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Abstract. We rigorously prove the convergence of the micro-macro limit
for particle approximations of the Aw-Rascle-Zhang equations with a
maximal density constraint. The lack of BV bounds on the density vari-
able is supplied by a compensated compactness argument.
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1. Introduction

Macroscopic traffic flow models usually consist of partial differential equa-
tions describing the evolution of aggregated quantities, like traffic density
and mean velocity. They express the mass conservation and eventually the
traffic acceleration. In this article, we focus on a pressure-less gas dynamics
system subject to a maximal density constraint, which was introduced in [5]
and can be derived through a singular limit in the pressure term of a modified
Aw-Rascle-Zhang model [2, 12].

In the following, we denote by ρ, v the density and velocity of the traffic
and by p the “reserve” of velocity acting as an anticipation factor of drivers to
the local traffic conditions. We consider the following system of conservation
laws {

∂tρ+ ∂x(ρv) = 0,
∂t(ρ(v + p)) + ∂x(ρv(v + p)) = 0,

t > 0, x ∈ R, (1.1)

subject to the constraints

0 ≤ ρ(t, x) ≤ ρ∗, p(t, x) ≥ 0, (ρ(t, x)− ρ∗)p(t, x) = 0 a.e. t, x, (1.2)
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for some ρ∗ ∈ R+ denoting the maximal density of cars allowed on the road.
System (1.1) is equipped with the following initial data

ρ(0, x) = ρ0(x), v(0, x) = v0(x), p(0, x) = p0(x), x ∈ R. (1.3)

We assume that

(H1) ρ0 ∈ L1(R) ∩ L∞(R) with 0 ≤ ρ0 ≤ ρ∗ and ρ0 with compact support;
(H2) v0, p0 ∈ L∞(R)∩BV(R) with v0 ≥ 0, p0 ≥ 0 and (ρ0(x)− ρ∗)p0(x) = 0

for a.e. x ∈ R.

In [5], the authors introduced the following constrained follow-the-leader
model to compute approximate solutions of (1.1)-(1.3).
Let us denote by xi(t), Vi(t) and pi(t) the position, speed and reserve of
velocity, respectively, of the i-th particle at time t ≥ 0, for 0 ≤ i ≤ N . The
initial conditions

xNi (0) = xNi , V Ni (0) = V
N

i , pNi (0) = pNi for i = 0, . . . , N, (1.4)

are defined as follows: let xmin < xmax the extremal points of the convex hull
of the support of ρ0, so that

Supp(ρ0) ⊆ [xmin, xmax] , (1.5)

and set

lN =
1

N

∫
R
ρ0(x) dx, dN = lN/ρ

∗, (1.6)

xN0 = xmin, xNi = sup

{
x ∈ R ;

∫ x

xN
i−1

ρ0(x) dx < lN

}
, for i = 0, . . . , N,

(1.7)

V
N

i = sup
[xN

i ,x
N
i+1[

v0, pNi = sup
[xN

i ,x
N
i+1[

p0, for i = 0, . . . , N − 1,

V
N

N = sup
[xN

N ,+∞[

v0, pNi = sup
[xN

N ,+∞[

p0.
(1.8)

Notice that from (1.7) we get xNN = xmax and∫
R
ρ0(x) dx =

∫ xmax

xmin

ρ0(x) dx =

N∑
i=1

∫ xN
i

xN
i−1

ρ0(x) dx = NlN ,

since

lN =

∫ xN
i

xN
i−1

ρ0(x) dx, i = 1, . . . , N.

Notice also that we have

lN =

∫ xN
i

xN
i−1

ρ0(x) dx ≤ ‖ρ0‖∞(xNi − xNi−1) ≤ ρ∗(xNi − xNi−1) (1.9)

for all i = 1, . . . , N , and therefore

xNi − xNi−1 ≥ dN , i = 1, . . . , N.

