
HAL Id: hal-01437682
https://hal.science/hal-01437682

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Catalogue of Anti-Patterns for formal Ontology
debugging

Oscar Corcho, Catherine Roussey, Luis Manuel Vilches Blazquez

To cite this version:
Oscar Corcho, Catherine Roussey, Luis Manuel Vilches Blazquez. Catalogue of Anti-Patterns for
formal Ontology debugging. Conférence francophone sur l’apprentissage automatique (AFIA 2009
)Atelier Construction d ontologies : vers un guide des bonnes pratiques„ May 2009, Hammamet,
Tunisia. pp.11. �hal-01437682�

https://hal.science/hal-01437682
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Catalogue of Anti-Patterns for formal Ontology
debugging

Oscar Corcho1, Catherine Roussey2, Luis Manuel Vilches Blazquez1

1 OEG, Universidad Politécnica de Madrid
ocorcho@fi.upm.es, lmvilches@delicias.dia.fi.upm.es

2 LIRIS CNRS UMR5205, Université de Lyon, UCBL
catherine.roussey@liris.cnrs.fr

Abstract: Debugging of inconsistent OWL ontologies is normally a tedious
and time-consuming task where a combination of ontology engineers and
domain expert is often required to understand whether the changes to be
performed in order to make the OWL ontology consistent are actually changing
the intended meaning of the original knowledge model. This task is aided by
existing ontology debugging systems, incorporated in existing reasoners and
ontology engineering tools, which ameliorate this problem but in complex cases
are still far from providing adequate support to ontology engineers, due to lack
of efficiency or lack of precision in determining the main causes for
inconsistencies. In this paper we describe a set of anti-patterns commonly found
in OWL ontologies, which can be useful in the task of ontology debugging in
combination with those debugging tools.

Mots-clés: Ontologies, OWL, Correction d’Erreurs, AntiPattern, Debugger.

1 HydrOntonlogy

The Spanish National Geographic Institute (IGN-E) developed a common
reference model by means of a domain ontology, called hydrOntology. IGN-E wants
to build this ontology in order to facilitate the semantic harmonization of
hydrographic information among data producers at different levels (national, regional
and local).

The statistical data (metrics) and its different taxonomic relations appearing below
provide an overview of the hydrOntology characteristics.

HydrOntology is saved in the OWL format; it has 150 classes, 34 object
properties, 66 data properties and 256 axioms. Some examples of the four taxonomic
relations defined in the Frame Ontology [3] and the OKBC Ontology[2], namely,
Subclasses, Disjoint-Decomposition, Exhaustive-Decomposition and Partitions, have
been implemented in the ontology. Further details are shown in [9]. The ontology
documentation is exhaustive, thus, definitions and their definition sources can be
found in each concept (class). The ontology has an important amount of labels with
alternative names (synonyms) as well as concept and synonym provenances.

A domain expert about geographical information was trained to build an ontology
in Description Logics using Protégé tools (Protégé-OWL version 4). He built the

1

IC 2009

Il ne faut pas numéroter les pages - 2

ontology following METHONTOLOGY, a widely-used ontology building
methodology. A detailed description of this methodology can be found in [4].

HydrOntology has been developed according to the ontology design principles
proposed by [5] and [1]. Some of its most important characteristics are that the
concept names (classes) are sufficiently explanatory and rightly written. According to
some naming conventions, each class is written with a capital letter at the beginning of
each word, while object and data properties are written with lower case letters. At the
end of the development process 102 concepts were classified as incoherent by the
classifier.

When implementing this ontology in OWL several issues arose with respect to its
consistency, given its complexity. In the first iteration of implementation, where the
domain expert took the conceptualization following Methontology’s intermediate
representations and encoded it with Protégé 4, all the classes in the ontology were
considered inconsistent. Then the process of refinement started, using the OWL
ontology debugging facilities of Protégé. Indeed, the debugging systems used did not
provide enough information about root unsatisfiable classes or adequate (e.g.,
understandable by domain experts) justifications of the reasons for their
unsatisfiability. Thus, we made an effort to understand inconsistency-leading patterns
used by domain experts when implementing OWL ontology. Moreover in several
occasions during the debugging process the generation of justifications for
inconsistencies took several hours, what made these tools hard to use.

