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Abstract— The main objective of this paper is to design
electric vehicle (EV) charging policies which minimize the
impact of charging on the electricity distribution network (DN).
More precisely, the considered cost function results from a
linear combination of two parts: a cost with memory and a
memoryless cost. In this paper, the first component is identified
to be the transformer ageing while the second one corresponds
to distribution Joule losses. First, we formulate the problem
as a non-trivial discrete-time optimal control problem with
finite time horizon. It is non-trivial because of the presence
of saturation constraints and a non-quadratic cost. It turns
out that the system state, which is the transformer hot-spot
(HS) temperature here, can be expressed as a function of the
sequence of control variables; the cost function is then seen
to be convex in the control for typical values for the model
parameters. The problem of interest thus becomes a standard
optimization problem. While the corresponding problem can be
solved by using available numerical routines, three distributed
charging policies are provided. The motivation is threefold: to
decrease the computational complexity; to model the important
scenario where the charging profile is chosen by the EV
itself; to circumvent the allocation problem which arises with
the proposed formulation. Remarkably, the performance loss
induced by decentralization is verified to be small through
simulations. Numerical results show the importance of the
choice of the charging policies. For instance, the gain in terms of
transformer lifetime can be very significant when implementing
advanced charging policies instead of plug-and-charge policies.
The impact of the accuracy of the non-EV demand forecasting
is equally assessed.

I. INTRODUCTION

The vast majority of current electric vehicles (EVs) charge

their battery in a very simple way. The EV battery charging

operation starts as soon as the user plugs his vehicle into

the grid and at the maximal power which is admissible by

the charging system. The merit of this charging policy is

that it does not require any interaction between the user

and the grid and it minimizes the time needed to reach

a given charging level. On the other hand, such a policy

has the disadvantage of strongly impacting the grid since

it ignores the demand profile associated with all the other

devices connected to the grid; charging may typically start

e.g., during the evening peak when people get back home.

Since the pricing aspect is ignored by the plug-and-charge

(PaC) policy, the cost paid by the user can also be affected

especially in scenarios where the electricity price is time-

varying. The goal of the work reported in this paper is to

provide new charging policies whose main purpose is to

minimize the impact of EV charging on a precise part of

the electric grid namely, the distribution network (DN). More

specifically, we want to minimize the impact of EV charging

on the ageing of distribution transformers and on distribution

Joule losses. The corresponding mathematical model can also

be used for scenarios where pricing aspects are considered.

The derived results can be re-exploited for other problems in

smart grids such as the general problem of energy scheduling

with delay constraints [1], [2]; therein the system state is

given by the available stored energy and the cost are market-

based or generation ones.

So far, despite of the importance of the problem1, the

impact of EV charging on distribution transformer ageing

and Joule losses has only been addressed in a quite small

number of papers. Among relevant related works we may

cite [4], [5]. The dominant approach adopted, which is well

illustrated by [5], consists in exploiting a suitable model

for the ageing or Joule losses, and assess the impact of

charging for simple scenarios; for instance, all EV start

charging at a given time of the day (e.g., at 7 pm) or

at random instants. The algorithmic aspect is however not

developed. This is precisely what the present work proposes.

This aspect of the charging problem is tackled in the related

literature but, in most cases, for minimizing the monetary

cost the user has to pay for recharging his vehicle (see

e.g., [6]). Additionally, going for advanced algorithms leads

to complexity issues which justify in part why considering

distributed algorithms are fully relevant and even required.

This observation explains why game-theoretic tools may

offer the right framework to address the charging problem.

In this respect, useful contributions include [7], [8], [9].

The main contributions of our paper can be summarized

as follows. In Sec. III, we formulate the general (central-

ized) discrete-time optimal control problem to be solved to

minimize the cost of interest namely, a linear combination

of the transformer ageing and Joule losses over the DN.

1In the European Union, about 5 millions distribution transformers are
used and about 70% of transformer failures are due to ageing and not fated
events [3]. As for DN Joule losses, they represent the most important fraction
of power losses in the electricity network (about two thirds in France).



