.

[4] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson,
D. Hähnel, M. Montemerlo, A. Morris, Z. Omohundro, C. Reverte, and
W. Whittaker, “Autonomous exploration and mapping of abandoned
mines,” IEEE Robotics and Automation Magazine.

[5] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning
policies for partially observable environments: scaling up,” Readings
in agents, pp. 495–503, 1998.

[6] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). San Francisco, CA: IEEE, 2000.

[7] J. S. Dibangoye, G. Shani, B. Chaib-Draa, and A.-I. Mouaddib,
“Topological order planner for pomdps,” in IJCAI’09: Proceedings of
the 21st international jont conference on Artifical intelligence. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009, pp.
1684–1689.

[8] D. S. Bernstein, S. Zilberstein, and N. Immerman, “The complexity
of decentralized control of Markov decision processes,” in
Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, Stanford, California, 2000, pp. 32–37. [Online].
Available: http://rbr.cs.umass.edu/shlomo/papers/BZIuai00.html

[9] A.-I. Mouaddib, M. Boussard, and M. Bouzid, “Towards a framework
for multi-objective multi-agent planning,” in Autonomous Agent and
Multi Agent Systems (AAMAS), 2007.

[10] A. Beynier and A.-I. Mouaddib, “An iterative algorithm for solving
constrained decentralized markov decision processes,” in the twenty-
first National Conference on Artificial intelligence (AAAI), 2006.

[11] M. L. Puterman, Markov decision processes. John Wiley and Sons,
INC, 1994.

[12] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25–30.

[13] R. Bellman, “Dynamic programming : Markov decision process,”
Princeton University Press, Princeton N.J., 1957.

[14] S. Thrun, “The role of exploration in learning control,” in Handbook
for Intelligent Control: Neural, Fuzzy and Adaptive Approaches,
D. White and D. Sofge, Eds. Florence, Kentucky 41022: Van
Nostrand Reinhold, 1992.

[15] D. Fox, W. Burgard, and S. Thrun, “Active markov localization for
mobile robots,” Robotics and Autonomous Systems, vol. 25, pp. 195–
207, 1998.