The dynamics of the discrete model is the following: each particle moves
freely until it reaches the minimal distance to the preceding one, that is to
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say xNi+1(t) − xNi (t) = dN . At this point, the particle i takes the velocity
of the particle i + 1 and they keep the distance dN forever. For any initial
positions and velocities of the N + 1 particles, these “interactions” can only
happen k times, with k ≤ N . Let us denote by t1 ≤ t2 ≤ . . . < tk the times
when an interaction happens and we denotes by im the number of particle(s)
for which at time tm, the collision is between the im-th and the (im + 1)-th
particles. The particle dynamics is therefore described by the following rules

ẋNi (t) = V Ni (t), t ≥ 0, for i = 0, . . . , N,

V NN (t) = V
N

N ,

V̇ Ni (t) = 0 t 6= tm, m = 1, . . . , k, for i = 0, . . . , N − 1,

ṗNi (t) = 0 t 6= tm, m = 1, . . . , k, for i = 0, . . . , N − 1,
(1.10)

and at times tm, there is a jump such that for t ≥ tm,{
V Nim(t) := V Nim+1(t), t ≥ tm,
pNi(m)(t) := V Nim(tm−)− V Nim(tm+) + pNim(tm−).

(1.11)

We introduce the variables

yNi (t) =
lN

xNi+1(t)− xNi (t)
, i = 0, . . . , N − 1, (1.12)

which satisfy

ẏNi (t) = −
lN (ẋNi+1(t)− ẋNi (t))

(xNi+1(t)− xNi (t))2
= −y

N
i (t)2

lN
(V Ni+1(t)− V Ni (t)). (1.13)

Since xNi (t)− xNi−1(t) ≥ dN , we have yNi (t) ≤ lN/dN = ρ∗.

We define the piecewise constant density ρ̂N by

ρ̂N (t, x) =

N−1∑
i=0

yNi (t)1I[xN
i (t),xN

i+1(t)[
(x), (1.14)

the velocity v̂N by

ρ̂N v̂N (t, x) =

N−1∑
i=0

yNi (t)V Ni (t)1I[xN
i (t),xN

i+1(t)[
(x), (1.15)

and the pressure term p̂N by

ρ̂N p̂N (t, x) =

N−1∑
i=0

yNi (t)pNi (t)1I[xN
i (t),xN

i+1(t)[
(x). (1.16)

Remark 1.1. These definitions identify v̂N and p̂N where ρ̂N 6= 0, that is to
say away from vacuum. Thus we need to extend the functions v̂N and p̂N

when ρ̂N = 0. While the pressure term must be equal to zero by (1.2), the
velocity is given any non-negative constant value that does not increase the
total variation. For example, by taking the average between two no-vacuum
zones and extending by constants at infinity.
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The main result of the present article is the convergence of the micro-
scopic constrained follow-the-leader model to the macroscopic constrained
Aw-Rascle-Zhang system as the number of particles tends to infinity.

Theorem 1.2. Let ρ0, v0 and p0 satisfy (H1)-(H2) and consider the discrete
quantities (ρ̂N , v̂N , p̂N ) defined by (1.14)-(1.16) with (1.12) and (1.4)-(1.8).
Then there exists (ρ, v, p) with ρ ∈ L1(R)∩L∞(R) and v, p ∈ L∞(R)∩BV (R),
solution of (1.1) with the constraints (1.2), with initial data (ρ0, v0, p0) such
that, up to a subsequence,

ρ̂N⇀ρ, ρ̂N v̂N⇀ρv, ρ̂N p̂N⇀ρp

in the distributional sense.

The proof is deferred to Section 4.3. We recall that previous deriva-
tions of macroscopic traffic models from microscopic dynamical systems have
been investigated for the classical Lighthill-Whitham-Richards equation [7, 8]
and its non-local version [11], for the Aw-Rascle system [1, 9], for a phase-
transition model based on a speed bound [6], and for Hughes model of crowd
motion [10]. In our case, the main difficulty is represented by the lack of a
uniform bound on the density total variation, that cannot be compensated
by the compactness of the Riemann invariants like in [9], due to the zero-
pressure term in the momentum equation. Therefore, the convergence relies
on a compensated compactness argument introduced in [3].

The paper is organized as follows. In Section 2 we provide the con-
vergence proof for initial data. Section 3 collects the L∞ and BV estimates
satisfied by the approximate solutions, which allow to show their convergence
in Section 4.