Ontology developer needs more recommendation for debugging than those
provided by actual tools. We found out that in several occasions domain experts were
just changing axioms from the original ontology in a somehow random manner, even
changing the intended meaning of the real definitions instead of correcting errors in
their formalisations.

After several iterations, which resulted in a large number of changes to the original
implementation, the final consistent ontology could be delivered.

In this paper we propose a detailed list of such anti-patterns, compiling all the
relevant cases that we came across when helping ontology developers to debug their
ontologies.

2 Anti-patterns

We have identified a set of patterns that are commonly used by domain experts in
their OWL implementations and that normally result in inconsistencies that may be
easy or difficult to solve by them. This set of patterns is what we call anti-patterns,
and we have categorized them in three groups:

• Logical Anti-Patterns (LAP). They represent errors that DL reasoners detect.
These are the ones for which tool support is easier to provide and hence some support
already exists.

• Non-Logical (aka Cognitive) Anti-patterns (NLAP). They represent possible
modelling errors that are not detected by reasoners (they are not logical but model-

2

Titre court de l’article

Il ne faut pas numéroter les pages - 3

ling errors, which may be due to a misunderstanding of the logical consequences of
the used expression).

• Guidelines (G). They represent complex expressions used in an ontology
component definition that are correct from a logical point of view, but in which the
ontology developer could have used other simpler alternatives for encoding the same
knowledge.

In the rest of this section we describe each of the anti-patterns identified in each
group, providing their name and acronym, their template logical expressions and a
brief explanation of why this anti-pattern can appear. As aforementioned, it is
important to note that LAP are identified by existing ontology debugging tools,
although the information that is provided back to the user explaining the reason for the
inconsistency is not described according to such a pattern, what makes it difficult for
ontology developers to find out where the inconsistencies are coming from. With
respect to NLAP and G, they are not currently detected by these tools as such,
although in some cases their combination may lead into inconsistencies that are
detected (although not appropriately explained) by tools. We think that tool support
for them could be a major step forward in this task.

Finally, all these anti-patterns should be seen as elementary units that cause
ontology inconsistencies. That is, they can be combined into more complex ones.

1 Logical Anti-Patterns

AntiPattern AndIsOr (AIO)
C1 R.C2 C3), Disj(C2,C3)1

This is a common modelling error that appears due to the fact that in common
linguistic usage, “and” and “or” do not correspond consistently to logical conjunction
and disjunction respectively [10]. For example, I want a cake with milk and chocolate
is ambiguous. Does the recipe of cake contain some chocolate plus some milk?
(Cake_Recipe (contain.Chocolate) (contain.Milk). Does the recipe of cake
contain chocolate-flavoured milk? (Cake_Recipe contain.(Chocolate Milk)).
Does the recipe of cake contain some chocolate or some milk? (Cake_Recipe

contain.(Chocolate Milk)). The domain expert makes a confusion between the
linguistic “and” and the logical “or”. Notice that the position of the logical “and” has
an importance in the semantic of an axiom.

This anti-pattern appeared 2 times in HydrOntology debugging process2.
1. Cano comunica.(Albufera Mar Marisma)3

1 This does not mean that the ontology developer has explicitly expressed that C2 and C3 are disjoint, but
that these two concepts are determined as disjoint from each other by a reasoner. We use this notation as a
shorthand for C2 C3 .
2 All the examples from HydrOntology are in Spanish. Indeed, we cannot translate the examples without
changing the meaning of terms, because the conceptualization depends of the language used.
3 For convenient purpose, we do not add the disjointness relation between classes when the reasoner
deduces this relation. Thus notice that all the classes used in our example are found disjoint by the
reasoner.

