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Abstract. To enable post-processing, the output of a support vector
data description (SVDD) should be a calibrated probability as done for
SVM. Standard SVDD does not provide such probabilities. To create prob-
abilities, we first generalize the SVDD model and propose two calibration
functions. The first one uses a sigmoid model and the other one is based on
a generalized extreme distribution model. To estimate calibration param-
eters, we use the consistency property of the estimator associated with
a single SVDD model. A synthetic dataset and datasets from the UCI
repository are used to compare the performance against a robust kernel
density estimator.

1 Introduction

Support vector classification methods, such as support vector data description
(SVDD) [1] and its variants [2], have been successfully applied in the context of
outlier detection [3]. The outputted scores however are very hard to interpret.
In many application domains, and especially in pattern recognition methods,
transforming these scores into well calibrated probabilities can help greatly with
1) score interpretation 2) threshold selection, and 3) score combination (e.g. en-
semble learning methods). In [4], the decision boundary computed by OC-SVM
was proven to converge to the minimum volume set (MV-set) with probabil-
ity mass of at least η = 1 − ν. Various attempts have been made to convert
outlier scores into calibrated probabilities [5, 6]. All these methods however
either make some assumption on the distribution of the outlier scores and no
calibration scheme was specifically designed to convert the output of SVDD.

In the present study, our goal is 1) to propose a generalization of the SVDD
method that allows estimating q MV-sets of given probability masses ηj , j =
1 . . . q, 2) convert the outputted outlier scores into probability estimates and 3)
maximize the detection rate. The proposed approach is evaluated in the context
of outlier detection and compared against the robust version of kernel density
estimator (rKDE) that was recently proposed by Kim and Scott [7].

∗This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Université de
Lyon, within the program ”Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the
French National Research Agency (ANR).
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2 SVDD generalization

2.1 Naive approach (iSVDD)

We first propose a straightforward generalization of the SVDD algorithm for
the estimation of q MV-sets by constructing q independent SVDD models. For
each j = 1, . . . , q, the SVDD algorithm tries to find the enclosing hyper-sphere,
of centre aj and radius Rj , with minimum volume given νj . Let (x1, . . . ,xn),
xi ∈ Rp be n training samples from a normal class (N). The global ν-formulation
for all q SVDD models is:

min
Rj ,aj,ξj

q∑
j=1

R2
j +

q∑
j=1

1

νjn

n∑
i=1

ξji

s.t (xi − aj)
>(xi − aj) ≤ R2

j + ξji, i = 1, . . . , n , j = 1, . . . , q
and ξji ≥ 0, i = 1, . . . , n , j = 1, . . . , q,

(1)

where ξji are slack variables that allow relaxing the inequality constraints and
νj ∈ [0, 1] corresponds to an upper bound on the fraction of outliers and a lower
bound on the fraction of support vectors [2]. The outlier score associated to
a given observation x by the jth independent SVDD model is then given by:
gj(x) = (x − aj)

>(x − aj) − R2
j . In [4], the consistency property of the SVDD

algorithm was proven for estimating MV-sets. An estimate of the level-set of
probability mass at least 1− νj is given by: MV1−νj = {x | gj(x) = 0}.

2.2 Concentric SVDD models (cSVDD)

We extend the SVDD algorithm by constructing q hierarchical MV-sets with
decreasing probability masses. This translates into having the same centre a for
all q SVDD models and solving a single optimization problem. Let Rj be the
radius associated with the jth SVDD model, the primal problem formulation is:

min
Rj ,a,ξj

q∑
j=1

R2
j +

q∑
j=1

1

νjn

n∑
i=1

ξji

s.t (xi − a)>(xi − a) ≤ R2
j + ξji, i = 1, . . . , n , j = 1, . . . , q

and ξji ≥ 0, i = 1, . . . , n , j = 1, . . . , q.