2. Initial data limit

We start first by proving that the discrete quantities constructed at the pre-
vious section are compatible with the initial data.

Proposition 2.1. Let ρ0, v0 and p0 satisfy (H1)-(H2). We consider the discrete
quantities (1.14)-(1.16) with (1.12) and (1.4)-(1.8). Then, for all ϕ ∈ C∞c (R),
we have ∫

R
ρ̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)ϕ(x) dx, (2.1)∫

R
ρ̂N (0, x)v̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)v0(x)ϕ(x) dx (2.2)

and ∫
R
ρ̂N (0, x)p̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)p0(x)ϕ(x) dx. (2.3)

Proof. We have∫
R
ρ̂N (0, x)ϕ(x) dx =

N−1∑
i=0

∫ xN
i+1

xN
i

lN

xNi+1 − xNi
ϕ(x) dx
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=

N−1∑
i=0

lNϕ(xNi ) +

N−1∑
i=0

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx.

Using (1.9), we get

N−1∑
i=0

lNϕ(xNi ) =

N−1∑
i=0

∫ xN
i+1

xN
i

ρ0(x)ϕ(xNi ) dx

=

N−1∑
i=0

∫ xN
i+1

xN
i

ρ0(x)(ϕ(x) + ϕ(xNi )− ϕ(x)) dx

=

∫
R
ρ0(x)ϕ(x) dx+

N−1∑
i=0

∫ xN
i+1

xN
i

ρ0(x)(ϕ(xNi )− ϕ(x)) dx.

Therefore∫
R
ρ̂N (0, x)ϕ(x) dx−

∫
R
ρ0(x)ϕ(x) dx

=

N−1∑
i=0

∫ xN
i+1

xN
i

ρ0(x)(ϕ(xNi )− ϕ(x)) dx

+

N−1∑
i=0

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx.

Now∣∣∣∣∫
R
ρ̂N (0, x)ϕ(x) dx−

∫
R
ρ0(x)ϕ(x) dx

∣∣∣∣
≤ ‖ϕ′‖∞

N−1∑
i=0

∫ xN
i+1

xN
i

ρ0(x)|xNi − x| dx+ ‖ϕ′‖∞
N−1∑
i=0

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(x− xNi ) dx

≤ ‖ϕ′‖∞
N−1∑
i=0

(xNi+1 − xNi )

∫ xN
i+1

xN
i

ρ0(x) dx+ ‖ϕ′‖∞lN
N−1∑
i=0

xNi+1 − xNi
2

≤ ‖ϕ′‖∞lN
3

2

N−1∑
i=0

(xNi+1 − xNi )

≤ lN
3

2
‖ϕ′‖∞(xNN − xN0 )

≤ lN
3

2
‖ϕ′‖∞(xmax − xmin) →

N→+∞
0.

Thus we get ∫
R
ρ̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)ϕ(x) dx. (2.4)

We consider now now the product ρ̂N (0, x)v̂N (0, x). In this case we have
the relation∫

R
ρ̂N (0, x)v̂N (0, x)ϕ(x) dx
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=

N−1∑
i=0

V
N

i

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

ϕ(x) dx

=

N−1∑
i=0

V
N

i lNϕ(xNi ) +

N−1∑
i=0

V
N

i

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx

and
N−1∑
i=0

V
N

i lNϕ(xNi ) =

N−1∑
i=0

V
N

i

∫ xN
i+1

xN
i

ρ0(x)ϕ(xNi ) dx

=

N−1∑
i=0

∫ xN
i+1

xN
i

V
N

i ρ
0(x)(ϕ(x) + ϕ(xNi )− ϕ(x)) dx

=

∫
R
ρ0(x)v0(x)ϕ(x) dx+

N−1∑
i=0

∫ xN
i+1

xN
i

(V
N

i − v0(x))ρ0(x)ϕ(x) dx

+

N−1∑
i=0

∫ xN
i+1

xN
i

V
N

i ρ
0(x)(ϕ(xNi )− ϕ(x)) dx.