3

IC 2009

Il ne faut pas numéroter les pages - 4

2. Ponor comunica.(Aguas_Subterráneas

Aguas_Superficiales)

AntiPattern EquivalenceIsDifference (EID)
C1 C2, Disj(C1,C2)

This inconsistency comes from the fact that the ontology developer wants to say
that C1 is a subclass of C2 (that is, that C1 is a C2, but at the same time it is different
from C2 since he has more information). This anti-pattern is only common for
ontology developers with no previous training in OWL modelling, since after a short
training session they would discover that they really want to express C1 C2. This
inconsistency can hide also a terminological synonymy relation between classes like in
SOE.

This anti-pattern appeared 5 times in HydrOntology debugging process.
1. Afluente Rio, Disj(Afluente, Rio)

2. Cienaga Zona_Pantanosa, Disj(Cienaga, Zona_Pantanosa)

3. Cascada Catarata, Disj(Cascada,Catarata)

4. Raudal Rapido, Disj(Raudal, Rapido)

5. Aljibe Cisterna, Disj(Aljibe, Cisterna)

AntiPattern OnlynessIsLoneliness (OIL)
C1 R.C2, C1 R.C3, Disj(C2,C3)

The ontology developer has created an universal restriction to say that C1 can only
be linked with a R role to C2. Next, a new universal restriction is added saying that C1
can only be linked with R to C3, disjoint with C2. In general, this means that the
ontology developer forgot the previous axiom

This anti-pattern appeared 2 times in HydrOntology debugging process.
1. Zona_Humeda Humedal es_inundada.Aguas_Marinas

es_inundada.Aguas_Superficiales ≥1es_inundada.T
2. Agua_de_transicion está_proxima.Aguas_Marinas

está_proxima.Desembocadura =1está_proxima.T

AntiPattern OnlynessIsLonelinessWithInheritance (OILWI)
C1 C2, C1 R.C3, C2 R.C4, Disj(C3,C4).

The ontology developer has added a universal restriction for class C1 without
remembering that he had already defined another universal restriction with the same
property in a parent class. This anti-pattern is a specialization of OIL.

This anti-pattern appeared 2 times in HydrOntology debugging process.
1. Ibon Charca, Ibon es_originado.(Glaciar

Masa_de_Hielo), Charca es_originado.(Arroyo

Manantial Rio)

2. Lucio Charca, Lucio es_originado.Marisma, Charca

es_originado.(Arroyo Manantial Río Glaciar

Masa_de_Hielo)

AntiPattern OnlynessIsLonelinessWithPropertyInheritance (OILWPI)

4

Titre court de l’article

Il ne faut pas numéroter les pages - 5

R1 R2, C1 R1.C2, C1 R2.C3, Disj(C2,C3)

The ontology developer misunderstands the subproperty relation between roles,
thinking that it is similar to a part-of relation. This anti-pattern is a specialization of
OIL because C1 R1.C2, R1 R2 ╞ C1 R2.C2

This anti-pattern did not appear in HydrOntology, we derived it from others.

AntiPattern UniversalExistence (UE)
C1 R.C2, C1 R.C3, Disj(C2,C3)

The ontology developer has added an existential restriction for a concept without
remembering the existence of an inconsistency-leading universal restriction for that
concept.

This anti-pattern did not appear in HydrOntology, we derived it from others.

AntiPattern UniversalExistenceWithInheritance1 (UEWI_1)
C1 C2, C1 R.C3, C2 R.C4, Disj(C3,C4)

The ontology developer has added an existential/universal restriction in a concept
without remembering that there was already an inconsistency-leading
universal/existential restriction in a parent class, respectively. This anti-pattern is a
specialization of UE.

This anti-pattern appeared 1 time in HydrOntology debugging process.
1. Gola Canal_Aguas_Marinas, Gola comunica.Ría,

Canal_Aguas_Marinas comunica.Aguas_Marinas

AntiPattern UniversalExistenceWithInheritance2 (UEWI_2)
C1 C2, C1 R.C3, C2 R.C4, Disj(C3,C4)

Same reasons as UEWI_1.
This anti-pattern appeared 1 time in HydrOntology debugging process.

