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Abstract. This paper presents an architecture well suited for natu-

ral images classification or visual object recognition applications. The

method proposes to integrate a spatial representation into the well known

”bag of local signatures” approach. For this purpose, it combines the

power of a string representation which provides an ordered view of local

features with the vectorial histogram representation allowing to recognize

efficiently and quickly an image by using a machine learning classifier.

To reach this goal, we propose to represent an image by a set of strings

of local signatures obtained by tracking the detected salient points along

image edges. We propose here to conjointly use the Hölder exponents

and the direction of minimal regularity of the bidimensionnal signal sin-

gularities to compute a signature describing precisely a region of interest

centered on an interest point. As we will see, an alphabet of strings is

easily obtained by using a typical self organizing map architecture. As

a consequence, a ”bag of strings” representation is used, providing a

compact representation encoding both local signatures and spatial infor-

mation. This representation is particularly well suited to train a support

vector machine classifier used for the last classification step. This archi-

tecture obtains good classification rates on different well known datasets.



1 Introduction

With the increasing availability of digital images shot by mobile phones and digi-

tal cameras (Infotrends3 expects that the number of images captured on camera

phones will reach 227 billion by 2009), efficient image management solutions

should be built. Their goal is to group images into semantic categories giving

thus the opportunity of fast and accurate image search. Until now, most of these

systems use textual information to index images (as Google images system does)

and as a consequence, it imposes a human intervention not conceivable in the

case of large databases. Using computer vision algorithm can greatly help and

it is why providing efficient algorithms for image content analysis applications

is one of the most important research field in the computer vision area. Never-

theless, analyzing an image is difficult because it is a very complex structure.

Indeed, images from the same categories can be very different in term of geo-

metric transformations, illumination conditions, resolution or size leading to the

difficulty to classify an image into a unique category.

Since 90’s, a lot of methods have been proposed in order to be integrated in

suitable solutions and they can be divided into two categories:

1. Content-based image retrieval (CBIR) systems were the first applications

proposing solutions to the problem of searching for digital images in large

image databases [49]. For this purpose, they first index each image in a

database by a feature vector representing low level features. This vector per-

mits to reduce the quantity of information to be later processed by discarding

irrelevant information contained in each image. When a user queries the sys-

tem with an image, the application searches within the whole database for

similar images thanks to the feature vectors by using some similarity mea-

sures. However, CBIR systems are very inconclusive in results because there

3 http://www.infotrends-rgi.com/home/Press/itPress/2005/1.11.05.html



is an important difference between what the user wants and what the feature

vectors really describe. This is the well known semantic gap problem.

2. Supervised natural image classification systems are now more and more stud-

ied because they are more efficient due to the introduction of a statistical

learning step. This one allows to deduce the feature vector components that

should be used to discriminate the semantic concept interesting for the user

and described by a training dataset. In spite of the limited vocabulary of the

training dataset and of the different semantic concept within an image, super-

vised natural image classification systems were first successfully applied to

group images into a limited number of semantic meaningful categories and

recent works [47, 33] have shown their ability to capture several concepts

within one image allowing their use for semantic labelling and automatic

annotation.

This article addresses the problem of supervised natural image classification

consisting of automatically recognizing scenes and object categories in natu-

ral photographs. In practice, a supervised image classification solution requires

three main steps [8]: pre-processing, feature extraction and classification. Based

on this architecture, many image classification systems have been proposed, each

one distinguished from the others by the method used to compute the image sig-

nature and/or the decision method used in the classification step. Regarding

the signature computation, the most efficient methods are probably the local

approaches firstly introduced in [46]. In this case, local signatures are computed

around some interest points and their values are chosen in a dictionary obtained

from the training database. Once the image is locally described, two major prob-

lems should be underlined. First, the inherent local representation results in a

lack of ordering between signatures and consequently fundamental information

about the image content is lost. Secondly, it is difficult to directly classify this



orderless representation because the image is no longer considered as a vector.

To overcome these disadvantages, different solutions have been proposed in the

literature.

The first one consists in representing the image as a string of local signatures

by adding an implicit order between salient points and then to compare them

with classical string-based distances [40, 41, 24]. Although it is an interesting

approach, it does not allow to embed an image into a vectorial space due to the

non-vectorial nature of the string representation. Consequently, the only classifier

that can be used is a k-nn classifier but its high computing time restricts the

approach to small datasets.

