
HAL Id: hal-01437734
https://hal.science/hal-01437734v1

Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint-based Graph Matching
Vianney Le Clément de Saint-Marcq, Yves Deville, Christine Solnon

To cite this version:
Vianney Le Clément de Saint-Marcq, Yves Deville, Christine Solnon. Constraint-based Graph Match-
ing. 15th International Conference on Principles and Practice of Constraint Programming, Sep 2009,
Lisbonne, Portugal. pp.274-288, �10.1007/978-3-642-04244-7_23�. �hal-01437734�

https://hal.science/hal-01437734v1
https://hal.archives-ouvertes.fr

Constraint-Based Graph Matching

Vianney le Clément1, Yves Deville1, Christine Solnon2,3

1 Université catholique de Louvain, Department of Computing Science and Engineering, Place
Sainte-Barbe 2, 1348 Louvain-la-Neuve (Belgium)

vianney.leclement@student.uclouvain.be

Yves.Deville@uclouvain.be
2 Université de Lyon

3 Université Lyon 1, LIRIS, CNRS UMR5205, 69622 Villeurbanne Cedex (France)
christine.solnon@liris.cnrs.fr

Abstract. Measuring graph similarity is a key issue in many applications. We
propose a new constraint-based modeling language for defining graph similarity
measures by means of constraints. It covers measures based on univalent match-
ings, such that each node is matched with at most one node, as well as multivalent
matchings, such that a node may be matched with a set of nodes. This language is
designed on top of Comet, a programming language supporting both Constraint
Programming (CP) and Constraint-Based Local Search (CBLS). Starting from the
constraint-based description of the measure, we automatically generate a Comet
program for computing the measure. Depending on the measure characteristics,
this program either uses CP —which is better suited for computing exact mea-
sures such as (sub)graph isomorphism— or CBLS —which is better suited for
computing error-tolerant measures such as graph edit distances. First experimen-
tal results show the feasibility of our approach.

1 Introduction

In many applications graphs are used to model structured objects such as, e.g., images,
design objects, molecules or proteins. In these applications, measuring graph similarity
is a key issue for classification, pattern recognition or information retrieval. Measur-
ing the similarity of two graphs involves finding a best matching between their nodes.
Hence, graph similarity measures are closely related to graph matching problems. There
exist many different kinds of graph matchings, ranging from exact matchings such as
(sub)graph isomorphism to error-tolerant matchings such as (extended) edit distances.

Exact matchings may be solved by complete approaches such as, e.g., Nauty [1] for
graph isomorphism and Vflib [2] for subgraph isomorphism. These approaches exploit
invariant properties such as node degrees to prune the search space and they are rather
efficient on this kind of problems. However, in many real world applications one looks
for (sub)graph isomorphisms which satisfy additional constraints such as, e.g., label
compatibility between the matched nodes. Dedicated approaches such as Vflib can only
handle equality constraints between matched labels; other constraints cannot be used
during the search process to reduce the search space.

Error-tolerant matchings involve finding a best matching, that optimizes some given
objective function which evaluates the similarity induced by the matching. They are

usually solved by numerical methods [3,4,5], or by heuristic approaches which explore
the search space of all possible matchings in an incomplete way, using heuristics to
guide the search such as, e.g., genetic algorithms [6], greedy algorithms [7], reactive
tabu search [8], and Ant Colony Optimization [9]. These algorithms do not guarantee to
find optimal solutions; as a counterpart, they usually find rather good solutions within
reasonable CPU times. Algorithms dedicated to error-tolerant matchings may be used
to solve exact matching problems by defining appropriate edit costs. However, they may
be less efficient than dedicated approaches such as Nauty or Vflib.

Contribution. Graph matching problems may be defined by means of constraints on
the cardinality of the matching, and on edges and labels. Hence, we introduce a mod-
eling language for defining graph matchings by means of constraints. This language
allows one to define new graph matching problems in a declarative way, by a simple
enumeration of constraints. It covers both exact and error-tolerant matchings. We show
that this language can be used to define existing matching thus giving a uniform frame-
work to these different matching problems.

Graph matching problems defined by means of constraints are solved by constraint
solvers that are embedded into the language. We more particularly consider two differ-
ent kinds of solving approaches: a complete approach, which combines a tree search
with filtering techniques, and an incomplete approach, based on local search. Our sys-
tem is designed on top of Comet, a constraint-based modeling language supporting both
tree search and local search. Starting from the constraint-based description of the match-
ing, we automatically generate a Comet program for computing it. Depending on the
constraints, this program either uses tree search or local search, thus choosing the most
efficient approach for solving the considered matching problem. A similar approach is
taken in [10] for solving scheduling problems.

Outline of the Paper. Section 2 gives an overview of existing graph matching prob-
lems. Section 3 briefly describes the constraint programming paradigm on which our
approach is based. Section 4 introduces a set of constraints that may be used to define
graph matching problems. Section 5 shows how to use these constraints to define exist-
ing graph matching problems. Section 6 discusses implementation issues and Section 7
gives some preliminary experimental results.