1. Charca Aguas_Quietas_Naturales, Charca

es_originado.(Arroyo Manantial Río Glaciar Masa_de_Hielo

Marisma), Aguas_Quietas_Naturales es_originado.(Arroyo

Glaciar Manantial Rio), Aguas_Quietas_Naturales
=1es_originado.T

AntiPattern UniversalExistenceWithPropertyInheritance1 (UEWPI_1)
R1 R2, C1 R1.C2, C1 R2.C3, Disj(C2,C3)

The ontology developer misunderstands the subproperty relation between roles,
thinking that it is similar to a part-of relation. This anti-pattern is a specialization of
UE because C1 R1.C2, R1 R2 ╞ C1 R2.C2

This anti-pattern appeared 1 time in HydrOntology debugging process.
1. se_extrae es_alimentada, Fuente_Artificiale

se_extrae.Acuífero =1se_extrae.T, Fuente_Artificiale

es_alimentada.(Tubería) =1es_alimentada.T

AntiPattern UniversalExistenceWithInverseProperty (UEWIP)
C2 R-1.C1, C1 R.C3, Disj(C2,C3)

5

IC 2009

Il ne faut pas numéroter les pages - 6

The ontology developer has added restrictions about C2 and C1 using a role and
its inverse. This antipattern is a specialization of UE because: C2 R-1.C1 ╞ C1.1

R.C2, C1.1 C1
This anti-pattern appeared 1 time in HydrOntology debugging process.
1. Aguas_Marinas alimentada.Aguas_Quietas_Naturales,

Aguas_Quietas_Naturales

es_alimentada.Aguas_Corrientes_Naturales

AntiPattern SumOfSomIsNeverEqualToOne (SOSINETO)
C1 R.C2, C1 R.C3, C1 ≤1R.T, Disj(C2,C3)
This anti-pattern can also be written like this
C1 R.C2, C1 R.C3, C1 =1R.T, Disj(C2,C3)

The ontology developer has added a new existential restriction without
remembering that he has already defined another existential and a cardinality
restriction for the same concept and role. This pattern is not an elementary one
because it contains the NLAP SOS and the G DCC (presented latter), none of these
elementary antipattern cause inconsistency; nevertheless it is a good example that a
combination of NLAP and G cause inconsistencies.

This complex anti-pattern appeared 1 time in HydrOntology debugging process.
1. Agua_de_transicion sometida_a_influencia.Aguas_Dulces

sometida_a_influencia.Aguas_Saladas

sometida_a_influencia.(Aguas_Dulces Aguas_Saladas)

=1sometida_a_influencia.T

2 Non Logical Anti-Patterns

As aforementioned, these anti-patterns are not necessarily errors, but describe
common templates that ontology developers use erroneously trying to represent a
different piece of knowledge.

AntiPattern SynonymeOfEquivalence (SOE)
C1 C2

The ontology developer wants to express that two concepts C1 and C2 are
identical. This is not useful at all in a single ontology. This is not very useful in a
single ontology that does not import others. Indeed, what the ontology developer
generally wants to represent is a terminological synonymy relation: the class C1 has
two labels: C1 and C2. Usually one of the classes is not used anywhere else in the
axioms defined in the ontology.

This anti-pattern appeared 6 times in HydrOntology debugging process.
1. Aguas Masa_de_Agua,

2. Aguas_Marinas Masa_de_Agua_Marina,

3. Aguas_Subterraneas Masa_de_Agua_Subterraneas

4. Aguas_Superficiales Masa_de_Agua_Superficial

5. Aguas_Quietas_Artificiales Masa_de_Agua_Artificial

6. Corriente_Subterranea Rio_Subterranea

6

Titre court de l’article

Il ne faut pas numéroter les pages - 7

AntiPattern SumOfSom (SOS)
C1 R.C2, C1 R.C3, Disj(C2,C3)

The ontology developer has added a new existential restriction without
remembering that he has already defined another existential restriction for the same
concept and role. Although this could be ok in some cases (e.g., a child has at least
one mother and at least one father), in many cases it represents a modelling error.

