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Natural Killer (NK) cells are innate lymphoid cells (ILC) with cytotoxic and regulatory 
properties. Their functions are tightly regulated by an array of inhibitory and activating 
receptors, and their mechanisms of activation strongly differ from antigen recognition 
in the context of human leukocyte antigen presentation as needed for T-cell activation. 
NK cells thus offer unique opportunities for new and improved therapeutic manipulation, 
either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity 
can possibly be modulated in vivo through direct or indirect actions exerted by small 
molecules or monoclonal antibodies. NK cells can also be adoptively transferred following 
more or less substantial modifications through cell and gene manufacturing, in order to 
empower them with new or improved functions and ensure their controlled persistence 
and activity in the recipient. In the present review, we will focus on the technological and 
regulatory challenges of NK cell manufacturing and discuss conditions in which these 
innovative cellular therapies can be brought to the clinic.

Keywords: natural killer cells, innate lymphoid cells, immunotherapy, immuno-oncology, cellular therapy, cell 
transplant, manufacturing

inTRODUCTiOn

Cellular therapies are, nowadays, increasing in numbers and in diversity. Manufacturing of various 
types of immune cells is likely to provide additional therapeutic resources and complete the portfolio 
of immunotherapies, along with chemical molecules and engineered monoclonal antibodies. It is 
envisioned that combination of these different medicinal products, tailored to disease characteristics 
as well as to the host (immune) environment (1), will contribute to precision medicine and expect-
edly to higher rates of success in the cure of a variety of health disorders, including, but not restricted 
to, cancers. Among immune effectors amenable to cell and genetic manipulation prior to adoptive 
transfer, natural killer (NK) cells present with appealing biological characteristics. NK cells are innate 

Abbreviations: ADCC, antibody-dependent cytotoxicity; ATMP, advanced therapy medicinal product; CAR, chimeric antigen 
receptor; CB, cord blood, placental blood; CBU, cord blood unit; CLL, chronic lymphocytic leukemia; DLI, donor lymphocyte 
infusion; EMA, European Medicines Agency; ES, embryonic stem (cells); FDA, Food and Drug Agency; Flt3-L, flt3 ligand; 
G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; GMP, good 
manufacturing practices; GvHD, graft-versus-host disease; HLA, human leukocyte antigens; HSCT, hematopoietic stem cell 
transplantation; IL-x, interleukin x; ILC, innate lymphoid cells; iPS, induced pluripotent stem (cells); KAR, killer activating 
receptors; KIR, killer cell Immunoglobulin-like receptors or killer inhibitory receptors; LIF, leukemia inhibitory factor; LMWH, 
low molecular weight heparin; MIP1α, Macrophage Inflammatory Protein-1α; NK, natural killer; PBMC, peripheral blood 
mononuclear cells; SCF, stem cell factor; TPO, thrombopoietin; TRAIL, TNF-related apoptosis-inducing ligand.
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FiGURe 1 | Ongoing clinical trials that evaluate nK cell-based cellular therapies. Data were collected at https://clinicaltrials.gov/ in September 2016, using 
the search terms: “recruiting studies,” “NK,” or “natural killer” in the “Title” field. Raw data are available in Data Sheet S1 in Supplementary Material. *Unspecified = 
18 studies with no designation whether NK cells are autologous or allogeneic; others = 1 study tests NK cell line and 1 study compares autologous to allogeneic 
NK cells.
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lymphoid cells (ILC) and contribute to innate immunity (2). Their 
activities are regulated through the biological modulation of a 
large array of both inhibitory and activating receptors, including 
killer cell immunoglobulin-like receptors (KIR), NKp44, and 
NKp46. These receptors do not bind specific antigens on target 
cells as do T cells, but rather molecules induced by cellular stress 
that provide an activating signal, or human leukocyte antigen 
(HLA) molecules that predominantly provide inhibitory signals; 
already published material provides in-depth description of these 
pathways. Here, we review the existing literature that describes 
the rationale for various technological approaches to NK cell 
manufacturing, either autologous or allogeneic, as a prerequisite 
to adoptive transfer and clinical evaluation of these peculiar 
populations of immune effectors.