Therefore ∫
R
ρ̂N (0, x)v̂N (0, x)ϕ(x) dx−

∫
R
ρ0(x)v0(x)ϕ(x) dx

=

N−1∑
i=0

V
N

i

∫ xN
i+1

xN
i

ρ0(x)(ϕ(xNi )− ϕ(x)) dx

+

N−1∑
i=0

V
N

i

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx

+
N−1∑
i=0

∫ xN
i+1

xN
i

(V
N

i − v0(x))ρ0(x)ϕ(x) dx.

Since V
N

i are bounded by ‖v0‖∞, we get similarly as for the convergence of
ρ̂N the estimate∣∣∣∣∣

N−1∑
i=0

V
N

i

∫ xN
i+1

xN
i

ρ0(x)(ϕ(xNi )− ϕ(x)) dx

+

N−1∑
i=0

V
N

i

lN

xNi+1 − xNi

∫ xN
i+1

xN
i

(ϕ(x)− ϕ(xNi )) dx

∣∣∣∣∣
≤ lN

3

2
‖ϕ′‖∞‖v0‖∞‖ρ0‖∞(xmax − xmin) →

N→+∞
0.

Now for the last term of the inequality, we have∣∣∣∣∣
N−1∑
i=0

∫ xN
i+1

xN
i

(V
N

i − v0(x))ρ0(x)ϕ(x) dx

∣∣∣∣∣
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≤
N−1∑
i=0

∫ xN
i+1

xN
i

|V Ni − v0(x)| ρ0(x) |ϕ(x)| dx

≤
N−1∑
i=0

∫ xN
i+1

xN
i

∣∣∣∣∣ sup
[xN

i ,x
N
i+1]

v0 − inf
[xN

i ,x
N
i+1]

v0

∣∣∣∣∣ ρ0(x) |ϕ(x)| dx

≤ ‖ϕ‖∞
N−1∑
i=0

∣∣∣∣∣ sup
[xN

i ,x
N
i+1]

v0 − inf
[xN

i ,x
N
i+1]

v0

∣∣∣∣∣
∫ xN

i+1

xN
i

ρ0(x) dx

≤ lN‖ϕ‖∞TV (v0) →
N→+∞

0.

Thus we get∫
R
ρ̂N (0, x)v̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)v0(x)ϕ(x) dx. (2.5)

Similarly, we have∫
R
ρ̂N (0, x)p̂N (0, x)ϕ(x) dx →

N→+∞

∫
R
ρ0(x)p0(x)ϕ(x) dx. (2.6)

�

3. L∞ and BV estimates

The dynamics of xNi (t), V Ni (t) and pNi (t) described by (1.10), (1.11), implies
the following properties.

Lemma 3.1. Let ρ0, v0 and p0 satisfy (H1)-(H2). Then the functions V Ni (t)
and pNi (t) defined by (1.10), (1.11) satisfy

|V Ni (t)| ≤ ‖v0‖∞, |pNi (t)| ≤ ‖v0‖∞ + ‖p0‖∞. (3.1)

Moreover, it holds

TV (V N (t, .)) ≤ TV (V 0), (3.2)

TV (pN (t, .)) ≤ TV (V 0) + TV (p0). (3.3)

Proof. The L∞ estimates (3.1) are deduced from the maximum principles

0 ≤ V Ni (t) ≤ max
j
V Nj (0) ≤ sup v0,

0 ≤ pNi (t) ≤ max
j

(V Nj (0) + pNj (0)) ≤ sup(v0 + p0),

which directly follow from the system dynamics.
The estimate (3.2) derives from the fact that between two interaction

times tm, the functions t 7→ V Ni (t) are constant. At time tm, for a collision
between the im-th and the (im + 1)-th particles, from (1.11) we have

TV (V N (tm+, .)) =

N−1∑
i=0

|V Ni+1(tm+)− V Ni (tm+)|
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=

im−1∑
i=0

|V Ni+1(tm+)− V Ni (tm+)|+ |V Nim+1(tm+)− Vim(tm+)|

+

N−1∑
i=im+1

|V Ni+1(tm+)− V Ni (tm+)|

=

im−1∑
i=0

|V Ni+1(tm−)− V Ni (tm−)|+
N−1∑

i=im+1

|V Ni+1(tm−)− V Ni (tm−)|

≤ TV (V N (tm−, .)),

thus proving (3.2). Notice that the variation which is lost for V N is transferred
to pN , thus giving (3.3). �

These properties clearly have the following consequences on the func-
tions ρ̂N , v̂N and p̂N :

Proposition 3.2. We have the following estimates:

1. The functions ρ̂N , v̂N and p̂N are bounded in L∞(]0,+∞[×R).
2. Furthermore

TV (v̂N (t, .)) ≤ TV (v0), TV (p̂N (t, .)) ≤ TV (v0) + TV (p0), ∀N ∈ N.
(3.4)

Finally, notice that for all x ∈ R we have

(ρ̂N (t, x)− ρ∗)p̂N (t, x) = 0.

Indeed, this is true at t = 0. Moreover

1. if p̂N (0, x) 6= 0 for x ∈ [xNi , x
N
i+1[ , then ρ̂N (t, x) = ρ∗ for x ∈ [xNi (t), xNi+1(t)[

for t > 0;
2. when p̂N passes from 0 to non-zero, as described by (1.11), then it is

when ρ̂N = ρ∗ is satisfied.

4. Convergence proofs

4.1. Study of the approximated equations

We first start by studying the limit of the approximated equations.

Proposition 4.1. Let ρ0, v0 and p0 satisfy (H1)-(H2). Then, for any ϕ ∈
C∞c ([0,+∞[×R), it holds

− < ∂tρ̂
N + ∂x(ρ̂N v̂N ), ϕ > →

N→+∞

∫
R
ρ0(x)ϕ(0, x) dx (4.1)

and

− < ∂tρ̂
N (v̂N + p̂N ) + ∂x(ρ̂N v̂N (v̂N + p̂N )), ϕ >

→
N→+∞

∫
R
ρ0(x)(v0 + p0)(x)ϕ(0, x) dx. (4.2)
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Proof. Let ϕ ∈ C1
c ([0,+∞[×R). We have

− < ∂tρ̂
N + ∂x(ρ̂N v̂N ), ϕ >

=

∫ +∞

0

∫
R
ρ̂N (t, x)∂tϕ(t, x) + ρ̂N (t, x)v̂N (t, x)∂xϕ(t, x) dx dt

=

N−1∑
i=0

∫ +∞

0

yNi (t)

∫ xN
i+1(t)

xN
i (t)

(∂tϕ(t, x) + V Ni (t)∂xϕ(t, x)) dx dt.

Notice that

d

dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx

=

∫ xN
i+1(t)

xN
i (t)

∂tϕ(t, x) dx+ ẋNi+1(t)ϕ(t, xNi+1(t))− ẋNi (t)ϕ(t, xNi (t))

=

∫ xN
i+1(t)

xN
i (t)

∂tϕ(t, x) dx+ V Ni+1(t)ϕ(t, xNi+1(t))− V Ni (t)ϕ(t, xNi (t)),

therefore

− < ∂tρ̂
N + ∂x(ρ̂N v̂N ), ϕ > (4.3)

=

N−1∑
i=0

∫ +∞

0

yNi (t)
( d
dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx− V Ni+1(t)ϕ(t, xNi+1(t))

+ V Ni (t)ϕ(t, xNi (t)) + V Ni (t)(ϕ(t, xNi+1(t))− ϕ(t, xNi (t)))
)
dt

=

N−1∑
i=0

∫ +∞

0

yNi (t)
( d
dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx− (V Ni+1(t)− V Ni (t))ϕ(t, xNi+1(t))
)
dt.