2 Graph Matching Problems

We consider labeled directed graphs defined by G = (N,E,L) such that N is a set of
nodes, E ⊆ N ×N is a set of directed edges, and L : N ∪ E → N is a function that
associates labels to nodes and edges. Throughout this paper, we assume that the labeled
graphs to be matched are G1 = (N1,E1,L1) and G2 = (N2,E2,L2) such that N1∩N2 = ∅.

Functional Matchings. A (total) functional matching between G1 and G2 is a func-
tion f : N1→N2 which matches each node of G1 with a node of G2. When the matching
preserves all edges of G1, i.e., ∀(u1,v1) ∈ E1,(f (u1), f (v1)) ∈ E2, it is called a graph
homomorphism [11].

In many cases, f is injective so that each node of G2 is matched to at most one node
of G1, i.e., ∀u1,v1 ∈ N1,u1 6= v1⇒ f (u1) 6= f (v1). In this case the matching is said to
be univalent. Particular cases are subgraph isomorphism, when f is a homomorphism,

2

and graph isomorphism, when f is bijective and f−1 is also a homomorphism. Note
that while subgraph isomorphism is NP-complete, graph isomorphism is not known to
be nor NP-complete nor in P.

These different problems can be extended to the case where f is a partial function
such that some nodes of N1 are not matched to a node of N2. In particular, the maximum
common subgraph corresponds to the partial injective matching which preserves edges
and maximizes the number of matched nodes or edges.

These different problems can also be extended to take into account node and edge
labels, thus leading to the graph edit distance [12] or the graph matching problem of
[13]. For example, the graph edit distance involves finding a partial injective matching
which minimizes the sum of deletion (resp. addition) costs associated with the labels
of the nodes and edges of G1 (resp. G2) that are not matched, and substitution costs
associated with labels of nodes and edges that are matched but that have different labels.

Relational Matchings. Many real-world applications involve comparing objects de-
scribed at different granularity levels and, therefore, require multivalent matchings, such
that each node may be matched with a (possibly empty) set of nodes. In particular, in
the field of image analysis, some images may be over-segmented whereas some others
may be under-segmented so that several regions of one image correspond to a single
region of another image. In this case, the matching is no longer a function, but becomes
a relation M ⊆ N1×N2, and the goal is to find the best matching, i.e., the matching
which maximizes node, edge and label matchings while minimizing the number of split
nodes (that are matched with more than one node). Graph similarity measures based on
multivalent matchings have been proposed, e.g., in [7,14].

All these problems, ranging from maximum common subgraph to similarity mea-
sures based on multivalent matchings, are NP-hard.

3 Constraint-Based Modeling

Constraint Programming (CP) is an attractive alternative to dedicated approaches: it
provides high level languages to declaratively model Constraint Satisfaction Problems
(CSPs); these CSPs are solved in a generic way by embedded constraint solvers [15].

Many embedded constraint solvers are based on a complete tree search combined
with filtering techniques which reduce the search space. We have proposed in [16] and
[17] filtering algorithms that are respectively dedicated to graph and subgraph isomor-
phism problems. These filtering algorithms exploit the global structure of the graphs
to drastically reduce the search space. We have experimentally shown that they allow
CP to be competitive, and in some cases to outperform, dedicated approaches such as
Nauty or Vflib.

Embedded constraint solvers may also be based on local search. In this case, the
search space is explored in an incomplete way by iteratively performing local modifica-
tions, using some metaheuristics such as tabu search or simulated annealing to escape
from locally optimal solutions. We have introduced in [8] a reactive tabu search ap-
proach for solving multivalent graph matching problems.

Comet [18] is a constraint-based modeling language which supports both complete
tree search and local search. A Comet program is composed of two parts: (1) a high-

3

level model describing the problem by means of constraints, constraint combinators,
and objective functions; (2) a search procedure expressed at a high abstraction level.

Our system for modeling and solving graph matching problems is designed on top
of Comet. An example of program for modeling and solving a subgraph isomorphism
problem is given in Fig. 1.

1 include "matching";

2

3 bool[,] adj1 = ...

4 bool[,] adj2 = ...

5 SimpleGraph<Mod> g1(adj1);

6 SimpleGraph<Mod> g2(adj2);

7

8 Matching<Mod> m(g1,g2);

9 m.post(cardMatch(g1.getAllNodes(), 1, 1));

10 m.post(injective(g1.getAllNodes()));

11 m.post(matchedToSomeEdges(g1.getAllEdges()));

12 m.close();

13

14 DefaultGMSynthesizer synth();

15 GMSolution<Mod> sol = synth.solveMatching(m);

16 print(sol);

Fig. 1. Example of SI matching problem solved with our Comet prototype

As for every Comet program, this program consists in two parts. In the first part
(lines 9–13), the problem is modeled by means of high-level constraints. The first two
constraints specify the cardinality of the matching to search, which must match each
node of G1 with exactly one node of G2 (line 10), and which must be injective (line 11).
The last constraint specifies that the matching must preserve edges (line 12). Note that
problem-dependent constraints may be very easily added. We introduce in section 4 the
different constraints that may be used to model graph matching problems, and we show
in section 5 how to use these constraints to define existing graph matching problems.

In the second part (lines 15–16), a synthesizer is called to automatically generate a
Comet program for computing the solution. Depending on the constraints, this program
either uses tree search or local search, thus choosing the most appropriate approach.
This synthesizer is described in Section 6.