MeDiCAL APPLiCATiOnS OF nK CeLL 
MAnUFACTURinG AnD ADOPTive 
TRAnSFeR

Autologous nK Cells
Adoptive transfer of NK cells engineered to express new or aug-
mented functions represent an interesting avenue for the treat-
ment of various high-risk malignancies in which conventional 
options have failed (Figure  1). Examples include B-chronic 
lymphocytic leukemia (B-CLL) (3), multiple myeloma (4), and 
also tumors of non-hematopoietic origin such as breast cancer 
(5), melanoma, or renal cell carcinoma (6).

Early studies reporting the adoptive transfer of CD56+ 
bead-selected autologous NK cells into patients with metastatic 
cancers, in combination with high doses of IL-2 demonstrated 
feasibility yet poor clinical efficacy (7). Patients experienced 
severe toxic side effects due to the high doses of IL-2. In addition 
to activation-induced NK cell death, NK cell function may have 
been inhibited due to regulatory T cell expansion in response to 
high IL-2 doses (8, 9). Reducing the daily IL-2 doses after NK cell 
transfer resulted in limited clinical success (10). Several strate-
gies are under investigation to overcome this hurdle [reviewed 
in Ref. (11)]. Another mechanism by which autologous NK cells 
are inhibited is by self-HLA molecules. Therefore “releasing the 
brakes” with anti-KIR antibodies such as Lirilumab® that targets 
the inhibitory KIR receptors on NK cells could be one approach 
(12–14).

Allogeneic nK Cells
A number of arguments support an important role for donor-
derived NK cells in the context of allogeneic hematopoietic stem 
cell transplantation (allo-HSCT). Following the administration 
of either myelo-ablative (15) or reduced-intensity (15–17) condi-
tioning regimen and allo–HSCT, the rapid reconstitution of high 
numbers of circulating and phenotypically defined NK cells is 
associated with better clinical outcome. The recovery of various 
functions for donor-derived cells may be further modulated and 
improved in vivo with additional intervention (18).

Transplantation of high doses of immune-selected CD34+ cells 
collected from haploidentical donors after myelo-ablative condi-
tioning regimen has provided a setting which demonstrates that 
“KIR-incompatibility” was associated with lower incidence of dis-
ease relapses, at least for AML (19). Transplantation of T-replete 
marrow or blood cell grafts obtained from haploidentical donors, 
using modified immune-suppressive conditioning regimen such 
as those including posttransplant cyclophosphamide, represent a 
more widely applicable procedure, in which to further explore the 
potential contribution of alloreactive NK cells in posttransplant 
clinical events. Unexpectedly, a recently published report sug-
gests that, in this context, the presence of recipient class I ligands 
to donor KIR receptors confers some protection to the recipient 
against leukemia relapse, an observation that needs further con-
firmation and would imply a role for killer activating receptors 
(KAR) as much as for KIR (20). The role of alloreactive NK cells 
remains more elusive in the context of HSCT performed from 
other categories of donors. Expression of specific KIR receptors 
in HLA-matched unrelated donors was demonstrated to produce 
superior or inferior clinical outcomes in recipients, depending on 
donor–recipient combinations (21–23).

Adoptive transfer of allogeneic NK cells either with a stem 
cell graft ex vivo depleted of immune effectors or as a substitute 
to posttransplant “donor lymphocyte infusions” (DLIs) is thus 
appealing as a way to improve engraftment, immune reconstitu-
tion, and antitumor activity with reduced chances of triggering 
graft-versus-host disease (GVHD) (24). Results of a small num-
ber of clinical trials have been reported so far, demonstrating the 
feasibility of manufacturing allogeneic NK cells from matched 
related, matched unrelated, or mostly from haploidentical 
donors (25–29). Although allogeneic NK cell infusions were 
generally reported as safe, a recent publication describes the 
clinical outcome of a small cohort of pediatric patients treated for 
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TABLe 1 | Factors affecting the ouctome of the manufacturing process of 
nK cell-based medicinal products.