This anti-pattern appeared 4 times in HydrOntology debugging process.
2. Rio puede_fluir.Corriente_Subterránea , Rio

puede_fluir.Ponor

3. Manantial origina.Chortal, Manantial

origina.((Aguas_Corrientes_Naturales not Glaciar)

(Aguas_Quietas_Naturales not Bodón not Ibón not

Lavajo not Lucio not Masa_de_Hielo))

4. Aguas_Superficiales

es_distribuida.Canal_Aguas_Continentales,

 Aguas_Superficiales es_distribuida.Distribución

5. Agua_de_transicion sometida_a_influencia.Aguas_Dulces

sometida_a_influencia.Aguas_Saladas

sometida_a_influencia.(Aguas_Dulces Aguas_Saladas)

=1sometida_a_influencia.T

AntiPattern SumOfSomWithInheritage (SOSWI)
C1 C2, C1 R.C3, C2 R.C4, Disj(C3,C4)

The ontology developer has added an existential restriction in a concept without
remembering that he had already defined another existential restriction with the same
role in a parent class. This Anti-Pattern is a specialization of SOS.

This anti-pattern appeared 3 times in HydrOntology debugging process.
1. Torrente Arroyo, Torrente es_originado.(Glaciar

Masa_de_Hielo), Arroyo es_originado.Nacimiento

=1es_originado.T

2. Arroyo Aguas_Corrientes_Naturales, Arroyo

es_originado.(Nacimiento Glaciar Masa_de_Hielo)

=1es_originado.T, Aguas_Corrientes_Naturales

es_originado.Manantial

3. Rio Aguas_Corriente_Naturales, Rio puede_fluir.(

Corriente_Subterránea Ponor), Aguas_Corriente_Naturales

puede_fluir.Poza

AntiPattern SumOfSomWithPropertyInheritance (SOSWPI)
R1 R2, C1 R1.C2, C1 R2.C3, Disj(C2,C3)

The ontology developer misunderstands the subproperty relation between roles,
thinking that it is similar to a part-of relation. This Anti-Pattern is a specialization of
SOS because C1 R1.C2, R1 R2 ╞ C1 R2.C2

This anti-pattern did not appear in HydrOntology, we derived it from others.

7

IC 2009

Il ne faut pas numéroter les pages - 8

AntiPattern SumOfSomWithInverseProperty (SOSWIP)
C2 R-1.C1, C1 R.C3, Disj(C2,C3)

The ontology developer has created two existential restrictions using a role and its
inverse. This anti-pattern specializes SOS because: C2  R-1.C1 ╞ C1.1 C1,
C1.1  R.C2.

This anti-pattern did not appear in HydrOntology, we derived it from others.

AntiPattern SomeMeansAtLeastOne (SMALO)
C1 R.C2, C1 ≥1R.T
The cardinality restriction is superfluous, because if there is an existential

restriction that means that the cardinality restriction using the same role is at least
equal to 1. The ontology developer had created the axiom C1 ≥1R.T first, to say
that C1 should be defined by the R role. Next, he specialized his definition and forgot
to remove the first restriction.

This anti-pattern appeared 2 times in HydrOntology debugging process.
1. Rambla es_originado.Torrente, Rambla ≥1es_originado.T
2. Estero está_proxima.Desembocadura ≥1está_proxima.T

3 Guidelines

As aforementioned, guidelines represent complex expressions used in an ontology
component definition that are correct from a logical point of view, but in which the
ontology developer could have used other simpler alternatives for encoding the same
knowledge.

Guideline DisjointnessOfComplement (DOC)
C1 not C2

The ontology developer wants to say that C1 and C2 can not share instances. Even
if the axiom is correct for a logical point of view, it is more appropriate to state that
C1 and C2 are disjoint.