4 Constraints for Modeling Graph Matching Problems

A graph matching problem between two directed graphs G1 = (N1,E1,L1) and G2 =
(N2,E2,L2) involves finding a matching M ⊆ N1×N2 which satisfies some given con-
straints. These constraints actually specify the considered matching problem. In this
section, we introduce different constraints that may be used to define graph matching

4

Let M ⊆ N1×N2,u,v ∈ N1∪N2,U ⊆ N1∪N2,ub, lb ∈ N,L = L1∪L2,
D⊆ (N1∪N2)× (N1∪N2).

MinMatch(M,u, lb) ≡ lb≤ #M(u)
MinMatch(M,U, lb) ≡ ∀u ∈U : MinMatch(M,u, lb)
MaxMatch(M,u,ub) ≡ #M(u)≤ ub
MaxMatch(M,U,ub) ≡ ∀u ∈U : MaxMatch(M,u,ub)

CardMatch(M,u, lb,ub) ≡ MinMatch(M,u, lb)∧MaxMatch(M,u,ub)
CardMatch(M,U, lb,ub) ≡ ∀u ∈U : CardMatch(M,u, lb,ub)

Injective(M,U) ≡ ∀u,v ∈U,u 6= v : M(u)∩M(v) = ∅
MatchedToSomeEdges(M,u,v) ≡ ∃u′ ∈M(u),∃v′ ∈M(v) : (u′,v′) ∈ E1∪E2

MatchedToSomeEdges(M,D) ≡ ∀(u,v) ∈ D : MatchedToSomeEdges(M,u,v)
MatchedToAllEdges(M,u,v) ≡ ∀u′ ∈M(u),∀v′ ∈M(v) : (u′,v′) ∈ E1∪E2

MatchedToAllEdges(M,D) ≡ ∀(u,v) ∈ D : MatchedToAllEdges(M,u,v)
MatchSomeNodeLabels(M,u) ≡ ∃v ∈M(u) : L(u) = L(v)

MatchSomeEdgeLabels(M,u,v) ≡ ∃u′ ∈M(u),∃v′ ∈M(v) : (u′,v′) ∈ E1∪E2
∧L(u,v) = L(u′,v′)

MatchAllNodeLabels(M,u) ≡ ∀v ∈M(u) : L(u) = L(v)
MatchAllEdgeLabels(M,u,v) ≡ ∀u′ ∈M(u),∀v′ ∈M(v) : (u′,v′) ∈ E1∪E2

∧L(u,v) = L(u′,v′)

Fig. 2. Basic constraints for modeling graph matching problems.

problems. To make the following easier to read, we denote by M(u) the set of nodes
that are matched to a node u by M, i.e., ∀u ∈ N1,M(u) = {v ∈ N2|(u,v) ∈ M} and
∀u ∈ N2,M(u) = {v ∈ N1|(v,u) ∈M}.

Fig. 2 describes the basic constraints for modeling graph matching problems.
The first set of constraints enables to specify the minimum and maximum number

of nodes a node is matched to. For ease of use, these constraints are also defined for a
set U of nodes, to constrain the number of nodes matched to every node in U .

The second set of constraints enables to state that a set U of nodes is injective, i.e.,
that the nodes of this set are matched to different nodes. There is a simple relationship
between the maximum numbers of matched nodes and injective nodes when U is equal
to N1 (resp. N2): in this case, every node of N2 (resp. N1) must be matched to at most
one node of N1 (resp. N2), i.e.,

Injective(M,N1)⇔ MaxMatch(M,N2,1)
Injective(M,N2)⇔ MaxMatch(M,N1,1) .

The third set of constraints allows one to specify that a couple of nodes must
be matched to a couple of nodes related by an edge. MatchedToSomeEdges ensures
that there exists at least one couple of matched nodes which is related by an edge
whereas MatchedToAllEdges ensures that all couples of matched nodes are related
by edges. Note that, when M(u) = ∅ or M(v) = ∅, the MatchedToSomeEdges(M,
u,v) constraint is violated whereas MatchedToAllEdges(M,u,v) is satisfied. Note also
that when #M(u) = #M(v) = 1, the two constraints MatchedToSomeEdges(M,u,v)
and MatchedToAllEdges(M,u,v) are equivalent. Note finally that these constraints are
meaningful only when u and v belong to the same graph. For ease of use, these con-

5

straints are also defined for a set D of couples of nodes to constrain every couple of D
to be matched to edges.

The last set of constraints enables to specify that labels of matched nodes or edges
must be equal. On the one hand MatchSomeNodeLabels (resp. MatchSomeEdgeLabels)
ensures that there is at least one matched node (resp. edge) with the same label. On the
other hand MatchAllNodeLabels (resp. MatchAllEdgeLabels) ensures that all matched
nodes (resp. edges) have the same label.

All these constraints may either be posted as hard ones, so that they cannot be
violated, or as soft ones, so that they may be violated at some given cost. Soft constraints
are posted by using a specific method which has two arguments: the constraint and the
cost associated with its violation.

5 Modeling Graph Matching Problems by Means of Constraints

We now show how to model classical graph matching problems with the constraints
introduced in the previous section. Note that different (equivalent) formulations of these
problems are possible.