Cell source
Bone marrow
Umbilical cord blood
Embryonic stem cells
Induced pluripotent stem cells
NK cell lines

Culture conditions
Cytokines (IL-2, IL-15, IL-12, IL-18)
Feeder cells (autologous PBMC, EBV-TCT-LCL, K562-mb15-41BBL)
Antibodies (anti-CD3, anti-CD52)
Genetic manipulation (retro- or lentiviral-based transduction, mRNA 
transfection)

Culture containers
Standard culture flasks
Culture bags
Gas-permeable static cell culture flasks
Bioreactors

Final product evaluation
Viability (live/dead)
Identity and contamination (CD56, CD16, CD3, CD14, CD45, CD19)
Yield
Phenotype (KIR, NKp44, NKp46, NKG2A, NKG2C)
Functionality (degranulation, cytokine release, target cell lysis, activation)

3

Chabannon et al. NK Cell Manufacturing

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 504

non-hematological high-risk malignancies and a high proportion 
of aGVHD triggered by HLA-matched donor-derived NK cells 
(30). Mostly, these limited clinical results suggest that additional 
improvements are needed either during the ex-vivo manufactur-
ing process (31) or after infusion of manufactured NK cells (25) 
to improve long-term persistence and activity in vivo.

FACTORS AFFeCTinG nK CeLL 
PRODUCT MAnUFACTURinG

Many variables contribute to an efficient NK cell generation 
protocol (Table  1). Donor–recipient combinations, the source 
of starting material and culture conditions are factors that must 
be carefully selected to optimize the manufacturing process and 
potentially the clinical efficacy of the resulting medicinal product 
upon administration to the recipient.

Donor Selection
In the setting of allogeneic NK-DLI, donor selection can affect the 
clinical outcome of NK cell therapy, since certain KIR, HLA, and 
FcγR polymorphisms influence NK cell function (32, 33). KIR 
typing can be genotypic, classifying donors on the basis of gene 
expression of activating and inhibitory KIR (34), thereby assigning 
them scores to select “preferable donors” (35–37). Additionally, 
KIR typing can be phenotypic, assessing surface protein expres-
sion of KIRs (38), adding another layer of complexity to the 
selection of “preferable donors.” KIR “allele-typing” is a recent 
addition to the donor selection algorithm, whereby alleles that 
possess better functional properties (stronger licensing capability 
and more durable surface expression upon ligand binding) are 
favored (22, 39). Typing FcγR polymorphism is relevant in NK 

cell therapy settings that use monoclonal antibodies to enhance 
NK cell activation and consequently empower their antibody-
dependent cytotoxicity (ADCC) properties (40, 41). All these 
strategies have helped define “preferable donor” profiles.

Source of Cells
Natural killer cell therapies can be manufactured from a variety 
of sources: these include peripheral blood, either steady-state or 
taking advantage of apheresis performed to collect hematopoietic 
stem and progenitor cells mobilized with growth factors such as 
granulocyte colony-stimulating factor (G-CSF), bone marrow, 
and cord blood.

Peripheral Blood Mononuclear Cells
Peripheral blood mononuclear cells (PBMC) can be collected 
in large numbers using apheresis. Nowadays, it is the preferred 
source for allo-HSCT; donor apheresis is collected after receiving 
a mobilization treatment that increases the percentage and num-
ber of circulating progenitor and stem cells (as evaluated by the 
number of circulating CD34+ cells); G-CSF is the only marketed 
agent for CD34+ cell mobilization that can be used in donors; the 
use of other mobilizing agents such as acutely myelo-suppressive 
drugs or plerixafor is restricted to patients undergoing autologous 
collection. Since CD34+ cells represent only a small proportion of 
collected PBMC, these collected cell products may also represent a 
source of immune effectors, and thus either an alternative to PBMC 
collected in homeostatic conditions for standard DLI or a starting 
material for further immune cell manufacturing, including NK 
cell manufacturing. One caveat to this approach is that studies 
looking at the effects of G-CSF on NK cell function have produced 
controversial results; some studies suggest minimal consequences 
(42, 43), while others suggest significant changes (44).