The system state is given by the transformer hot-spot (HS)

temperature which is the most influential variable for the

transformer ageing. In Sec. IV, we provide three distributed

charging policies which are suboptimal w.r.t. the correspond-

ing centralized solutions but perform significantly better in

terms of transformer lifetime than baseline schemes. The

three proposed schemes are all based on the sequential best-

response dynamics (BRD). In Sec. V, numerical results show

the potential benefits of using the proposed charging schemes

in a real system.

II. PROPOSED MODELING

In this paper, we consider a DN which comprises one

transformer to which two groups of electrical devices are

connected: a set of EVs and a set of other electrical devices.

The latter is assumed to induce a power demand which is

independent of the charging policies and therefore referred

to as the non-EV demand. The corresponding load is denoted

by ℓt which is a deterministic function of the time and

this function is always assumed to be known (except in

the simulation part -Sec. V- where the influence of not

forecasting it perfectly is assessed). Time is assumed to be

slotted and indexed by t ∈ T = {1, · · · , T }. At each time-

slot t, of typical duration 30 min, an EV may be active or

not. The extent to which EV i, i ∈ I = {1, · · · , I}, is active

on time-slot t is measured by the load it generates which is

denoted by vi,t (this quantity will also be called the charging

power of EV i at time t). The total load on the transformer

at time t is then expressed as

ut = ℓt +

I∑

i=1

vi,t . (1)

As a useful auxiliary variable we will use the sum-EV load

at time t: wt =
∑I

i=1 vi,t . For the system of interest, the

state is the HS temperature which is denoted by xt, 0 ≤
xt ≤ xmax . A suitable equivalent model for the evolution

law of the HS temperature is as follows [10]:

∀t ∈ T , xt = axt−1 + b1u
2
t + b2u

2
t−1 + ct , (2)

where 0 ≤ a ≤ 1, b1 ≥ 0, b2 ≤ 0, ct is a known deterministic

function (it typically represents the ambient temperature in

Celsius degrees, making xt ≥ 0), and (x0, u0) is assumed to

be given.

A common and convenient way of measuring the impact

of the load on the transformer ageing is to consider the

instantaneous factor of accelerated ageing (FAA), which

measures the speed of degradation relatively to the case of

a given nominal HS temperature. Denoting the FAA by At,

a well-admitted model (see [11]) is given by At = eαxt+β ,

where α > 0 and β ≤ 0. For example, the case where the

HS temperature is above its nominal value corresponds to

αxt + β > 0 i.e., xt > − β
α

. To conclude on the modeling

aspect, Joule losses over time-slot t are merely given by

Jt = K
(
ℓt +

∑I

i=1 vi,t

)2
, where K ≥ 0 is a parameter

which both represents the secondary equivalent resistance

of the transformer and the resistances of the different links

between the transformer and the different EVs.

III. CENTRALIZED EV CHARGING

It is assumed that EV user i wants the battery of his vehicle

to have reached a certain state of charge (SoC) Si at time t =
T . The corresponding constraint on the control or charging

policies writes as:

∀i ∈ I,

T∑

t=1

vi,t ≥ Si . (3)

Additionally, the charging power of EV i at time t, vi,t, is

assumed to be non-negative and cannot exceed the maximal

power at which an EV can recharge its battery:

0 ≤ vi,t ≤ Vmax . (4)

We denote by x = (x1, · · · , xT ) the system state sequence

and v = (v1,1, · · · , v1,T , · · · , vI,1, · · · , vI,T ) the control

sequence. The impact of the charging operation of the

different EVs on the DN is measured as a composite cost

which accounts for the degradation in terms of transformer

lifetime and Joule losses over the whole time period under

consideration. The centralized optimal control problem of

interest can then be formulated as follows.

Problem 3.1 (Optimal control problem formulation):

minimize
v

C̃(v, x) =
T∑

t=1

eαxt + f

(
ℓt +

∑

i∈I

vi,t

)
(5)

subject to (1), (2), (3), (4) and ∀t ∈ T , xt ≤ xmax ,

where f is assumed to be non-decreasing and convex. It

can account for effects such as Joule losses (namely, f :
s 7→ Ks2) but it can also be exploited as a pricing function.