Exact matching problems are modeled with hard constraints. For graph homomor-
phism (GH), the matching must be a total function which preserves edges, i.e.,
GH(M,G1,G2)≡ CardMatch(M,N1,1,1)∧MatchedToSomeEdges(M,E1).

For subgraph isomorphism (SI), we add an injective constraint to GH, i.e.,
SI(M,G1,G2)≡ GH(M,G1,G2)∧ Injective(M,N1).

For induced subgraph isomorphism (ISI), we add a MatchedToAllEdges con-
straint to SI in order to ensure that when the two nodes of an edge of G2 are matched
to nodes of G1, these matched nodes are related by an edge in G1, i.e.,
ISI(M,G1,G2)≡ SI(M,G1,G2)∧MatchedToAllEdges(M,E2).

For graph isomorphism (GI), we check that the matching is a bijective total function
which preserves edges, i.e.,
GI(M,G1,G2)≡ CardMatch(M,N1∪N2,1,1)∧MatchedToSomeEdges(M,E1∪E2).

Constraints can also be used for modeling approximate matching problems such
as the maximum common subgraph (MCS). In this case, one has to combine hard
constraints (for ensuring that the matching is a partial function) with soft constraints
(for maximizing the number of edges of G1 which are matched), i.e.,

MCS(M,G1,G2)≡ MaxMatch(M,N1∪N2,1)
∧ ∀(u,v) ∈ E1,soft(MatchedToSomeEdges(M,u,v),1) .

By defining the cost of violation of each MatchedToSomeEdges soft constraint to 1, we
ensure that the optimal solution will have a cost equal to the number of edges of G1
which are not in the common subgraph. Hence, the number of edges in the common
subgraph is equal to the number of edges of G1 minus the cost of the optimal solution.

For maximum common induced subgraph (MCIS), one has to replace the soft
MatchedToSomeEdges constraint by a hard MatchedToAllEdges constraint as edges
between matched nodes must be preserved. To maximize the number of nodes that are

6

matched, we add a soft MinMatch constraint. More precisely,

MCIS(M,G1,G2)≡ MaxMatch(M,N1∪N2,1)
∧ MatchedToAllEdges(M,E1∪E2)
∧ ∀u ∈ N1,soft(MinMatch(M,u,1),1) .

By defining the cost of violation of each MinMatch soft constraint to 1, we ensure that
the optimal solution will have a cost equal to the number of nodes of G1 which are not
in the common subgraph. Hence, the number of nodes in the common subgraph is equal
to the number of nodes of G1 minus the cost of the optimal solution.

The graph edit distance (GED) generalizesMCS by taking into account edge and
node labels. This distance is computed with respect to some edit costs which are given
by the user. Let us note cd(l) (resp. ca(l)) the edit cost associated with the deletion
(resp. addition) of the label l, and cs(l1, l2) the edit cost associated with the substitution
of label l1 by label l2. The graph edit distance may be defined by GED(M,G1,G2)≡

MaxMatch(M,N1∪N2,1)
∧ ∀u ∈ N1,soft(MinMatch(M,u,1),cd(L1(u)))
∧ ∀u ∈ N2,soft(MinMatch(M,u,1),ca(L2(u)))
∧ ∀u ∈ N1,soft(MatchAllNodeLabels(M,u),cs(L1(u),L2(M(u))))
∧ ∀(u,v) ∈ E1,soft(MatchedToSomeEdges(M,u,v),cd(L1(u,v)))
∧ ∀(u,v) ∈ E2,soft(MatchedToSomeEdges(M,u,v),ca(L2(u,v)))
∧ ∀(u,v) ∈ E1,soft(MatchAllEdgeLabels(M,u,v),cs(L1(u,v),L2(M(u),M(v)))) .

In this case, violation costs of soft constraints are defined by edit costs. For the nodes of
G1 (resp. G2), the cost of violation of the MinMatch constraint is equal to the edit cost
of the deletion (resp. addition) of node labels as this constraint is violated when a node
of G1 (resp. G2) is not matched to a node of G2 (resp. G1), thus indicating that this node
must be deleted (resp. added). The cost of the soft MatchAllNodeLabels constraint is
equal to the edit cost of substituting the label of u by the label of the node it is matched
to in G2. Similar soft constraints are posted on edges to define deletion, addition and
substitution costs.

Finally, one may also define multivalent graph matching problems, such that one
node may be matched to a set of nodes. Let us consider for example the extended graph
edit distance (EGED) defined in [14]. This distance extends GED by adding two edit
operations for splitting and merging nodes. Let us note cp(u,U) (resp. cm(U,u)) the edit
cost associated with the splitting of the node u ∈ N1 into the set of nodes U ⊆ N2 (resp.
the merging of the set of nodes U ⊆ N1 into the node u ∈ N2). EGED may be defined
by replacing the hard MaxMatch constraint of GED by two soft MaxMatch constraints
which respectively evaluate split and merged nodes, i.e.,

∀u ∈ N1,soft(MaxMatch(M,u,1),cp(u,M(u))
∧ ∀u ∈ N2,soft(MaxMatch(M,u,1),cm(u,M(u))) .