(2)

The dual formulation of problem 2 can be derived by considering the La-
grange multipliers and setting Karush-Kuhn-Tucker optimality conditions. The
resulting dual formulation is very similar to that of the standard SVDD and the
kernelization of this algorithm is straightforward by using the kernel trick and
associated representer theorem.

The outlier score assigned to a given observation x by the jth SVDD model
is then given by : fj(x) = fc(x)−R2

j where fc(x) = (x−a)>(x−a). The center
a is given by the representer theorem above. The different radii Rj , j ∈ [1 . . . q]
can be obtained by considering for instance the distance to the center a of the
essential support vectors for the jth model.
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2.3 Method comparison

Figure 1 illustrates the estimated MV-sets for a bimodal Gaussian distribution.
The true MV-sets 1a were computed using Monte Carlo simulation. For all
methods, the kernel width was optimized to obtain the best estimation of the
true MV-sets. Unlike rKDE, iSVDD and cSVDD both succeeded in captur-
ing the nested nature of the MV-sets. cSVDD allowed a better estimate than
iSVDD of the MV-set with the highest probability (p = 0.9) of belonging to the
distribution.

(a) True MV-sets (b) rKDE

(c) iSVDD (d) cSVDD

Fig. 1: Minimum volume sets obtained for a bimodal Gaussian distribution
using: (b) a robust kernel density estimator and (c-d) 2 SVDD generalizations.
The black dots represent the training data (n = 500).

3 Score conversion into probabilities

Converting outliers scores into calibrated probabilities is a challenging task.
Standard calibration methods such as in [8] and included references cannot be
used since no labelled example is available for the outlier class. We propose two
methods to model the distribution of outlier scores: fitting a sigmoid calibration
function inspired by [9] or a generalized extreme value distribution.

3.1 Calibration using sigmoid function (sig)

Let fi, i ∈ [1, n] be outlier scores assigned to xi by either cSVDD (fi = fci(xi))
or iSVDD (fi = g0i(xi)) with fci and g0i as defined in 2. Following [9], we
propose to model the probability that xi is an outlier given its outlier score
p(xi) = P (O|fi), where O is the outlier class, as a decreasing sigmoid function:

p(xi) =
A

1 + exp(Bfi + C)
,
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where A, B and C are the 3 model parameters that are estimated using the
available level-sets. Indeed, the decision boundary of each SVDD model j is
an estimate of the MV-set associated with a probability mass ηj that can be
approximated by 1 − νj [4]. Thus, an estimate of the probability p(xi) of any
observation xi lying on the decision boundary of the jth SVDD model is known
and is given by νj . For cSVDD, we directly construct the training set {(pj , fj),
j = 1 . . . q} by associating the cSVDD score fj for all support vectors lying on
the decision boundary of the jth SVDD model to the corresponding νj value.
For iSVDD, we select a given reference model j0 and compute the scores corre-
sponding to the essential support vectors of the other remaining SVDD models
(i.e. the observations lying on the decision boundary of each remaining model)
to form a training set composed of q coupled values (pj , fj).

3.2 Calibration using extreme value distributions (gev)

Our initial assumption is that outliers correspond to observations with very low
occurrence probability and are located in the tail of the distribution. We are
therefore interested in estimators that allow a good estimation of the tail of the
unknown distribution P. Extreme value theory is a branch of statistics that
deals with extreme deviations of a probability distribution [10]. The extreme
value probability (EVP) of a random variable z is the probability of z being the
largest value of the dataset. A key theorem in extreme value statistics states
that the EVP distribution can be expressed as the generalized extreme value
(GEV) distribution. Its cumulative distribution is given by:

F (z) = exp(−[1 + ζ(
z − µ
σ

)]−
1
ζ ),

where the parameter ζ is the shape parameter that controls the tail behaviour
of the distribution. To use EVP as an outlierness measure, we consider the
univariate distribution of scores fi over the entire training dataset to fit the
GEV distribution.