This anti-pattern appeared 3 times in HydrOntology debugging process.
1. Aguas_Marinas not Aguas_Dulces

2. Albufera not Aguas_Dulces

3. Laguna_Salada not Aguas_Dulces

Guideline Domain&CardinalityConstraints (DCC)
C1 R.C2, C1 (≥2R.T) (for example)
Ontology developers with little background in formal logic find difficult to

understand that universal restriction does not imply existential one [10]. This
antipattern is a counterpart of that fact. Developers may forget that existential
restrictions contain a cardinality constraint: C1 R.C2 ╞ C1 (≥1R.C2). Thus, when
they combine existential and cardinality restrictions, they may be actually thinking
about universal restrictions with those cardinality constraints.

8

Titre court de l’article

Il ne faut pas numéroter les pages - 9

This anti-pattern appeared several times in HydrOntology debugging process, we
only provide some examples.
1. Aguas_Quietas_Naturales es_originado.(Arroyo Glaciar

Manantial Rio), Aguas_Quietas_Naturales =1es_originado.T

2. Fuente_Artificiale se_extrae. Acuífero =1se_extrae.T

3. Agua_de_transicion sometida_a_influencia.Aguas_Dulces

sometida_a_influencia.Aguas_Saladas

sometida_a_influencia.(Aguas_Dulces Aguas_Saladas)

=1sometida_a_influencia.T

4. Arroyo es_originado.Nacimiento =1es_originado.T

Guideline GroupAxioms (GA)
C1 R.C2, C1 (≥2R.T) (for example)
In order to facilitate the comprehension of complex class definition, we

recommend grouping all the restrictions of a concept that use the same role R in a
single restriction. The previous restriction becomes C1 (R.C2) (≥2R.T)

Because the development of an ontology is an iterative process, most part of the
class definition using the same R role are split in several expressions. Have a look to
previous examples.

Guideline MinIsZero (MIZ)
C1 (≥0R.T)
The ontology developer wants to say that C1 can be the domain of the R role. This

restriction has no impact on the logical model being defined and can be removed.
This anti-pattern appeared 1 time in HydrOntology debugging process.
1. Laguna_Salada 0≥ es_alimentada.T

3 Related works

As far as we know there exist only two works about anti-pattern in formal ontology
development. In [8], the authors present four Logical Anti Pattern but all of them
focus on the domain and range of Role. In our case all the domain and range of role
are been remove before consistency checking. Due to the fact that we are in the
development process of the ontology, class hierarchy is not valid enough to save the
domain and range of role. Our proposition differs from [10] even if we use also the
protégé tools in our experiment. In [10], the authors describe common difficulties for
newcomers to Description Logics in understanding the logical meaning of
expressions. Their use case examples are very small. In our case the ontology is
bigger thus the ontology developer builds his ontology in several times. Moreover our
ontology developer is not a DL expert but he has already learnt DL primitives.

Automated OWL ontology debugging features have been described, connected to
reasoners and ontology engineering tools, in several recent works ([6, 7]). These
features are very useful to debug ontologies, and allow identifying the main root
unsatisfiable classes with different approaches, so that the debugging process can be

9

IC 2009

Il ne faut pas numéroter les pages - 10

guided by them and can be optimized. However, these features are very focused on the
logical consequences that can be extracted from the logical theory of an OWL
ontology, and are not so focused on the ontology engineering side, hence the
explanations are still sometimes difficult to understand for ontology developers.

4 Conclusion and future works

In this paper, we have described a detailed list of anti-patterns commonly used by
domain experts when implementing ontologies in OWL. This list is aimed at
complementing the work that is done by automated ontology debugging tools when
detecting inconsistencies in this type of ontologies, so that we can provide better
explanations of the reasons why a specific class or set of classes of the ontology are
inconsistent, and hence improve the efficiency of the ontology debugging process.