6 Comet Prototype

As illustrated in Fig. 1, constraint-based graph matching in our Comet prototype is done
in two parts. First, high level constraints modeling the problem are posted. Second, a
synthesizer is called to solve the problem by means of CP and/or CBLS techniques.

7

Canonical Form of Modeling Constraints High-level constraints, called modeling
constraints, implement the GMConstraint<Mod> interface. Such constraints, like those
described in section 4, are stated on the nodes, edges and labels of the graph and are
posted by the model, implemented by Matching<Mod>, as hard or soft constraints. For
soft constraints, an additional parameter specifies the cost of a violation.

To easily state characteristics of the matching, we introduce canonical constraints
aggregating all the modeling constraints of a type. For example, all MinMatch and
MaxMatch constraints will be aggregated into a single cardinality canonical constraint
knowing the lower and upper bounds of the matchings of each node. The model main-
tains two constraint stores, for hard and soft canonical constraints respectively. When a
hard (resp. soft) modeling constraint is posted to the model, its postCanonical (resp.
postSoftCanonical) method is called with the hard (resp. soft) constraint store. This
method can add or modify canonical constraints within the store. Typically a modeling
constraint will only modify its associated canonical constraint. The key concept is that
there must not exist more than one canonical constraint of each type, identified by a
unique string, in a constraint store. Apart for stating characteristics, this has another
benefit: global constraints can be generated by the synthesizer.

Once the model is closed, i.e. no more constraints may be added, each canonical
constraint gets a chance to modify itself or other constraints, in order to make the whole
model canonical, through the canonify method. In a canonical model, we cannot add
any modeling constraint without altering the described matching problem. For example,
the Injective constraint adjusts the cardinality constraint if every node of a graph be-
longs to an injective set. The canonify method should report the canonical constraints
it has modified, so that the model can iterate the procedure, using a static dependency
graph of the canonical constraints, untill it reaches a fix-point. Methods of the different
interfaces are depicted below.

1 class Matching<Mod> { ...

2 void post(GMConstraint<Mod> constraint);

3 void postSoft(GMConstraint<Mod> constraint, int cost);

4 }

5 interface GMConstraint<Mod> {

6 void postCanonical(GMConstraintStore<Mod> store);

7 void postSoftCanonical(GMConstraintStore<Mod> store, int cost);

8 }

9 interface CanonicalGMConstraint<Mod> {

10 string getId();

11 set{string} canonify(GMConstraintStore<Mod> store);

12 void postCP(Solver<CP> cp, GMVarStore<CP> vars);

13 void postLS(SetConstraintSystem<LS> S, GMVarStore<LS> vars);

14 }

Synthesizer Once the model is closed, a synthesizer is called to effectively solve
the problem. The canonical representation of the model allows to compute various
kinds of characteristics such as whether the matching is functional, univalent or mul-

8

tivalent, or even the class of the problem (such as those defined in section 4). The
GMCharacteristic<Mod> interface allows to define such characteristics.

This synthesizer has three tasks, i.e., create variables, post the CP and/or CBLS
constraints, and perform the search.

Creating Variables. To represent the matching, a variable xu is associated to each node
u ∈ N; the value of xu denotes the matching of node u, that is M(u). We assume that
nodes are represented by positive integers. The type and domain of these variables de-
pend on the MinMatch and MaxMatch constraints, as described below:

MinMatch MaxMatch Type Domain
1 1 int N
0 1 int N∪{⊥}

Otherwise set{int} 2N

The⊥ value denotes that M(u) = ∅. It is implemented as the negative node number,
i.e., −u, ensuring a unique ⊥ value for each node of a graph. Of course, for nodes in
G1, the domain is restricted to N2, and similarly for nodes in G2.

Depending on the constraint solver chosen by the synthesizer (complete incremental
search (CP) or incomplete local search (LS)), the variables are declared as CP variables
or LS variables in the Comet language. As set variables do not yet exist in Comet CP,
we have implemented these with a simple boolean array. A similar limitation led us to
reimplement the constraint interface in Comet LS.

Since a variable is declared for nodes in G1 as well as for nodes in G2, the matching
M is redundantly represented. Depending on the chosen solver, channeling constraints
(CP) or Comet invariants (LS) are added to relate these two sets of variables. This
redundant representation allows the solver to choose the best variables to construct a
solution and to perform the search.

The association between a node and its variable is available to the various con-
straints through the GMVarStore<CP> and GMVarStore<LS> interfaces. As the creation
of variables is likely to be the same for every synthesizer, the default implementations
of these interfaces handle the variable creation in their constructor.

Posting the Constraints and Performing the Search. Once the variables are created,
the synthesizer asks the canonical (hard and soft) constraints to post themselves with
the postCP or postLS methods. These methods take two arguments: the solver and
the GMVarStore containing the associations between nodes and variables. In CP, soft
constraints are implemented by an objective function. In LS, hard constraints are either
handled by a neighborhood ensuring that they cannot be violated, or they are posted as
soft constraints with much higher violation costs.

A synthesizer solves a problem either in CP or in LS. The default choice of CP or
LS, as implemented by DefaultGMSynthesizer, depends on the constraints: if the max-
imum number of matched nodes is 1 for every node of one graph and if all constraints
are hard ones, then the synthesizer chooses CP, and the variables associated with these
nodes are used as choice variables in the tree search; otherwise, the synthesizer chooses
LS and the variables associated with the graph with the fewest set variables are used for
defining neighborhoods.