A second solution is to represent the image by a distribution of local im-

age features easily classifiable as in [6, 25]: this is the ”bag of local signatures”

representation and its computation is directly inspired from the text categoriza-

tion domain. This analogy can be justified by observing that image classification

using local approaches are closely related to the text categorization problem

when local signatures have been quantized into visual keywords. These visual

keywords have the ability to summarize well the image content providing thus a

compact representation. The advantage is that by embedding images into a high

dimensional vectorial space, this representation is well suited to be processed by

a fast machine learning classifier instead of a computationally expensive k-nn

algorithm. These methods have been successfully applied all along the differ-

ent PASCAL challenges to detect and categorize images in a difficult datasets.

However, it has been emphasized that this monodimensional representation does

not consider any spatial information between subregions omitting an important

quantity of information about the image content.

As a consequence, an interesting way investigated in this paper consists in

exploiting the complementary capabilities of both approaches by merging them.



It is not the first attempt in the computer vision community to integrate spa-

tial relation between local signatures or to consider the position of them when

computing a model subsequently used for the last classification step. However,

while most approaches integrate the mutual relations between interest points

directly into a probabilistic part-based model [1, 34, 5, 16], some other encode

locations of the interest points in the model [4, 50, 15, 29, 13, 12]. Finally the last

approaches proposed in the literature describe coocurences between local fea-

tures [31] or subdivide the image into several regions [32]. Excepting the recent

work of [11], none attempt has been made to incorporate spatial relations be-

tween local signatures or their positions within the image in a ”bag of salient

features” framework. This is due to the fact that a structure easily identifiable

and quantizable should be defined in order to compute a kind of ”bag of struc-

tures” representation. Whereas, the definition of a structure can be easily done

by using a graph or a string approach, the design of a dictionary of graphs (or

strings) is not straightforward.

We propose in this paper to use a self organizing map for structured data

[20] to produce a large dictionary of strings. This dictionary can be subsequently

used to describe images by ”bag of strings” representations. Finally, this repre-

sentation is employed to learn a support vector machine classifier. The solution

presented have been tested on three well know datasets described in Appendix

A. The SIMPLICTY and Scene datasets contain images of natural scenes whose

background information is essential to recognize the category. The PASCAL

dataset is composed of object images with useless background for the catego-

rization. The novelty of our work is (1)to propose a method to extract string of

local feature vectors from an image; (2)to use a self organizing map for structured

data [20] to produce a large dictionary of strings; (3)to employ this dictionary to

embed images into ”bag of strings” representations well suited to train a support



vector machine classifier and (4) to compare the method proposed with state of

the art approaches of supervised image classification.

Paper Organization This paper is organized as follows: Section 2 describes

the method which was introduced earlier in [27] to detect interest points. This

section ends by describing the descriptor that characterizes both orientation and

regularity of the singularities in a region of interest. The construction of strings is

presented in section 3 and the clustering algorithm used to generate a dictionary

of strings is deeply described in section 4. Section 5 presents the method used

to generate the final feature vector representing the image. Experiments testing

this approach with a support vector machine classifier are presented in section

6 and finally section 7 concludes the paper.

2 Local Features Extraction

The goal of feature extraction is to reduce the amount of data contained in an im-

age by extracting relevant and discriminating features. In local approaches, this

extraction phase results in feature vectors computed around interest points and

an image I is thus represented by a set of local signatures S(I) = {s(1), . . . , s(n)}.

It is important to mention here that local approaches result in a lack of ordering

between signatures.

2.1 Interest Points Detection

The goal of interest point detectors is to find image locations that are perceptu-

ally relevant for the next recognition step. Many detectors have been proposed

in the literature, each one focusing on a particular local property of the image

content such as contrast [3], corners [19, 17, 38], edges [27, 30], etc.



The salient points detector presented in [27] uses a wavelet analysis in order

to find relevant pixels located on sharp region boundaries. The use of wavelet

analysis is motivated by observing that multi-resolution, orientation and fre-

quency analysis are of prime importance for the human visual system during the

recognition step. This detector has proven its efficiency in many vision applica-

tions [27] and thus will be used in the present work.