Similarly, ℓt represents the non-EV demand in this paper

but it can also represent the electricity fare. Note that, for

ease of presentation, the scaling factor e−β is included in the

function f without loss of mathematical generality.

At first glance, solving problem (5) is a difficult task.

Indeed, it is known that determining an optimal solution

of an optimal control problem with saturation constraints

is generally difficult, especially when the cost function is

neither linear nor quadratic; here, the cost function C̃ is

not quadratic in the state and not necessarily quadratic

in the control. However, it turns out that in the problem

under investigation, the state xt can be expressed as a sole

function of the sequence (v1, · · · , vt) for every t ∈ T ,

where vt , (v1,t, · · · , vI,t). This observation allows us to

convert the initial optimal control problem into a standard

optimization problem [12]. By defining the function gt
as xt = gt(v1, · · · , vt) (the expression of gt is provided

further), Problem 3.1 can be written as follows.

Problem 3.2 (Standard optimization prob. formulation):

minimize
v

C(v) (6)

subject to (1), (2), (3), (4) and gt(v1, · · · , vt) ≤ xmax ,

with C(v) =
∑T

t=1 e
αgt(v1,··· ,vt) + f

(
ℓt +

∑
i∈I vi,t

)
.

Note that formulating the problem as an optimization

problem has a potential disadvantage. If T is large, the



dimension of the optimal vector(s) to be found might make

any available numerical optimization routine impossible to

be run, which would then necessitate to return to the initial

optimal control problem formulation. For the application of

interest, T typically equals 24 or 48 if the time horizon

corresponds to a day and time-slots duration is respectively

an hour or half an hour. Considering up to I = 40 EVs

per distribution transformer is affordable computationally

speaking. Solving the initial optimal control problem for an

arbitrary T appears to be an interesting direction to explore.

From now on, we consider the standard optimization problem

formulation. The next result can be shown.

Proposition 3.1: Optimization problem 3.2

(i) has at least one optimal solution if ∀i ∈ I, Si ≤
Vmax×T and ∀t ∈ T , gt(ṽ1, · · · , ṽt) ≤ xmax with

ṽt = (S1

T
, · · · , SI

T
);

(ii) has multiple solutions in general;

(iii) is convex if ab1 + b2 ≥ 0.

The proof is omitted. Note only that the condition in (i)

is a sufficient condition to ensure that the constraint set is

nonempty. Observe that the sufficient condition of (iii) means

that the transformer thermal inertia (the influence of the past

load or demand levels) should not be too high i.e., −b2 ≤
ab1; the latter condition is satisfied for realistic values for a,

b1, and b2 (see e.g., [10]). To be more precise, the condition

−b2 ≤ ab1 is necessary and sufficient for gt, which is given

by

gt = atx0 + b1

(
ℓt +

∑

i∈I

vi,t

)2

+ b2a
t−1u2

0 (7)

+(ab1 + b2)

t−1∑

t′=1

at
′−1

(
ℓt−t′ +

∑

i∈I

vi,t−t′

)2

+

t∑

t′=1

at−t′ct′ ,

to be convex. Under this condition, C is a convex function

and gt, t ∈ T , as well. This means that the considered op-

timization problem is convex. This property will be directly

exploited in Sec. V where standard convex optimization tools

(Matlab function fmincon) are used. Some results can be

provided concerning the structure of the optimal solution(s).

The next proposition provides one of these results.

Let T ⋆
i denote the set of time-slots over which EV i is

effectively active for a given optimal solution of Problem

3.2, say v⋆: T ⋆
i = {t ∈ T : v⋆i,t > 0}. The following result

holds.

Proposition 3.2: For any optimum point, we have that

(i) Si ≥ Sj ⇒ T ⋆
j ⊂ T ⋆

i ;

(ii) ∀i, Si = S ⇒ ∀(i, j) ∈ I2, T ⋆
i = T ⋆

j .