9

Implementing the Constraints We now focus on how constraints for modeling match-
ing problems are implemented in our framework.

Node Cardinality. For univalent matchings, the cardinality constraints (MinMatch,
MaxMatch, and CardMatch) are already implemented by variable domains. For multi-
valent matchings, nodes are associated with set variables and we post inequality con-
straints on the cardinality of these sets.

If the matching is a surjective function from N1 to N2, i.e. MinMatch(M,N2,1)
and MaxMatch(M,N1,1), a redundant constraint is added to the CP solver. This is a
particular case of the global cardinality constraint cardinality(N2,1, [xu|u ∈ N1],#N1)
[19] which here holds when at least 1 variable (and at most #N1) is assigned to each
value of N2. A similar constraint is posted if the matching is surjective from N2 to N1.

Injective Set. For univalent matchings, Injective(M,U) constraints are implemented
by alldifferent([xu|u ∈ U]) constraints. Note that we associate a different ⊥ value
to every different node u (defined by −u) so that alldifferent is not violated when
several nodes are matched to ⊥.

For multivalent matchings such that some variables in the set U are implemented as
set{int} variables, additional constraints of the form xu1 ∩ xu2 = ∅ (with xu1 and xu2
set variables) and xv /∈ xu (with xu a set variable and xv an integer variable) are posted.

Edges. If we consider univalent matchings, MatchedToSomeEdges(M,u,v) (resp.
MatchedToAllEdges(M,u,v)) is easily implemented as (xu,xv) ∈ E1 ∪E2 (resp. xu 6=
⊥∧xv 6=⊥⇒ (xu,xv) ∈ E1∪E2). When the matching is multivalent, LS constraints are
generated.

Additional Constraints. The system is open and modular so that new constraints may
be defined. For instance, we introduced the constraint CommonNeighbor(u,v) which
holds if M(u) and M(v) share at least one neighbor.

Current Limitations of the System The prototype is about 4,200 lines of Comet
code. In the current implementation, the cost of soft constraints must be a fixed value;
hence GED and EGED are not yet supported. The CP part of the current prototype does
not support soft constraints and MatchedToEdges constraints for multivalent matching.
This is not very limitative as CP is not really adapted for these matching problems.

In the current implementation, a matching problem is solved either with CP or with
LS. In the future, we plan to allow the solver to combine CP with LS.

The analysis of the characteristics of the matching problem is rather limited. It can
however detect the standard matching problems. We plan to add additional global con-
straints in the CP part in order to speed up the search process. In particular, we plan
to integrate the redundant constraints of [20], the filtering algorithm of [17] for the
subgraph isomorphism problem, and the filtering algorithm of [16] for the graph iso-
morphism problem.

The metaheuristics in the LS part are still basic (tabu search); this will be extended
and adapted to matching problems. In particular, we plan to implement the reactive tabu
search algorithm of [8].

10

7 Experimental Results

We report experiments on the subgraph isomorphism problem and on a pattern recog-
nition problem using CP, and on the maximum common subgraph using LS.

7.1 Subgraph Isomorphism Using a CP Solver

We evaluate our system on the subgraph isomorphism problem as modeled in Fig. 1.
Given the characteristics of the problem, the default synthesizer uses CP. Our model is
compared with the state of the art Vflib C++ library [2].

The benchmark contains two families of randomly generated graphs. In the first
family (P*), graphs are randomly generated using a power law distribution of degrees
P(d = k) = k−λ : this distribution corresponds to scale-free networks which model a
wide range of real networks, such as social, Internet, or neural networks [21]. We only
report experiments on graphs generated with the standard value λ = 2.5. Each class
contains 20 different instances. For each instance, we first generate a connected target
graph which node degrees are bounded between 5 and 8. Then, a connected pattern
graph is extracted from the target graph by randomly selecting 90% of nodes and edges.
All instances of classes P200, P600 and P1000 are feasible instances that respectively
have 200, 600, and 1000 nodes.

The second family (V*) is taken from the Vflib benchmarks [22]. Class V200 con-
tains the 100 instances from the class called si2_r001_m200 in Vflib. These instances
were randomly generated using a uniform distribution, the target graph has 200 nodes,
and the source graph has 40 nodes, i.e. 20% of the target (see [22] for details). In or-
der to assess the modularity of our approach, we generated the classes V200+k (with
k∈ {1,2,3,4,5}) by adding k additional CommonNeighbor(u,v) constraints in the Sub-
graph Isomorphism model. In order to ensure the existence of a solution (instances
without solution are all solved by the CP solver in about a second), we have randomly
chosen (u,v) from the pairs of nodes satisfying the additional constraint from the solu-
tions found. Such side constraints cannot be directly handled by Vflib; so we added to
Vflib an algorithm to filter the solutions satisfying these additional constraints.

Table 1 gives for every class the percentage of solved instances within a CPU time
limit of 600s on a Core 2 Quad (only one core used) 2,4 Ghz with 2Go of RAM. It also
gives the execution time of the solved instances (mean, standard deviation, minimum
and maximum times in seconds).