Finally, it is important to note that the number of points to be detected can

be automatically tuned by using an energy threshold. It allows to consider only

interest points with large saliency value obtained from the wavelet coefficients.

Consequently, it is possible to extract a number of salient points which depends

on the complexity of the image content.

2.2 Description of Local Singularities

Most local descriptors describe the local neighborhood of salient points by char-

acterizing edges in this area. Edge information thus appears fundamental in the

process of local neighborhood description. To describe edges, gradient orienta-

tion and magnitude are generally used. Nevertheless, from a mathematical point

of view, an edge or more generally a singularity can also be efficiently character-

ized by considering its Hölder exponents. We propose to use this mathematical

notion to design our local descriptor.

Definition 1. f : [a, b] → R is Hölder α ≥ 0 at x0 ∈ R if ∃K > 0, δ > 0 and a

polynom P of degree m = ⌊α⌋: ∀x, x0 − δ ≤ x ≤ x0 + δ, |f(x) − P (x − x0)| ≤

K|x − x0|
α.

Definition 2. The Hölder exponent hf (x0) of f at x0 is the superior bound

value of all α. hf (x0) = sup{α, f is Hölder α at x0}.

The local regularity of a function at a point x0 is thus measured by the value

hf (x0). It is worth noting that the smaller hf (x0), the more singular is the signal



at the point considered. For example, the Hölder exponent of a Dirac impulse

is −1 and 0 for a step function. For an image, the Hölder exponent is measured

in the direction of the minimal regularity of the singularity (in the gradient

direction). The different singularities met in an image are shown on figure 1.

Original Image −0.2 ≤ h ≤ 0.2 −1.2 ≤ h ≤ −0.8

Fig. 1. different kind of singularities

To describe an ROI associated to an interest point in an image I, both ori-

entation and Hölder regularity of singularities contained in that ROI are charac-

terized. For this purpose, orientation θ(x, y) and gradient magnitude m(x, y) at

each pixel location (x, y) of the ROI are first computed. Then, for each singular-

ity, the Hölder exponent h is estimated with foveal wavelets as presented in [35].

Orientations and Hölder exponents maps are then conjointly used to construct

different 3D histograms. To build such histograms, each ROI is first partitioned

into 4 × 4 blocks and each histogram is computed in a particular block before

being normalized by the block size (See figure 2). This last step of the signature

design is realized in the same spirit as the construction of the SIFT descriptor

presented in [28].

Finally, the signature is obtained by concatenating the different 3D his-

tograms and thus has a size of n × r × o where n is the number of subregions,

r is the number of Hölder exponents bins into the range [−1.5, 1.5] and o is the

number of orientations bins into [−π
2
, π

2
]. We typically use 8 orientations, 16 sub-

regions and 3 Hölder exponents bins resulting in a signature size of 384. Indeed,



Fig. 2. principle of the singularity descriptor

with such a parameterization, previous experiments [43] have shown that this

descriptor is better than classical SIFT and PCA-SIFT descriptors in the case

of an image registration application.

It is worth noting that we have chosen to not select a representative scale

for each keypoint when computing the descriptor. Indeed, there are currently

some algorithms showing that using interest points is as efficient as using ran-

dom points [37] due to the large training that can anyway capture the relevant

information. In the same way, we have observed that using orientation and scale

normalization is not shown crucial because the relevant information is also cap-

tured in the training step without this computational stage.

3 String Construction

In this section, we keep the local approach in which an image is still represented

by a set of local signatures S(I) = {s(1), . . . , s(n)}. Now, we focus on grouping

some of these signatures in order to represent an image by a set of strings. The

difficulty resides in the construction of these strings. If we consider the major



psycho-visual work of Biederman presented in [2] called the theory of recognition

by components, the human decomposes an object into a subset of elementary

cones called geons (geometry ions). These ones are the boundary fragments of

the object to be recognized and thus the recognition is performed by assembling

these different components.

Moreover, in [39], the authors present a framework in the field of object

detection. The proposed architecture represents an object by a set of boundary

fragments used for the next detection step.