Now∫ +∞

0

yNi (t)
d

dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx dt

= − yNi (0)

∫ xN
i+1(0)

xN
i (0)

ϕ(0, x) dx−
∫ +∞

0

ẏNi (t)

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx dt,

which, with (1.13), gives∫ +∞

0

yNi (t)
d

dt

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx dt

= − yNi (0)

∫ xN
i+1(0)

xN
i (0)

ϕ(0, x) dx

+

∫ +∞

0

(yNi (t))2

lN
(V Ni+1(t)− V Ni (t))

∫ xN
i+1(t)

xN
i (t)

ϕ(t, x) dx dt. (4.4)
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Furthermore

ϕ(t, xNi+1(t)) =
1

xNi+1(t)− xNi (t)

∫ xN
i+1(t)

xN
i (t)

ϕ(t, xNi+1(t)) dx

=
yNi (t)

lN
ϕ(t, xNi+1(t)) dx. (4.5)

Reporting (4.4) and (4.5) in (4.3), we obtain

− < ∂tρ̂
N + ∂x(ρ̂N v̂N ), ϕ >

=

∫ Tϕ

0

∆N (t) dt−
N−1∑
i=0

yNi (0)

∫ xN
i+1(0)

xN
i (0)

ϕ(0, x) dx

=

∫ Tϕ

0

∆N (t) dt−
∫ +∞

0

∫
R
ρ̂N (0, x)ϕ(0, x) dx dt, (4.6)

where

∆N (t) =

N−1∑
i=0

(yNi (t))2

lN
(V Ni+1(t)− V Ni (t))

∫ xN
i+1(t)

xN
i (t)

(ϕ(t, x)− ϕ(t, xNi+1(t))) dx

with Tϕ such that ϕ(t, x) = 0 for t ≥ Tϕ. Now we have∣∣∣∣∣
∫ xN

i+1(t)

xN
i (t)

(ϕ(t, x)− ϕ(t, xNi+1(t))) dx

∣∣∣∣∣ ≤ ‖ϕ′‖∞2
(xNi (t)−xNi+1(t))2 =

‖ϕ′‖∞l2N
2(yNi (t))2

,

thus

|∆N (t)| ≤ ‖ϕ
′‖∞lN
2

N−1∑
i=0

|V Ni+1(t)− V Ni (t))| ≤ ‖ϕ
′‖∞lN
2

TV (v0),

and ∣∣∣∣∣
∫ Tϕ

0

∆N (t) dt

∣∣∣∣∣ ≤ ‖ϕ′‖∞lN2
TϕTV (v0) →

N→+∞
0.

Finally, we use Proposition 2.1 to conclude to (4.1).
For the second equation, we have

− < ∂t(ρ̂
N (v̂N + p̂N )) + ∂x(ρ̂N v̂N (v̂N + p̂N )), ϕ > (4.7)

=

∫ +∞

0

∫
R
ρ̂N (t, x)(v̂N + p̂N )(t, x)(∂tϕ(t, x) + v̂N (t, x)∂xϕ(t, x)) dx dt

=

N−1∑
i=0

∫ +∞

0

yNi (t)(V Ni (t) + pNi (t))

∫ xN
i+1(t)

xN
i (t)

(∂tϕ(t, x) + V Ni (t)∂xϕ(t, x)) dx dt.

Notice that V Ni (t) + pNi (t) is constant with respect to t. Indeed, when there

is no collision V̇ Ni (t) = 0 and ṗNi (t) = 0 and at a collision time tm,

V Nim(tm+) + pNim(t+m) = V Nim+1(tm−),+V Nim(tm−)− V Nim+1(tm−) + pNim(tm−)

= V Nim(tm−) + pNim(tm−).

Thus we get the convergence (4.2) as for the first equation. �
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4.2. Compactness estimates for ρ̂N

To go further, a key point is to obtain some compactness for ρ̂N .

Proposition 4.2. Let ρ0 and v0 satisfy (H1)-(H2). For any φ ∈ C∞c (R), there
exists Cφ > 0 such that for any N ∈ N and any s, t ∈ [0, T ], it holds∣∣∣∣∫

R
(ρ̂N (t, x)− ρ̂N (s, x))φ(x) dx

∣∣∣∣ ≤ Cφ|t− s|. (4.8)

Therefore, up to a subsequence, there exists ρ ∈ L∞(]0, T [×R) such that
ρ̂N → ρ in C([0, T ], L∞w∗(Rx)), i.e.

∀Γ ∈ L1(R), sup
t∈[0,T ]

∣∣∣∣∫
R

(ρ̂N − ρ)(t, x)Γ(x)dx

∣∣∣∣ →k→+∞
0.