The proof is omitted. A useful observation on Problem

3.2 is that the cost function only depends on the sequence of

sum-EV-loads w = (w1, · · · , wT ). This means that the opti-

mization problem can be solved in two steps: 1. Find an opti-

mal sequence of sum-EV-loads; 2. Allocate the sum-EV-load

among the EVs. The optimization problem associated with

the determination of an optimal sequence of sum-EV-load

w (Step 1) is directly derived from Problem 3.2 introducing

functions gt such that gt(w1, · · · , wt) = gt(v1, · · · , vt) and

replacing constraints (3) and (4) respectively by
∑T

t=1 wt ≥∑I

i=1 Si and 0 ≤ wt ≤ I × Vmax .

Since the function minimized, C, is continuous and strictly

convex and the inequality constraints define a convex and

compact set, there is a unique solution to the sum-EV-

load optimization problem. Once this problem is solved, the

allocation problem associated with Step 2 can be tackled.

The latter problem is a transportation problem where the

”sources” are the T time-slots with wt supply units, the

”destinations” are the I EVs with Si units received and

vi,t represents the ”flow” from time-slot (source) t to EV

i (destination) [13]. In the case where vi,t is not upper

bounded, there exists a feasible allocation if and only if∑I

i=1 Si =
∑T

t=1 wt, which is verified here2. Otherwise,

finding a maximal flow in the associated graph3 yields a fea-

sible configuration if the value of the optimal flow obtained is∑I

i=1 Si. Possible flow search techniques will not be detailed

here. More details can be found e.g., in [14]. Remarkably,

the distributed solutions we propose in the next section solve

this problem by construction and transportation-theoretic

tools are not necessary. Many motivations for considering

distributed policies might be provided. We only mention

two of them here. First, assume a scenario (called scenario

1) in which the control policies are computed by a single

decision-making entity (e.g., an aggregator or a transformer

computing device). Note that when the dimension of v, which

is I×T , becomes too high, the computational complexity for

finding an optimal solution may largely exceed the available

computational capacity. Therefore, even if there is one single

decision-making entity, it may be required to optimize the

variables of v separately. Second, another important scenario

(called scenario 2) will be that each EV controls its own

charging policy, meaning that there are I controllers instead

of a single one.

IV. DISTRIBUTED EV CHARGING

The key difference between the framework assumed in the

preceding section and the present one is that the variables

(v1,1, · · · , vI,1, · · · , v1,T , · · · , vI,T ) are not assumed to be

controlled jointly anymore. Rather we assume they are con-

trolled separately by I decision-makers, whether the decision

is taken by a single entity (scenario 1) or effectively by the

I EVs (scenario 2). Decision-maker i ∈ I therefore only

controls the sequence vi , (vi,1, · · · , vi,T ).
We propose three distributed charging policies. They are

all based on the sequential best-response dynamics (BRD

see e.g., [15]), which can be seen as a generalization of

well-known iterative techniques such as the Gauss-Seidel

method or Cournot tatônnement. Note that, here, we as-

sume that the BRD algorithm is implemented offline based

on the knowledge of the sequence of non-EV load levels

2In the sum-EV-load optimization Problem, it is easy to see that the first
constraint will be saturated at optimum.

3To be precise, a virtual source (resp. destination) has to be added and
connected to each time-slot (resp. EV) with capacity wt (resp. Si).



(ℓ1, · · · , ℓT ). Once the control policies are determined, they

can be effectively run online. In its most used form, the BRD

operates sequentially such that decision-makers update their

strategies in a round-robin manner. Within round n+1 (with

n ≥ 1) the action chosen by decision-maker i is computed

as4:

v
(n+1)
i ∈ argmin

v
i
∈Vi

C
(
v
(n+1)
1 , · · · , v

(n+1)
i−1 , vi, v

(n)
i+1, · · · , v

(n)
I

)

(8)

BRD for distributed dynamic charging (DDC) policies.

After Prop. 3.2, convexity of C w.r.t. vi is guaranteed under

the condition ab1 + b2 ≥ 0, which is assumed to hold here.