Consequently, we have decided to generate strings from the set of salient

points by tracking edges. The process is composed of three major steps:

1. computation of the minimal regularity direction for each salient point. This

direction is used to group salient points that are on the same edge;

2. salient point tracking algorithm where the salient point strings are con-

structed;

3. suppression of small strings in the images which are considered as noise.

3.1 Direction of Minimal Regularity Computation

Salient points considered in this work are located on sharp region boundaries due

to the use of a wavelet analysis to detect them. For each salient point (x0, y0),

a direction of minimal regularity, say θ(I, x0, y0), exists and is the gradient di-

rection at this point. To compute this direction, we used Sobel filters. The con-

volution of the image by these kernels is then used to compute the direction of

minimal regularity.

On figure 3, we illustrate the direction of minimal regularity computed from

salient points. In this figure, an energy threshold of 0.3 is used to detect salient

points. It can be observed that salient points are located on the singularities

and that the directions of minimal regularity are correctly computed with Sobel



(a) (b) (c)

Fig. 3. original image (a) salient points (b) directions of minimal regularity

filters. Moreover, nearby salient points sharing the same edge have closed direc-

tions of minimal regularity. As a consequence, it can be interesting to use this

fact to design a method to group them in an edge tracking algorithm fashion

explained in next section.

3.2 Salient Points Tracking

In this section, we present a method that aims at chaining the detected salient

points to build a set of strings. The proposed method links points if they are

sufficiently close in the image space and if the directions of the associated min-



imal regularities are also sufficiently close. This algorithm is inspired from the

work presented in [36] aiming at tracking edge pixels.

This algorithm has two parameters:

– The first NB NEIGHBORS is used to choose the number of nearest neighbors

that should be considered to link salient points. Indeed, when a point is

processed, the candidates that can be linked with it are chosen among its

NB NEIGHBORS closest neighbors in the image.

– The second parameter ANGLE THRESHOLD defines the maximum value

authorized between the two directions of normal regularity to link salient

points.

Figure 4 illustrates our method. In this figure, two regions are represented and

salient points are drawn as circles. First and without loss of generality, the algo-

rithm starts with p1 (cf. figure 4(a)) and it searches the first neighbor which is p2

and compare the direction of minimal regularity and the normal of the segment

[p1, p2]. If the comparison exhibits a small angle difference (below a threshold

denoted ANGLE THRESHOLD), the points are linked (cf. figure 4(b)). Next,

the point p2 is considered and with the same process explained above, the point

p3 is added to the string (cf. figure 4(c)). p3 is then considered, but its neighbors

are not compatible with regard to the angle tolerance. As a consequence, p3 is an

extremity of the string and p1 is considered another time. p4 is the next closest

neighbor of p1 not already processed and compatible with p1, resulting in its

concatenation at the beginning of the string (cf. figure 4(d)). Finally, on figure

4(e), the first string is completely built and other points can be considered to

construct new strings. The final image is shown on figure 4(f) and contains two

strings S1 and S2.

On figure 5, the strings obtained from real images are shown. These represen-

tations are obtained using five nearest neighbors (i.e. NB NEIGHBORS = 5)



(a) (b) (c)

(d) (e) (f)

Fig. 4. salient points tracking principle

and by varying the number of angles (which is given by 2π
ANGLETRESHOLD

) to

discriminate edges. Indeed, the number of angles is very important because, the

fewer the angles are, the longer the strings are. For example, it can be seen

on figure 5 that when only four angles are used, some strings don’t follow cor-

rectly the contour of the Lenna’s hat. On the contrary, when eight angles are

used, the strings are reduced to one point on the cameraman trench coat. As a

consequence, it seems that choosing six angles is visually better.

3.3 About Small Strings Suppression

Small strings can be viewed as noise because they don’t represent structural value

added information. It can thus be interesting to eliminate them. To suppress

small strings, only a threshold on the string length can be used. However, we

have experimentally seen that it does not permit to improve classification results

when the representation is used in a natural image classification task. The work



four angles six angles eight angles

Fig. 5. strings representations on well known images

presented in [1] has lead to the same observation. Indeed, the authors try to

eliminate signatures corresponding to small clusters in a kind of bag of key

points approach and they have also seen that it does not improve results and

that sometimes, it decreases it. As a consequence, in the following, all strings

are kept in the final representation.