Non-mobilized apheresis products contain 5–15% NK cells. 
To isolate NK cells, the strategy commonly used is CD3+ cell 
depletion of PBMC, followed by CD56+ cell enrichment using 
immune-magnetic bead separation with medical devices and 
clinical-grade reagents.

Bone Marrow
Since bone marrow is nowadays used as the source of stem 
cells for a minority of recipients – in part due to the increased 
resource needed for the logistics of BM collection compared to 
aphereses – there is little preclinical or clinical experience in the 
manufacturing of NK cells from this starting material.

Cord Blood Cells
The use of cord blood (CB) as a source of stem cells has raised great 
hope in the field 30 years ago, when the first clinical transplants 
were reported (45). Cord blood unit (CBU) can be used even 
when not fully matched to the recipient, offering the opportunity 
to identify a “donor” even for patients who had no HLA-matched 
related or unrelated donor. CB transplantation is nowadays fac-
ing tough competition from the rapidly emerging field of related 
haploidentical transplantation, and is further hampered by the 
lengthy immune reconstitution and the lack of possibility to use 
pre-emptive or curative DLI posttransplant.

http://www.frontiersin.org/Immunology/
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http://www.frontiersin.org/Immunology/archive
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However, more than 600,000 CBU that are stored in public 
banks worldwide – not to mention the unknown cumulative num-
ber of CBU preserved in private CB banks – represent a unique 
source of human material to start with the manufacturing process. 
Indeed, preclinical validation studies reported the production of 
significant numbers of functional NK cells either from a complete 
CBU (46) or even from a minute sample of a CBU (47), the latter 
opening the way to posttransplant immune cellular therapies in 
recipients of CBU transplantation while the former offers the 
promise of “off-the-shelf ” allogeneic NK cellular therapies.

Initial attempts to use CD56+ bead-selected NK cells from 
CB followed by culture on mesenchymal stromal cells in the 
presence of cytokines resulted in modest yields incompatible 
with therapeutic needs (48). Starting from immune-selected CB 
CD34+ cells and using refined protocols produced more inter-
esting results (49–51). Such efforts culminated in a novel good 
manufacturing practice (GMP)-compliant technique that mimics 
the extracellular bone marrow environment: stromal cell-free/
serum-free medium, heparin, and cytokine supplements (52, 53). 
Consequently, Glycostem Therapeutics (Oss, the Netherlands) 
and Radboud University Medical Center (Nijmegen, the 
Netherlands) are currently conducting a Phase I/II clinical trial 
in elderly AML patients using NK cell products generated using 
this method (CCMO nr. NL31699 and Dutch Trial Register nr. 
2818) (see Figure 1 and Data Sheet S1 in Supplementary Material 
for a list of ongoing clinical trials).

ES and iPS Cells
Manufacturing of clinical-grade NK cells from either embryonic 
(ES) or induced pluripotent stem (iPS) cells nowadays appear as 
a futuristic option, although preclinical demonstrations that NK 
cells can be differentiated from these sources of pluripotent stem 
cells were already published (54–56). For iPS cells, several factors 
affect the pluripotency and differentiation abilities of repro-
gramed cells: the choice of target donor somatic cell type and the 
reprograming protocol, including the nature and combination of 
genes as well as the method used to deliver transcription factors 
into somatic cells (57).