On the P* instances, the synthesized CP algorithm solves much more instances and
is also much more efficient than the standard Vflib. On the V200 class, Vflib solves
more instances. However, as Vflib is not able to actively exploit additional constraints
to prune the tree during the search, results of Vflib on V200+k classes are almost iden-
tical than for V200; there is a slight overhead for the postprocess filtering the solutions.
On the contrary, the synthesized CP solver can exploit these additional constraints dur-
ing the search, increasing the number of solved instances and reducing the computation
time. The more additional constraints, the more solved instances and the less compu-
tation time. From V200+4, the CP solver outperforms Vflib. This clearly shows the
interest of a constraint-based approach compared to specialized algorithms.

11

Table 1. Comparison of synthesizer/CP and Vflib on SI.

Vflib Synthesizer/CP
class solv.% mean std min max solv.% mean std min max
P200 75 61.8 93.0 0.5 309.2 100 6.1 1.9 2.6 9.5
P600 0 - - - - 100 234.3 70.5 105.8 402.6
P1000 0 - - - - 15 522.8 107.8 370.3 599.1
V200 82 63.2 112.9 0.0 574.7 62 84.3 132.2 0.8 530.9

V200+1 82 63.8 114.2 0.0 583.3 71 69.5 108.4 0.8 524.7
V200+2 82 64.4 115.1 0.0 582.9 77 63.5 117.1 0.7 540.2
V200+3 82 64.9 115.8 0.0 582.7 79 50.9 119.0 0.7 531.9
V200+4 82 65.5 116.8 0.0 584.8 85 40.0 93.8 0.7 510.3
V200+5 81 59.4 102.8 0.0 459.6 87 31.5 84.5 0.7 507.2

It should be noticed that the CP approach could be made more efficient by a full
implementation of the iterative filtering described in [17].

7.2 Pattern Recognition Using a CP Solver

We now illustrate our solver on a pattern recognition problem which involves finding
patterns in images. Graphs are generated from images by extracting interest points (cor-
responding to salient points) and computing a Delaunay triangulation on them. Find-
ing patterns in images amounts to finding connected sets of faces in graphs modeling
images. This problem lies part-way between subgraph isomorphism and induced sub-
graph isomorphism as some edges in the target graph are mandatory and some oth-
ers are optional. This problem may be solved with subgraph isomorphism, assuming
post-processing is done on the found solutions to check that all mandatory edges are
matched. In a pattern recognition context, it may be meaningful to introduce an addi-
tional constraint stating that the distance between two nodes in the pattern should be
similar to the distance of the corresponding target nodes (up to a small delta value).
We have implemented this constraint as a CP propagator with a forward-checking con-
sistency level. Note that such constraints cannot be handled with Vflib as it can only
handle equality constraints between matched labels.

Table 2 gives the results for target graphs with 100, 500 and 1000 nodes. Five pattern
graphs are extracted from each target graphs by selecting a connected subset of faces
which respectively contains 5%, 10%, 20%, 33%, and 50% of the target faces. Table 2
shows us that Vflib is better on small instances, but is outperformed by our system
on larger ones. Using the additional constraint globally improves the performances,
even though only forward checking has been used. This shows the interest of the more
flexible constraint-based approach in real-world applications.

7.3 Maximum Common Subgraph Using an LS Solver

We now evaluate the feasibility of our approach on the maximum common subgraph
(MCS) problem as described in Section 5, using an LS solver. Existing solvers like
vflib cannot handle the MCS problem. Also, [3,4,5,7] do not handle the MCS. Different

12

Table 2. Execution time in seconds of subgraph isomorphism for pattern recognition without
(SI) and with (SI+) additional constraint on distances. Rows represent the number of vertices
of the target graphs, columns show the sizes of the pattern graphs as a percentage of the target.

Synthesizer/CP Vflib
5% 10% 20% 33% 50% 5% 10% 20% 33% 50%

S
I

100 0.8 0.5 0.7 0.1 0.2 0.0 0.0 0.0 2.0 0.0
500 19.3 4.7 10.5 15.8 30.7 0.1 0.1 246.7 192.3 –

1000 30.6 595.8 119.0 152.3 – 86.7 – – – –

S
I+

100 0.3 0.1 0.1 0.1 0.2
500 3.0 4.4 9.5 16.9 28.9

1000 16.1 47.8 82.5 148.0 –

Table 3. Maximum common subgraph with LS. Average (standard deviation) of execution time,
number of iterations, and percentage of edges in the best found solution. The model has been
executed 10 times per instance.

class time iterations edges%
M25 8.5 (2.5) 7768.1 (2301.3) 48.3 (1.1)
M50 33.9 (10.7) 8023.8 (2543.3) 40.2 (0.5)
M100 141.5 (46.4) 8398.4 (2755.0) 34.5 (0.2)

complete approaches have been compared on the MCS in [23] but experimental results
are limited to graphs up to 30 nodes so that we have not compared our approach on
these benchmarks.

The benchmarks are also taken from the Vflib benchmarks [2]. The classes M25,
M50 and M100 contains 20 instances from the classes called mcs50_r02 in Vflib. The
graphs have respectively 25, 50 and 100 nodes and have been randomly generated (see
[22] for details). It is known that these graphs have a common induced subgraph with
50% of the nodes, but this lower bound does not provide any information on the size of
maximum common partial subgraph in terms of edges.