3.4 Discussions

At the beginning of this section, an image I was represented by a set of n

local signatures denoted by S(I) = {s(1), . . . , s(n)}. In order to add spatial

information to this orderless representation, we have presented a simple method



to describe I by a set of m strings Λ(I) = {λ(1), . . . , λ(m)}. We hope that

this representation will improve the recognition process by providing a better

description of the image content. However, there is always a lack of ordering

between the constructed strings. Consequently, it cannot be used immediately

by a machine learning classifier. To solve this problem, a vectorial representation

of strings should be elaborated.

As far as we know, no similar case of string representations was proposed in

the literature. However, there were some attempts to add spatial information into

the local representations. For example in [31], the coocurrence of local signatures

are used to encode the final image signature. In [46] and [17], neighborhood

constraints are added. The most similar approach is probably the one presented

in [39] representing an image by a set of edges. However, it does not use interest

points but employs directly an edge detector to extract boundary fragments.

4 Unsupervised Classification of Strings

As previously emphasized, we aim at merging a string representation with the

”bag of local signatures” representation introduced in [6]. For this purpose, we

have to cluster strings in order to represent an image as a ”bag of strings”. This

approach permits to add local information to the representation while preserving

the advantages of the ”bag of local signatures” approach. For this purpose, a

clustering algorithm able to deal with structured data (i.e. strings) should be

used.

Many solutions have been proposed to cluster structured data. The K-medoid

algorithm, which is an adaption of the k-means algorithm to data which do not

live in a vectorial space, is probably the simplest way to cluster non vectorial

data. This algorithm constrained the codewords to take value in the training

dataset such that each cluster is represented by a medoid. The medoids are



members of the learning dataset. However, it suffers from the same drawbacks

than the k-means (the convergence into local minima).

In [42], a classical Self-Organizing Map (SOM) has been used to cluster the

local signatures in order to construct a ”bag of local signatures” representation.

The SOM aims at projecting the input data space D into a lower dimensional

space (1D, 2D,. . . ) defined by a regular discrete lattice L composed of NL nodes.

Therefore, it is a vector quantization algorithm which preserves the topology of

the input space because each node c of the lattice is a neuron with a codebook

vector w(c) ∈ R
n such that if c1 and c2 are close then w(c1) and w(c2) are close

in R
n. We will see in this section that we can use some existing extensions of

the SOM to cluster the strings of local signatures.

4.1 SOM Clustering of Structured data - A State of the Art

In their original form, the Self-Organizing Map can only deal with vectorial data.

Thus, more complex data such as graphs or strings (or more generally temporal

sequences) cannot be fed into a SOM. However, different solutions have been

proposed to extend the SOM capabilities to process more complex data.

Temporal Kohonen Map Temporal Kohonen Map (TKM) have been intro-

duced in [7] and are probably the earliest extension of SOM to the structured

data. It can only process temporal sequences X = (x(1), . . . , x(n)) (thus strings)

and can be viewed as a classical SOM with different output neurons. Indeed,

when an input x(t) is fed into a classical SOM, the processing of the next input

x(t + 1) by the SOM does not consider the previous state of the network (the

value of the NL output neurons in the lattice). To overcome this drawback, TKM

proposes to consider the previous state of the map. For this purpose, when an

input x(t) is presented to a TKM, the output value yi of the neuron i in the



lattice is computed as follows:

yi(t) = d × yi(t − 1) −
1

2
||x(t) − w(i, t)||2 (1)

⇒ yi(t) = dnyi(0) −
1

2

t−1
∑

k=0

dk||x(t − k) − w(i, t − k)||2 (2)

where 0 < d < 1 is a time constant. At time t, the best matching unit is chosen

such that it maximizes yi(t), i ∈ {1, . . . , NL}. As a consequence, the output

of previously activated neurons decrease with time and loose their activity. It is

worth noting that the TKM differs only in the competitive rule because according

to [26], a classical SOM update rule is used to adapt the weights associated to

the nodes. This update rule uses only the last elements x(t + 1) presented and

does not consider the entire sequence.