An important step in the specific hematopoietic lineage-differ-
entiating protocols starting from ES or iPS cells is the generation 
of CD34+ hematopoietic precursors, particularly CD34+CD45+ 
cells, preferred for their high content in hematopoietic progenitors 
(58). A 30-day culture protocol of sorted ES cells-derived CD34+ 
cells together with feeder cells (murine fetal-liver-derived stromal 
cell line) and cytokines generates NK cells with typical matura-
tion markers and target cell lysis capabilities (58, 59). Another 
expansion method has been described for ES or iPS cells, using 
an embryonic body assay followed by culture with feeder cells and 
cytokines (60, 61).

Similar to what has been mentioned for CBU, progress in the 
development of safe, efficient, and standardized clinical-grade 
manufacturing protocols will offer an opportunity to develop off-
the-shelf personalized and non-immunogenic cellular therapies.

NK Cell Lines
Ex vivo-expanded primary NK cells persist in  vivo for short 
periods of time after adoptive transfer. In an attempt to take 

advantage of the long lifetime of established cell lines, several 
groups have evaluated their therapeutic potential. Although 
other cell lines exist (NKG, YT, NK-YS, YTS cells, HANK-1, 
and NKL cells), the NK-92 cell line (NantKWest Inc., Culver 
City, CA, USA) characterized by good cytotoxicity and expan-
sion kinetics (62, 63) has been predominantly evaluated in 
preclinical investigations and clinical trials (NCT00900809 and 
NCT00990717) (64). It has been tested in a small number of 
clinical contexts, yet with minimal efficacy (65–67). Recently, 
chimeric antigen receptor (CAR) modification by gene transfer 
for NK cells has opened a new avenue to explore (68, 69). NK 
cell lines represent a more homogeneous population for CAR 
modification, compared to peripheral blood NK cells; however, 
this advantage is largely offset by the need to additionally trans-
fect CD16 to gain ADCC function and the necessary irradiation 
before infusion for safety reasons, rendering them unable to 
expand in vivo. Choice of the CAR construct adds another layer 
of complexity (69).

Culture Conditions: Medium, Cytokines, 
and Cell Culture Systems
As already described, NK cells are generally isolated through 
immune-selection techniques, using the canonical CD3−/CD56+ 
phenotype (42, 70), then cultured for functional activation and 
possibly expansion. Furthermore, NK cells can be genetically 
engineered to express natural or chimeric molecules empowering 
them with improved immune functions (5, 64).

Expansion and activation of potent cytotoxic NK cells 
require several signals for survival, proliferation, and activation. 
Culture conditions, thus, incorporate media and serum sup-
plements, together with clinical-grade cytokines, monoclonal 
antibodies, or other soluble molecules, and possibly native 
or engineered cell feeders. Culture conditions can further be 
improved through the substitution of bioreactors to static 
conditions (Table 1).

As already mentioned, and since most protocols that use only 
cytokines result in limited NK cell expansion, the introduction 
of feeder cells in the culture protocol has been extensively tested. 
Feeder cells provide additional stimulatory signals necessary 
for NK cell proliferation. Monocytes provide humoral signals 
and cell-to-cell contacts hence can serve as feeder cells (71); 
irradiated autologous PBMC have been used as feeder cells to 
produce sufficient numbers of NK cells with acceptable purity 
(6, 72, 73). Alternatively, irradiated allogeneic cells have been 
evaluated: Epstein–Barr virus-transformed lymphoblastoid B 
cell lines (EBV-TM-LCL), K562 cells (leukemic cell line) engi-
neered to express a membrane-bound form of IL-15 fused to the 
T-cell receptor CD8α and the 41BB ligand (74–78), or K562 cells 
transduced with IL-21 (79). Such feeder cells proved effective 
in preclinical validation of the production of clinically relevant 
numbers of NK cells, however, raise regulatory issues when it 
comes to manufacture medicinal products.

Since the presence of residual feeder cells in the final product 
is of major concern for clinical applications (80), alternative 
approaches are evaluated as substitutes. Anti-CD3 (OKT3) 
antibodies in addition to IL-2, with or without IL-15, produced 
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substantial although lower fold expansion of CD3−/CD56+-
enriched cells (81–86) than protocols that use feeder cells.