4 Experiments

4.1 Evaluation and parameter selection

For synthetic datasets, the true probability distribution is known, we there-
fore used the Kullback-Leibler divergence to measure the performance. For real
dataset, we used the performance measure introduced in [6] to evaluate the im-
pact of using calibrated scores on performance while taking into account both
the reliability of the probability estimates and each class cardinality.

Error Cost =
1

2

∑
x∈N

P (O|x)× 1

|N |
+

1

2

∑
x∈O

P (N |x)× 1

|O|
.

Parameter tuning for outlier detection method is very hard as no labelled ex-
ample from the outlier class is available during the training phase. We propose
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Dataset Noise ratio 0% Noise ratio 5%
iSVDD cSVDD gev cSVDD sig rKDE iSVDD cSVDD gev cSVDD sig rKDE

Blood transfusion 0.49 0.46 0.48 0.46 0.26 0.26 0.25 0.33
Breast cancer 0.25 0.26 0.25 0.33 0.23 0.25 0.25 0.29
SPECTF heart 0.60 0.54 0.60 0.61 0.61 0.54 0.60 0.67
Banana 0.42 0.28 0.27 0.36 0.43 0.30 0.28 0.38
Balance LB vs R 0.33 0.32 0.30 0.33 0.35 0.36 0.36 0.33
Balance RB vs L 0.30 0.27 0.27 0.32 0.31 0.28 0.28 0.33
Pima indian 0.38 0.39 0.39 0.40 0.39 0.38 0.39 0.39

Table 1: Error cost for all 3 SVDD generalizations and rKDE.

to take advantage of the probabilistic interpretation of the calibrated SVDD out-
lier scores to tune the model parameters. The quality of the estimated MV-sets
is measured using the relative difference

ηj−η̃j
ηj

between the expected probability

mass (ηj) of each estimated MV-set and the experimental probability mass (η̃j)
computed on a validation set.

4.2 Experimental Results

Gaussian distribution: The training data consists of N = 500 data points
from a 2D Gaussian distribution N(0, 1). The true probability function is given
by the χ2 cumulative distribution function with 2 degrees of freedom. To simu-
late the presence of noise, outliers drawn from a uniform distribution U[−5,5] were
added to the training data. The noise ratio was varied between 1% and 10%. All
experiments on synthetic data were repeated 100 times. For both SVDD gen-
eralizations we used a linear kernel. For rKDE, the best results were obtained

Fig. 2: KL divergence computed using the true probability and scores obtained
with iSVDD (blue), cSVDD-gev (red), cSVDD-sig (magenta) and rKDE (cyan)
for varying noise levels.

when using Hampel loss and least square cross validation to select the kernel
bandwidth. Figure 2 shows that for all non null noise levels, the cSVDD-sig per-
forms best and is the least sensitive to the presence of noise in the training data.
The iSVDD approach seems to be less stable and generates more degenerate
models than all other approaches.
Real datasets: we used six benchmark datasets from the UCI repository. For
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each dataset, 200 examples were sampled from the majority class to form the
normal class training examples. The second class was sampled to obtain the
outliers. The Balance dataset contains three classes (L, B and R), we therefore
trained using the two classes that allow having more than 200 instances and
pooled the two remaining categories to form the outlier class. The presence of
noise was simulated by adding a portion of examples from the outlier class to
the training data. Table 1 shows that, for most considered dataset, the proposed
generalizations along with the calibration give improved performance in terms
of quality of the probability estimates and detection performance.

5 Conclusion

We introduced a generalization of the SVDD approach for estimating hierarchi-
cal MV-sets with specific probability masses. This generalization is obtained
by transforming the initial SVDD optimization problem to construct q SVDD
models that all share the same center. Given the consistency of the MV-sets
estimated by each SVDD model, two calibration functions, a sigmoid model and
a generalized extreme value distribution, have also been proposed to convert the
outputted scores into calibrated probability estimates. Parameter tuning was
automatically achieved by considering an optimality criterion evaluating prob-
ability estimates. The criterion does not require having labelled observations
from the outlier class and makes no assumption on the distribution of outliers.
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