Recurrent Self-Organizing Map Recurrent Self-Organizing Map (RSOM)

has been proposed as an improvement of the TKM in [26]. It proposes to consider

the sequence processed in the update rule. For this purpose, the output yi of the

node i in the lattice is now a vector. This output is computed as follows:

yi(t) = (1 − ǫ)yi(t − 1) + ǫ(x(t) − w(i, t)) (3)

⇒ yi(t) = ǫ

t
∑

k=1

(1 − ǫ)t−k(x(k) − w(i, k)) (4)

where 0 < ǫ ≤ 1 is the ”leaky coefficient”. It is worth noting the closer ǫ is from

zero, the longer the memory of the RSOM is. The best matching unit yc(t) at

step t is chosen by searching the node having the minimum output norm:

c = mini{||yi(t)||} (5)



and the update rule is then:

w(i, t + 1) = w(i, t) + α(t)hci(t)yi(t). (6)

where α(t) is the learning rate 0 < α(t) < 1 that monotonically decreases.

Furthermore, hci denotes a neighborhood function that governs the strength of

weight adaptation as well as the number of reference vectors to be updated.

Generally, a Gaussian function is used:

hci(t) = exp

(

−
||rc − ri||

2

2δ(t)2

)

. (7)

where rc and ri are the coordinates of the cells c and i in the lattice L and δ(t)

governs the width of the neighborhood function.

However, the RSOM suffers from the same drawback that the TKM: the context

is only examined during the competitive and update rule. The SOM itself does

not learn context because as emphasized in [45], a sequence is coded with a vector

of the same dimension than its node attributes. It could be criticism when long

sequences are considered.

Richer methods have thus been proposed in order to better represent the

context. They propose to encode the context of a string node directly into the

weight vector of the node lattice. For this purpose, several methods have been

investigated, based on the same principle: increasing the dimension of the weight

vector by a value encoding the previous state of the network.

Recursive Self-Organizing Map The Recursive Self-Organizing Map (Rec-

SOM) introduced in [48] proposes to associate two vectors to each node 1 ≤ c ≤

NL of the discrete lattice. The first one is the classical weight vector denoted by

w(c, t) ∈ R
n (the codeword associated to each cluster of the input data space



at time t). The second vector C(c, t) ∈ R
NL is the context vector at time t that

encodes the previous state of the RecSOM. This principle is shown on figure 6.

Fig. 6. RecSOM principle

At each iteration, the RecSOM algorithm computes the state yi(t) of each cell:

yi(t) = α||x(t) − w(i, t)||2 + β||F (yi(t − 1)) − C(i, t)||2. (8)

The vector y(t) = (y1(t), . . . yNL
(t)) encodes thus the RecSOM state at time t.

It is worth noting that for the stability of the representation, y(t) is not directly

used as the context vector. Instead, F (y(t)), where F is a tranfert function, is

employed. In [48], the author proposes to use the following transfert function:

F (y(t)) = (exp(−y1(t)), . . . , exp(−yNL
(t))) . (9)

During the competitive rule, the best matching unit is chosen such that it min-

imizes yi(t). The update rule is a little bit more different than the classical

Hebbian rule used in the SOM algorithm because it considers both vectors as-

sociated to a node of the lattice. For this purpose, it updates the weights of the



SOM as follows:

w(i, t + 1) = w(i, t) + α(t)hci(t)[x(t) − w(i, t)] (10)

C(i, t + 1) = C(i, t) + α(t)hci(t)[F (yi(t − 1) − C(i, t)] (11)

It has been shown that the RecSOM permits to obtain a good quantization of

time series [48]. It is worth noting that this result has been obtained thanks

to a new definition of the quantization error adapted to the time series. How-

ever, the context vector has the same dimension than the lattice resulting in a

computational inefficiency [45].

Self-Organizing Map for Structured Data SOM for structured data (SOM-

SD) have been introduced in [20] and can be viewed as a simplification of the

RecSOM by reducing its complexity. However, it is still a powerful alternative

and, compared to other approaches, it has the advantage of dealing not only with

sequential data but also with more complex structures such as Direct Acyclic

Graphs.