Expansion strategies of clinical-grade NK cells usually 
require 7–21 days of culture; up to 28 days of culture have been 
reported (87). There is an incentive to substitute animal or human 
serum-replete medium with animal and human component-free 
medium. The most commonly used media for CB-derived NK 
cells is glycostem basal growth medium (Clear Cell Technologies, 
Beernem, Belgium), preferred for being free of animal-derived 
components (52, 53). For PBMC-derived NK cells, preferred 
media are: X-Vivo™ serum-free media (Biowhittaker, Verviers, 
Belgium), AIM V® serum-free medium (Thermo Fisher Scientific, 
Grand Island, NY, USA), Stem Cell Growth medium (Cell Genix, 
Freiburg, Germany), or complete Roswell Park Memorial Institute 
1640 (Biowhittaker, Verviers, Belgium).

Media supplements still being used by some groups include 
GMP-grade human AB serum, pooled human AB plasma, or 
fetal bovine serum (FBS). GMP-grade cytokines (recombinant 
human IL-2 and IL-15), antibodies (anti-CD3-OKT3), and 
other ancillary reagents (nicotinamide-NAM) commonly serve 
as medium supplements for PBMC-derived NK cell genera-
tion. Additional growth factors and cytokines are necessary for 
CB-derived NK cells since the starting material is commonly 
CD34+ stem cells [stem cell factor (SCF), IL-7, IL-15, IL-2, 
IL-6, flt3 ligand (Flt3-L), thrombopoietin (TPO), G-CSF, low 
molecular weight heparin (LMWH), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), leukemia inhibitory factor 
(LIF), MIP1α].

In addition to using T75 cell culture flasks, several groups 
have used culture bags (Baxter LifeCell® or VueLife®) (76, 83). 
On larger scales, gas-permeable static cell culture (G-Rex®) flasks 
(Wilson Wolf Manufacturing, New Brighton, MN, USA) (78) or 
WAVE Bioreactor™ (GE Healthcare Life Sciences, Chicago, IL, 
USA) (83) served as expansion platforms.

AMPLiTUDe OF nK CeLLS eXPAnSiOn 
AnD DeFiniTiOn OF An OPTiMAL CeLL 
DOSe

Numbers of infused NK cells in clinical trials typically range 
from 5 to 50 × 106 NK cells/kg, but infusion of as many as 108 
NK cells/kg has been reported (88). Based on percentages of NK 
cells in the starting materials, manufacturing the higher doses 
implies significant expansion during in vitro cultures. This raises 
a practical issue, since, in the absence of feeder cells, NK cells 
expansion is modest if any. Using autologous irradiated PBMC 
as feeder cells, up to 2,500-fold expansion of functionally active 
NK cells at day 17 has been reported (89). The use of genetically 
modified cell lines as feeder leads to a 30,000-fold expansion of 
NK cells after 21 days of culture (79).

A recent study took advantage of the introduction of anti-CD3 
and anti-CD52 monoclonal antibodies over a period of 14 days 
and reports a median 1500-fold increase in NK cell numbers; 
however, it must be emphasized that T cells represent up to 40% of 
the final cell product and that NK cells were not obtained through 
a cGMP protocol (90).

QUALiTY COnTROLS AnD ReLeASe 
CRiTeRiA FOR enGineeReD nK CeLL 
CeLLS

Tools for assessing the efficacy of NK cell generation protocols 
are necessary for comparing technical results from different NK 
cell therapy studies. Furthermore, European Medicine Agency 
(EMA), Food and Drug Administration (FDA), and several 
guidelines require the characterization of the final product to 
define release criteria in order to ensure safety and efficacy.

Basic, yet essential, criteria are generally used to characterize 
the final product: these include purity and viability of the target 
cell population, contamination with undesirable cells such as 
residual T and B cells, and sterility. These are commonly used 
as release criteria although their relevance may vary for different 
clinical conditions: T cell contamination for instance is most 
important in an allogeneic, but not so much in an autologous 
setting. More sophisticated testing may provide additional infor-
mation: a reduction in telomere length indicates cell senescence 
due to extensive long-term culturing.