A basic tabu search is generated by the synthesizer. The MaxMatch(M,N2) hard
constraint is maintained through the neighborhood, by either swapping the value of two
matched nodes in G1, by matching a node in G1 to an unmatched node of G2, or by
removing a matching in G1. The time limit is fixed at 20,000 iterations, but the search
stops after 5,000 iterations without global improvement. A random new solution is also
generated after 1,000 iterations without global improvement. The results are reported
in Table 3.

It is difficult to compare an LS approach with complete algorithms for maximum
common subgraph as these algorithms cannot handle graphs with 100 nodes [24]. This
also justifies the choice of an LS solver by our default synthesizer. The generated LS
solver could be improved in many ways. These benchmarks are presented to assess the
feasibility of generating an LS solver by the synthesizer.

13

8 Conclusion

Measuring graph similarity is a key issue in many applications. We proposed a new
constraint-based modeling language for defining graph matching problems by means of
constraints. It covers both univalent and multivalent matchings, and we have shown that
it may be used to define many different existing matching problems in a very declarative
way. Such a constraint-based formulation of the different matching problems actually
stressed out their shared features and differences in a very concise way.

We have built a synthesizer which is able to automatically generate a Comet pro-
gram to solve matching problems modeled with our language. Depending on the char-
acteristics of the matching, the synthesizer either uses a branch and propagate ap-
proach —which is better suited for computing exact matchings such as (sub)graph
isomorphism— or a local search approach —which is better suited for computing error-
tolerant matching such as graph edit distances. First experimental results showed the
feasibility of our approach on subgraph isomorphism and maximum common subgraph
problems.

As future work, we will extend the prototype to lift the current limitations : handling
soft constraints in CP, integrating new filtering algorithms in CP, improving the analysis
of the matching characteristics, integrating several LS metaheuristics, and combining
CP and LS solvers.

Acknowledgments The authors want to thank the anonymous reviewers for their help-
ful comments. Christine Solnon acknowledges an ANR grant BLANC 07-1_184534:
this work was done in the context of project SATTIC. This research is also partially
supported by the Interuniversity Attraction Poles Programme (Belgian State, Belgian
Science Policy).

References

1. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30 (1981) 45–87
2. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the vf graph

matching algorithm. In: ICIAP. (1999) 1172–1177
3. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems.

IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5) (1988) 695–703
4. Almohamad, H., Duffuaa, S.: A linear programming approach for the weighted graph match-

ing problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(5) (1993)
522–525

5. Zaslavskiy, M., Bach, F., Vert, J.: A path following algorithm for the graph matching prob-
lem. In: Image and Signal Processing. LNCS 5099, Springer (2008) 329–337

6. Cross, A., Wilson, R., Hancock, E.: Inexact graph matching using genetic search. Pattern
Recognition 30 (1997) 953–970

7. Champin, P.A., Solnon, C.: Measuring the similarity of labeled graphs. In: ICCBR 2003.
LNAI 2689, Springer (2003) 80–95

8. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In: workshop on
Graph-based Representations in Pattern Recognition. LNCS 3434, Springer (2005) 172–182

9. Sammoud, O., Solnon, C., Ghedira, K.: Ant Algorithm for the Graph Matching Problem. In:
EvoCOP 2005. LNCS 3448, Springer (2005) 213–223

14

10. Monette, J.N., Deville, Y., Hentenryck, P.V.: AEON: Synthesizing scheduling algorithms
from high-level models. In: Proceedings of 2009 INFORMS Computing Society Conference.
(2009)

11. Vosselman, G.: Relational Matching. Springer , LNCS 628 (1992)
12. Bunke, H.: On a relation between graph edit distance and maximum common subgraph.

Pattern Recognition Letters 18 (1997) 689–694
13. Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for graph matching. In:

Image and Signal Processing. Volume 5099 of LNCS., Springer (2008) 329–337
14. Ambauen, R., Fischer, S., Bunke, H.: Graph Edit Distance with Node Splitting and Merging.

In: IAPR Workshop on Graph-based Representation in Pattern Recognition. LNCS 2726,
Springer (2003) 95–106

15. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)
16. Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism problem.

Constraints 13(4) (2008) 518–537
17. Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for Subgraph Isomor-

phism. In: CP 2007. LNCS 4741, Springer (2007) 728–742
18. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. The MIT Press (2005)
19. Quimper, C., Golynski, A., Lopez-Ortiz, A., van Beek, P.: An efficient bounds consistency

algorithm for the global cardinality constraint. Constraints 10(1) (2005) 115–135
20. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching.

Mathematical. Structures in Comp. Sci. 12(4) (2002) 403–422
21. Barabasi, A.L.: Linked: How Everything Is Connected to Everything Else and What It

Means. Plume (2003)
22. De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use

for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8) (2003) 1067–
1079

23. Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A comparison of algorithms
for maximum common subgraph on randomly connected graphs. In: Proceedings of the Joint
IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition,
Springer-Verlag, LNCS2396 (2002) 123–132

24. Sorlin, S.: Mesurer la similarité de graphes. PhD thesis, UniversitClaude Bernard, Lyon I,
France (2006)

15