SOM-SD is in the same spirit than RecSOM in the sense that it associates

two vectors to each node of the discrete lattice. The first one is still the classical

weight vector denoted by w(i, t) ∈ R
n whereas the second one C(i, t) is the loca-

tion in the map of the best matching unit at the previous step. Obviously, this

difference permits to drastically reduce the complexity of the RecSOM because

the SOM is often two dimensional and so is the context vector. The principle of

the SOM-SD is shown on figure 7.

At each iteration t, the best matching unit denoted by bmu(t) = (xbmu(t), ybmu(t))



Fig. 7. principle of SOM-SD

has to be found by computing:

bmu(t) = argmin1≤i≤NL

(

α||x(t) − w(i, t)||2 + β||bmu(t − 1) − C(i, t)||2
)

.

(12)

An important emerging problem (also inherent in the RecSOM algorithm) is the

choice of both α and β because they balance the importance of the label ver-

sus the importance of the context vector. Moreover, it has been experimentally

shown in [20] that the final clustering is very sensible to these values.

In SOM-SD, the update rule is the same than the Hebbian rule used in both

SOM and RecSOM:

w(i, t + 1) = w(i, t) + α(t)hci(t)[x(t) − w(i, t)]; (13)

C(i, t + 1) = C(i, t) + α(t)hci(t)[bmu(t − 1) − C(i, t)]. (14)

It is worth noting that compared to the RecSOM, several extensions have been

proposed in the field of the SOM-SD. These extensions concern the supervised

classification already proposed in the classical SOM algorithm with LVQ (Learn-

ing Vector Quantization) algorithm. For example in [23] and [21], the authors



propose to extend the weight vector associated to each node by a target label

denoting the cluster of the string considered. More recently, in [22] an LVQ

algorithm using SOM-SD has been proposed.

4.2 Discussions and Selected Approach

In [44] and [18], the different SOM architectures have been compared and one

of the major conclusions is that RecSOM and the SOM-SD are the best un-

supervised way to discover clusters in a structured space. However, as under-

lined above, the RecSOM is computationally expensive representing thus a ma-

jor drawback for the applications considered in this work. Indeed, an image is

composed of hundreds strings and an efficient approach, both with regard to

computing times and cluster quality, should be used.

As a consequence, we have chosen to use the SOM-SD to learn string proto-

types that will be later used for the ”bag of strings” representation.

5 The ”Bag of Strings” Representation

We have shown that it is possible to cluster structured data such as attributed

strings with an adapted self organizing map algorithm. It is thus possible to

construct similar representations than those presented in [6, 25] in order to rep-

resent an image by a unique vector easily classifiable and that consider the spatial

information contained in the image.

5.1 Presentation

Similarly to [6], we propose to represent the image content by the probabilistic

distribution denoted H over local strings. This distribution is numerically easy

to compute because the space embedding strings has been quantized by using

the SOM-SD algorithm. Consequently, each string activates a particular cell of



the SOM-SD representation (the best matching unit called bmu), increasing thus

the activity histogram of the SOM-SD H(Λ(I)) = [h1, . . . , hNL
] (where Λ(I) is

the set of strings representing I) such that:

hl(I) = Card{λ(k) ∈ Λ(I)|l is the SOM-SD bmu associated to λ(k)}. (15)

The histogram H(Λ(I)) is then normalized by the number of strings in I in

order to obtain a probabilistic-like distribution. The computation of the ”bag of

strings” representation is illustrated on figure 8. As in a ”bag of local signatures”

SOM SD 
Projection

Fig. 8. computation of the ”bag of strings” representation

representation, an image is finally represented by a feature vector H(Λ(I)). This

feature vector embeds both the distribution of local features and the spatial

relation between them. As a consequence, this representation is richer than the

”bag of local signatures” approach.

6 Experiments

We have experimented the ”bag of strings” approach on different well known

databases splitted into a training set and a testing set as presented in Appendix

A. The main goal of the experiments is to determine if the representation pro-

posed is better than the classical ”bag of local signatures” representation because

previous works [31] have shown that the use of spatial information is not very

important in the case of natural image classification. Consequently, results and

discussions concerning these experiments are presented in this section.



Due to the size of the discrete SOM-SD lattice used in the experiments (a

rectangular 50 × 50 map), the final signatures obtained are embedded into a

high dimensional space. As a consequence, the classification results shown in this

section are obtained with a basic linear SVM classifier. Indeed, SVM classifiers

are more adapted for dealing with high dimensional data and this is obviously

the case here.