Proof. In the formulation (4.6), we take ϕ(t, x) = ΓR(t)φ(x) with ΓR with
a compact support in ]0,+∞[ and we make ΓR → 1I[s,t] when R → +∞, it
gives∫

R
(ρ̂N (t, x)− ρ̂N (s, x))φ(x) dx+

∫ t

s

∫
R
ρ̂N ûN∂xφ =

∫ t

s

∆̃N (σ) dσ

for ϕ where

∆̃N (t) =

N−1∑
i=0

(yNi (t))2

lN
(V Ni+1(t)− V Ni (t))

∫ xN
i+1(t)

xN
i (t)

(φ(x)− φ(xNi+1(t))) dx

Similarly as in Section 4.1, we have∣∣∣∣∫ t

s

∆̃N (σ) dσ

∣∣∣∣ ≤ |t− s| ‖φ′‖∞ lN
2

TV (v0).

Furthermore, from Proposition 3.2,∣∣∣∣∫ t

s

∫
R
ρ̂N v̂N∂xφdx dσ

∣∣∣∣ ≤ |t− s| ρ∗ ‖v0‖∞ ∫
R
|φ| dx,

then ∣∣∣∣∫
R

(ρ̂N (t, x)− ρ̂N (s, x))φ(x) dx

∣∣∣∣
≤ |t− s|

(
‖φ′‖∞ ‖ρ0‖1

2N
TV (v0) + ρ∗ ‖v0‖∞

∫
R
|φ| dx

)
.

To conclude, we use the following Lemma 4.3 proved in [4]. �

Lemma 4.3. Let (nk)k∈N be a bounded sequence in L∞(]0, T [×R) which sat-
isfies: for all φ ∈ C∞c (R), the sequence

(∫
R nk(t, x)φ(x)dx

)
k

is uniformly

Lipschitz continuous on [0, T ], i.e. ∃Cφ > 0,

∀k ∈ N, ∀s, t ∈ [0, T ],

∣∣∣∣∫
R

(nk(t, x)− nk(s, x))φ(x)dx

∣∣∣∣ ≤ Cφ|t− s|.
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Then, up to a subsequence, there exists n ∈ L∞(]0, T [×R) such that nk → n
in C([0, T ], L∞w∗(Rx)), i.e.

∀Γ ∈ L1(R), sup
t∈[0,T ]

∣∣∣∣∫
R

(nk − n)(t, x)Γ(x)dx

∣∣∣∣ →k→+∞
0.

We have a similar result from the second equation, that is to say:

Proposition 4.4. Let ρ0, v0 and p0 satisfy (H1)-(H2). For any φ ∈ C∞c (R),
there exists Cφ > 0 such that for any N ∈ N and any s, t ∈ [0, T ], we have∣∣∣∣∫

R
((ρ̂N (v̂N + p̂N ))(t, x)− (ρ̂N (v̂N + p̂N ))(s, x))φ(x) dx

∣∣∣∣ ≤ Cφ|t− s|. (4.9)

Then, up to a subsequence, there exists q ∈ L∞(]0, T [×R) such that ρ̂N (ûN +
p̂N )→ q in C([0, T ], L∞w∗(Rx)), i.e.

∀Γ ∈ L1(R), sup
t∈[0,T ]

∣∣∣∣∫
R
(ρ̂N (v̂N + p̂N )− q)(t, x)Γ(x)dx

∣∣∣∣ →k→+∞
0.

Proof. This time, we have, for any φ ∈ C∞c (R),∫
R

((ρ̂N (v̂N + p̂N ))(t, x)− (ρ̂N (v̂N + p̂N ))(s, x))φ(x) dx

= −
∫ t

s

∫
R
ρ̂N v̂N (v̂N + p̂N )∂xφ+

∫ t

s

∆N (σ) dσ

where

∆N (t) =

N−1∑
i=0

(V Ni (t)+pNi (t))
(yNi (t))2

lN
(V Ni+1(t)−V Ni (t))

∫ xN
i+1(t)

xN
i (t)

(φ(x)−φ(xNi+1(t))) dx.