Phenotype and function (tumor cytotoxicity) are additional 
characteristics that should help identify the most effective NK 
cell products. When expanded NK cells were compared with 
freshly isolated and IL-2-activated NK cells, a higher expression 
of NKG2D, TNF-related apoptosis-inducing ligand (TRAIL), and 
natural cytotoxicity receptors NKp30, NKp44, and NKp46 was 
reported (91), in addition to higher cytotoxicity to K562 cells. 
Efforts are, however, much needed to harmonize technical proto-
cols and identify a panel of phenotypic and functional biomarkers 
that would allow comparisons between protocols that evaluate 
adoptive transfer of NK cells (92). It is essential to mention that 
such a panel needs to be run within a reasonably short time to 
release the product in time for a “fresh infusion.”

Cryopreservation and conservation of cytolytic activity of 
thawed NK cells would render multiple rounds of adoptive NK 
cell infusions feasible. Lapteva et al. and Berg et al. reported that 
an overnight activation with IL-2 would rescue the reduced cyto-
lytic activity of thawed NK cells, yet at the cost of a diminished 
recovery (74, 78). Efforts to optimize cryopreservation and thaw-
ing methods are in progress.

ReGULATORY STATUS OF enGineeReD 
nK CeLLS AnD COMMeRCiAL 
PeRSPeCTiveS

Autologous and allogeneic NK cells engineered from primary 
human cells are individually produced for a unique and desig-
nated individual, rather than manufactured as batches. Since 
manufacturing incorporates ex-vivo culture and activation of 
immune-selected cells from the primary material, these will be 
considered as substantially manipulated or more-than minimally 
manipulated cell products, and thus will qualify as “advanced 
therapy medicinal products” (ATMPs) and somatic cell therapy 
products as defined in EC regulation 1394/2007. Before the 
regulation was released, such cell therapies were engineered as 
part of clinical research protocols by cell processing facilities, 
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usually supported and operated by academia, no differently from 
minimally manipulated cell transplants. Since the regulation has 
been published, the view is that somatic cell therapy products 
and gene therapy products will be manufactured in compliance 
with good manufacturing practices (85, 86, 93), and eventually 
marketed by industry, when a marketing authorization is granted 
by competent authorities at a European level, i.e., by the EMA or 
by the FDA in the USA.

Beyond academic investigations, NK cells have now aroused 
the interest of a significant number of pharma companies (94) 
(see Figure  1), although no NK-based cellular therapy has so 
far been authorized as an ATMP in Europe, nor a somewhat 
comparable status in the USA. However, in December 2014, 
orphan designation (EU/3/14/1395) was granted by the European 
Commission to Glycostem, for the GCT-NK cell product, made 
of allogeneic ex vivo-generated natural killer (NK) cells from 
CD34+ CB progenitor cells for the treatment of acute myeloid 
leukemia (EMA/COMP/730059/2014 Committee for Orphan 
Medicinal Products).

COnCLUSiOn

Over the last 30 years, enormous progress has been made in our 
understanding of the biology of NK cells. New agents targeting 
their activity in  vivo have been evaluated, and technological 
improvements in NK cell manufacturing have been introduced 
in the clinic. However, the demonstration that modulation of NK 
cell activity by any of these means can achieve therapeutic activity 
over a wide range of diseases is still awaited. The ability to follow 
and image in vivo adoptively transferred autologous or allogeneic 
NK cells would represent a major advantage to understand the 
“pharmacokinetics” and mechanisms of action of these immune 
effectors, as illustrated in preclinical (95) as well as in clinical 
(96) studies. It would help to understand the consequences of 
culture conditions on in vivo persistence and activity. Ongoing 

developments for innovative cellular therapies in the academic 
sector as well as in the commercial sector suggest that such pro-
gress may result in broader clinical applications in the near future.
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