Thus, an element of the argmin set in (8) can be obtained by

solving the corresponding convex optimization problem e.g.,

by using known numerical techniques (e.g., using Matlab

function fmincon). One of the assets of this distributed

control policy is that complexity is reduced compared to

the centralized approach since it is linear in the number

of rounds needed for convergence (say N , which typically

equals 3 or 4) and the number of EVs I . Therefore for a

numerical routine whose complexity is cubic in the problem

dimension, the complexity for the centralized implementation

is of the order of I3T 3 whereas it is of the order of NIT 3

with the distributed implementation. However, in terms of

information, all the model parameters (a, b1, b2, q, r, etc.)

need to be known whether the centralized or distributed

implementation is considered. If this turns out to be a critical

aspect in terms of identification in practice, other techniques

which only exploit directly measurable quantities such as the

sum-load have to be used. This is one of the purposes of the

scheme proposed next.

BRD and the iterative valley-filling algorithm (IVFA). The

valley-filling or water-filling charging algorithm is a quite

well-known technique (see e.g., [16]) to allocate a given

additional energy need (which corresponds here to the one

induced by the EVs) over time given a primary demand

profile (which corresponds here to the non-EV demand). The

idea is to charge the EVs when the non-EV demand is suffi-

ciently low. Note that this is optimal in particular when Joule

losses are considered (memoryless case), i.e. α = 0. Here,

the novelty relies on the fact that the proposed implemen-

tation is an iterative version of the valley-filling algorithm.

Indeed, in [16] for instance, valley-filling is used to design a

scheduling algorithm but the iterative implementation is not

explored. In [6], a distributed algorithm which relies on a

parallel implementation (the I charging vectors are updated

simultaneously over the algorithm iterations) is proposed.

Convergence to the valley-filling solution is obtained by

adding a penalty (or stabilizing) term to the cost. Note that

one of the drawbacks of the latter approach is that the weight

assigned to the added term has to be tuned properly. Here,

we propose a sequential version which does not have this

drawback and can be seen as a power system counterpart of

the iterative water-filling algorithm used in communications

4If there are more than one best action, then one of them is chosen
randomly.

problems [17]. Convergence is ensured thanks to the exact

potential property of the associated charging game (see [9]

for more details on the definition of this game), which

is commented more at the end of the present section. At

round n + 1, the charging power of EV i at time t is

updated as v
(n+1)
i,t =

[
λi − ℓt −

∑
j∈I,j 6=i v

(n)
j,t

]Vmax

0
, where

[s]
Vmax

0 = min(Vmax,max(s, 0)) and λi is a threshold to be

chosen. The value of this threshold is obtained by setting

Si−
∑T

t=1 v
(n+1)
i,t to zero5, because it is easy to see that the

sum-load constraint will be active at optimum. Compared

to the DDC scheme, an important practical advantage of

IVFA is that it relies only on the measure of the total load

ℓt (it is an ”open-loop” scheme). However, both solutions

are based on continuous charging power levels (vi,t ∈ R).

This assumption may not be met in some real EV networks.

Additionally, just as the problem of noise robustness for

high-order modulations in digital communications, these two

schemes may be sensitive to uncertainties on the knowledge

of the non-EV demand i.e., the sequence (ℓ1, · · · , ℓT ). This

motivates us to propose a third scheme, which is based on

rectangular charging profiles.

BRD for rectangular charging profiles. The main assump-

tion made here is that the possible strategies for the decision-

makers are imposed to be rectangular charging profiles,

which translates mathematically as follows:

V i =
{
vi ∈ R

T : ∀t ∈ {tstarti , · · · , tstopi }, vi,t = V ;

∀t /∈ {tstarti , · · · , tstopi }, vi,t = 0
} (9)

with (tstarti , tstopi ) ∈ T 2, tstarti ≤ tstopi , and V ≤ Vmax . In

practice, tstopi may be chosen to be the minimum stopping

time such that (tstopi −tstarti )×V ≥ Si. In this case, choosing

the optimal charging profile amounts to choosing the optimal

charging start time tstarti , which is determined by EV i
solving (8) ”in response” to the total (except EV i) load

sequence (ℓt+
∑

j∈I,j 6=i v
(n)
j,t )t∈T (see [9] for more details).