We have now∣∣∣∣∫ t

s

∆N (σ) dσ

∣∣∣∣ ≤ |t− s| ‖φ′‖∞ lNTV (v0)(‖v0‖∞ + ‖p0‖∞)

using furthermore (3.1). Then we get∣∣∣∣∫
R

((ρ̂N (v̂N + p̂N ))(t, x)− (ρ̂N (v̂N + p̂N ))(s, x)))φ(x) dx

∣∣∣∣
≤ |t− s|

(
‖φ′‖∞

‖ρ0‖1
N

TV (v0) + 2ρ∗ ‖v0‖∞
∫
R
|φ| dx

)
(‖v0‖∞ + ‖p0‖∞).

We conclude using the previous Lemma 4.3. �

4.3. Convergence to the limit equations

We need now to pass to the limit in the product terms. We recall the following
result, which is the key point of the proof to pass to the limit in the products.

Lemma 4.5. Let us assume that (nk)k∈N is a bounded sequence in L∞(]0, T [×R)
that tends to n in L∞w∗(]0, T [×R), and satisfies for any φ ∈ C∞c (Rx),∫

R
(nk − n)(t, x)φ(x)dx →

k→+∞
0, (4.10)
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either i) a.e. t ∈]0, T [ or ii) in L1(]0, T [t).
Let us also assume that (ωk)k∈N is a bounded sequence in L∞(]0, T [×R) that
tends to ω in L∞w∗(]0, T [×R), and such that for all compact interval K = [a, b],
there exists C > 0 such that the total variation (in x) of ωk over K satisfies

∀k ∈ N, TVK(ωk(t, .)) ≤ C. (4.11)

Then, nkωk⇀nω in L∞w∗(]0, T [×R) as k → +∞.

Remark 4.6. This is a result of compensated compactness, which uses the
compactness in x for (ωk)k given by (4.11) and the weak compactness in t
for (nk)k given by (4.10) to pass to the weak limit in the product nkωk. We
can refer to [3] for a complete proof, even in the case where

∀k ∈ N, TVK(ωk(t, .)) ≤ C
(

1 +
1

t

)
,

which is more general. Notice that the total variation bound (in x) of ω over
K is also satisfied thanks to the lower semi-continuity to the BV norm.

We are now able to obtain the limit result.

Proof of Theorem 1.2. Since (ρ̂N )N , (v̂
N )N , (p̂

N )N are bounded in L∞, there
exists (ρ, u, p) such that

ρ̂N⇀ρ, v̂N⇀v, p̂N⇀p in L∞w∗(]0,+∞[×R).

By Proposition 4.2, we also have ρ̂N → ρ in C([0, T ], L∞w∗(Rx)).
Using Proposition 3.2, we get that the sequences (v̂N (t, .))N and (p̂N (t, .))N
are uniformly bounded in BV with respect to t.
We can then apply the Lemma 4.5, which gives that ρ̂N v̂N⇀ρv in L∞w∗(]0, T [×R)
and ρ̂N p̂N⇀ρp in L∞w∗(]0, T [×R). Therefore the (4.1) of Proposition 4.1 gives
that

− < ∂tρ+ ∂x(ρv), ϕ >=

∫
R
ρ0(x)ϕ(0, x) dx.

By Proposition 4.4, there exists q ∈ L∞(]0, T [×R) such that, up to a sub-
sequence, ρ̂N (v̂N + p̂N ) → q in C([0, T ], L∞w∗(Rx)). By uniqueness of the
limit q = ρ(v + p). We apply now Lemma 4.5, which gives that ρ̂N v̂N (v̂N +
p̂N )⇀ρv(v+p) in L∞w∗(]0, T [×R). Therefore the (4.2) of Proposition 4.1 gives
that

− < ∂tρ(v + p) + ∂x(ρv(v + p)), ϕ >=

∫
R
ρ0(x)(v0(x) + p0(x))ϕ(0, x) dx.

Now we pass to the limit in 0 ≤ ρ̂N ≤ ρ∗, p̂N ≥ 0, (ρ̂N − ρ∗)p̂N = 0 to get
the constraints and conclude the proof. �
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