All these anti-patterns should be seen as elementary units that cause ontology
inconsistencies. That is, they can be combined into more complex ones. However,
providing a solution for the individual ones will be a good advance to the current state
of the art, and our future work will be also devoted to finding the most common
combinations and providing recommendations for them.

We have applied this list of anti-patterns to the development of an ontology in the
hydrology domain (HydrOntology [9]), resulting in an improvement in the efficiency
of the debugging process that we have not actually measured. However, our intuition
suggests that the process has been much faster than what it would have been without
the use of such anti-patterns, that is, with the use of debugging tools alone.

Our next steps towards providing effective tools to help domain experts in their
ontology building tasks are making formal experiments with a set of inconsistent
ontologies, built by domain experts that we have been collecting in the past year. The
aim of these experiments would be to compare the time needed to complete the
debugging process with and without the use of our anti-patterns, and the quality of the
final models generated after debugging, in case that there are differences. Finally,
another piece of work that we are planning to do in the future is to organize this list of
anti-patterns into a set of debugging guidelines for the creation of a better-specified
method for ontology debugging that can be more effective.

Acknowledgements

This work is a result of collaboration between the OEG and LIRIS lab. It has been done under
the context of the project GeoBuddies, funded by the Spanish Ministry of Science and
Technology and it was also partially funded by the COST Action C21 sponsored by the
European Commission under the grant number STSM-C21-04241.

References

10

Titre court de l’article

Il ne faut pas numéroter les pages - 11

1. ARPÍREZ JC, GÓMEZ-PÉREZ A, LOZANO A, PINTO HS (1998) (ONTO)2Agent: An
ontology-based WWW broker to select ontologies. In: Gómez-Pérez A, Benjamins
RV (eds) ECAI’98 Workshop on Applications of Ontologies and Problem-Solving
Methods. Brighton, United Kingdom, pp 16–24

2. CHAUDHRI VK, FARQUHAR A, FIKES R, KARP PD, RICE JP (1998) Open Knowledge
Base Connectivity 2.0.3. Technical Report KSL-98-06, Knowledge Systems
Laboratory, Stanford, CA, http://www.ai.sri.com/ okbc/okbc-2-0-3.pdf

3. FARQUHAR A, FIKES R, RICE J (1997) The Ontolingua Server: A Tool for Collabora-
tive Ontology Construction. International Journal of Human Computer Studies, 46
(6): 707–727

4. GÓMEZ-PÉREZ A, FERNÁNDEZ-LÓPEZ M, CORCHO O (2003) Ontological Engineering.
Springer-Verlag, London (United Kingdom)

5. GRUBER TR (1995) Toward principles for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies, vol 43 n.5-6.

6. MATTHEW HORRIDGE, BIJAN PARSIA AND ULRIKE SATTLER for Laconic and Precise
Justifications in OWL. In proceedings of ISWC2008.

7. ADITYA KALYANPUR, BIJAN PARSIA, EVREN SIRIN, BERNARDO CUENCA-GRAU (2006)
Repairing Unsatisfiable Concepts in OWL Ontologies . In proceedings of
ESWC2006.

8. LABORATORY FOR APPLIED ONTOLOGY Collection of antipattern in http://wiki.loa-
cnr.it/index.php/LoaWiki:MixedDomains

9. VILCHES-BLÁZQUEZ LM, BERNABÉ-POVEDA MA, SUÁREZ-FIGUEROA MC, GÓMEZ-
PÉREZ A, RODRÍGUEZ-PASCUAL AF (2007) Towntology & hydrOntology: Relationship
between Urban and Hydrographic Features in the Geographic Information Domain.
In: Ontologies for Urban Development. Studies in Computational Intelligence, vol.
61, Springer, pp 73–84

10. HAI WANG, ALAN RECTOR, NICK DRUMMOND, MATTHEW HORRIDGE, (2004). OWL
Pizzas: Practical Experience of Teaching OWL-DL: Common Errors & Common
Patterns. In proceedings of EKAW 2004

View publication stats

11