Motivations for using a control of this form are as follows

[18]: 1. This strategy is easy to implement; 2. Rectangular

charging profiles are believed to perform quite well in terms

of battery ageing [5]. From a control-theoretic point of

view, also observe that a rectangular charging control can

be optimal: when the state (the HS temperature here) is

monotonically increasing in the control (the charging power

v here), it is optimal to start charging as late as possible

i.e., to charge at maximal power at the end of the considered

time window and charge at zero power before. However, both

rectangular charging policies and IVFA charging policies

are not well suited if the constraint xt ≤ xmax is likely

to be active that is, when the maximal HS temperature of

the distribution transformer can be reached. Only the DDC

charging policy can easily integrate this constraint.

To conclude this section, we provide a result which

guarantees the convergence of the three proposed distributed

charging policies.

5v
(n+1)
i,t

can be explicitly obtained in a few simple cases.



Proposition 4.1: [Convergence] The DDC algorithm,

IVFA, and rectangular profiles-based BRD charging algo-

rithm always converge.

This result can be proved by identifying each of the

three proposed distributed policies as the sequential BRD

of a certain strategic-form game. The key observation to

be made is that since a common cost function (namely, C)

is considered for the I decision-makers and the individual

control policies are vectors of R
T instead of general maps

from the system state space to the charging power space, the

corresponding problem can be formulated as an exact po-

tential strategic-form game [15]. The important consequence

of this is that the convergence of dynamics such as the

sequential BRD is guaranteed due to the ”finite improvement

path” property. Note that although Prop. 4.1 provides a

sufficient convergence condition for the proposed policies,

characterizing the efficiency of the point(s) of convergence

in comparison with the solution of Problem 3.2 is not an

easy task (study of the ”Price of Anarchy” in game theory

[15]), except in some special cases as presented in [9].

This question will be addressed here by simulation in the

following part.

V. NUMERICAL ANALYSIS

The general simulation setup assumed by default is as

follows. We assume that the time-slot duration is 30 min

and that an EV wants to charge its battery within a time

window which starts at 5 pm (day number j) to 8 am (day

number j + 1), i.e., T = 30; charging operations therefore

take place during the evening and the night. Choosing here

f = 0, we focus here on the transformer (with memory)

cost, which differentiates this contribution from the related

literature often based on memoryless costs. The analysis

of the simulation results in a bi-objective approach could

constitute an interesting extension of this simulation part.

We take Si = 24 kWh (capacity of a RENAULT Zoe or

Fluence). During the day, we assume that the transformer

load only consists of the non-EV demand ℓt. We consider

a 20 kV/410 V transformer whose apparent power is

100 kVA and nominal (active) power is 90 kW (this

approximately corresponds to a district of 30 households).

The transformer HS temperature evolution law is assumed

to follow the ANSI/IEEE linearized Clause 7 top-oil-rise

model [10]; the corresponding parameters are a = 0.83,

b1 = 30.91, b2 = −19.09, ct = 0.17 × (8.47 + xamb
t ),

where xamb
t denotes the ambient temperature at time t and

x0 = 98 ˚ C (the transformer ”nominal” temperature). The

shut-down HS temperature is taken to be xmax = 150 ˚ C.

Realistic data corresponding to non-EV demand profiles

and the ambient temperature are taken from the ERDF

French DN Operator data basis: http://www.erdf.

fr/ERDF_Fournisseurs_Electricite_Responsables_

Equilibre_Profils and http://www.rt-batiment.fr/

batiments-neufs/reglementation-thermique-2012/

donnees-meteorologiques.html. Unless stated otherwise,

the simulations are done over the 365 days of 2012. The
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Fig. 1. Impact of the charging scheme on the evolution of the transformer
hot-spot (HS) temperature (namely, the system state), the key variable to
be controlled to manage the transformer lifetime, during the night between
the 23rd and the 24th of March 2012. The number of EVs is here I = 15

(penetration rate of 50 %). Since the instantaneous ageing is related to the

HS temperature exponentially, the time-slots with the lowest temperature

levels are typically preferred and heating is delayed to a large extent.
Observe also that the shutdown temperature is exceeded in the plug-and-

charge case, while this is never the case during the year simulated with the

other charging policies (even if this was not a priori expected for the IVFA,
and the strategy with rectangular profiles).

transformer lifetime is inversely proportional to the average

ageing: lifetime = 40× T ×
[∑T

t=1 At

]−1

.

The PaC policy is obtained by assuming the arrival time

to follow a Poisson distribution whose mean is λ = 5
(2.5 hours). As a reference, the scheduling policy of [16]

denoted by ”SYH” according to its authors’ names, will also

be considered: in our case, the ”hard” loads consist of the

non-EV demands of each household and the ”soft” loads

are the EV ones; we only add the upper bound Vmax on

the ”soft” load scheduled on each time-slot to be coherent

with the model presented here. To assess the impact of not

being able to forecast the non-EV demand perfectly, we have

assumed for some figures that the optimization problems

were fed with ℓ̃t = ℓt + z where z is a zero-mean additive

white Gaussian noise with variance σ2
day. We have defined

the forecasting signal-to-noise ratio (FSNR) as FSNR =

10 log10

(
1

σ2
day

× 1
Tday

∑Tday

t=1 ℓ2t

)
, where Tday = 24 × 2. To

make the reading easier and pleasant, the figure captions have

been chosen to be self-contained.

VI. CONCLUSION

We have identified an important application of optimal

control in the area of smart grid. The initial optimal control

is difficult and left open in the case of large time horizon.

As seen, for reasonable values for I × T , transforming the

optimal control problem into a convex optimization one is

relevant since it can be solved numerically. For the cost

considered, it is seen that it is fully relevant to design

distributed policies since the loss due to distributedness is

typically negligible. We have also looked at the influence of

the forecasting errors on the performance of these policies a



0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

Number of EVs

T
ra

ns
fo

rm
er

 li
fe

tim
e 

(y
ea

rs
)

 

 

Without EVs
DDC
IVFA
Rect. profiles
SYH
Plug-and-charge

Fig. 2. Transformer lifetime versus the number of EVs under the
assumption of perfect forecasting for the non-EV demand profile. The
transformer is assumed to be chosen to be able to operate for 40 years
without EVs. The plug-and-charge policy (PaC) with Poisson arrivals is

seen to be non-admissible while the proposed distributed schemes perform

quite close and much better than PaC and than the policy proposed in [16],

SYH. This latter policy schedules indeed a part of the EV loads uniformly
over the time-slots, which is not suited for a cost such that the transformer

one. The maximum difference between DDC and the centralized solution

given by (3.2) is of 0.5% for I ∈ {0, · · · , 30}; this latter scenario is thus

not plotted here.
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Fig. 3. Relative performance loss in terms of transformer lifetime versus
the forecasting SNR (FSNR); the latter allows one to measure to what extent
the non-EV demand can be forecasted. The most robust charging policy is

the one based on rectangular profiles. Indeed, for rectangular profiles only
the starting charging times need to be determined, which make them less

sensitive to amplitude errors. On the other hand, the IVFA and DDC are

much more sensitive to amplitude errors. Interestingly and fortunately, a

typical FSNR value is 10 dB at the scale of a district (see [16] Fig. 10).
However, with the increasing penetration of intermittent energy sources, it

may be necessary to consider smaller values for the FSNR.

posteriori. On the one hand, this points out the robustness of

the simple distributed scheme with the rectangular profiles,

which makes it very interesting for practical applications.

On the other hand, this confirms the need to strongly

integrate the forecasting aspect in the initial formulation

of the problem. An interesting research direction would be

then to design robust distributed dynamic charging policies.

For this purpose, a stochastic formulation seems appropriate

given that a good statistical knowledge can be acquired from

existing power systems data bases.
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