Finally, the detection of salient points has been performed by setting the

energy threshold of the detector to 0.5 because experiments have shown this value

leads to good classification results. Moreover, it permits to adapt automatically

the number of salient points to the complexity of the image.

6.1 Study of Classification Results

When testing the approach, we have found that the global classification rates

obtained depend strongly on the edge tracking algorithm and on the choice of

the SOM-SD parameters (α and β). We will discuss in this section the influence

of these parameters on the final results.

Influence of the SOM-SD Parameters As previously emphasized, the choice

of the values of α and β is related to the importance of the label versus the

importance of the context vector. At the present time, there does not exist

a generic method to find them automatically and as a consequence, only an

experimental study can be done in order to find the optimal values. For this

purpose, we have chosen to vary β from 0.00001α to α with a logarithmic step.

Moreover, the edge tracking algorithm uses five neighbors and six angles because

we will see in the section 6.1 that this is the best parameters.

The global classification rates obtained with this setup and a 50 × 50 SOM-

SD for the databases presented in appendix A are presented on figure 9.

The curves show that for the configuration considered (the regularity descriptor
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Fig. 9. evolution of the global classification rate with β
α

with eight orientations and three Hölder bins and an edge tracking algorithm

with five neighbors and six angles), the best choice for the SOM-SD parameters

α and β is to take β = 0.0001α for all databases.

A deeper study permits to say that this value seems logical because it corre-

sponds to a kind of normalization between the context vector and the regularity

descriptor element. Indeed, due to its normalization and its high dimension, the

signature values are very low whereas the context vector takes value in the range

[0, 50] which is the size of the SOM-SD. As a consequence, to take into account

the signatures in the distance computed in the competitive step α should be

larger than β.

In the following experiments, we will thus use β = 0.0001α because we con-

sider it as a kind of optimal value.

Salient Point Tracking Algorithm The salient point tracking algorithm pre-

sented in section 3.2 uses two parameters. The first NB NEIGHBORS is used to

choose the number of nearest neighbors that should be considered to link salient

points. We have experimentally observed that it has not a great influence on

classification results. Moreover, the greater NB NEIGHBORS is, the larger are

the computing times. Consequently, we use NB NEIGHBORS= 5 here because

it permits to reach good classification rates in reasonable computing times.



The second parameters ANGLE THRESHOLD defines the maximum value

authorized between the two directions of normal regularity to link salient points.

As presented in section 3.2, this threshold influences the length of the generated

strings. Indeed, the strings are long when this value is small and as a con-

sequence they do not follow edges. On the contrary, salient points are rarely

linked, strings are thus very short and a kind of ”bag of local signatures” rep-

resentation is obtained if a large value is chosen. We present on figure 10, the

global classification rates obtained for an ANGLE THRESHOLD of 4, 6 and 8.

We can see on this diagram that for all databases, choosing four angles leads

Fig. 10. influence of the edge tracking algorithm on the global classification rates

to the worst global classification rates proving that strings should follow edges

in order to bring structural information to the representation. The results con-

cerning six and eight angles are similar. However, six angles is better than eight

angles for two database (SIMPLICITY and Pascal) and worse than eight angles

for the scenes dataset. In the following we will thus use six angles as the optimal

configuration for the salient points tracking algorithm.



Comparison with Other Approaches As previously emphasized, we would

like to know if adding spatial constraints between salient points can improve

classification results. For this purpose, we directly compare the best results ob-

tained with a ”bag of local signatures” approach using a classical self organizing

map of size 50 × 50 to generate the dictionary to those obtained with a ”bag of

strings” approach with the optimal configuration found in the previous sections.

The comparison of global classification results is presented in table 1. We can

Approach Bag of Local Signatures Bag of Strings
SIMPLICITY 77.6% 80.6%

PASCAL (Test1) 83.5% 86.5%
Scenes 67.9% 70.6%

Table 1. comparison of the ”bag of local signatures” and the ”bag of strings”
approaches

see that for all databases, the global classification results obtained with the ”bag

of strings” approach are better than those obtained with the ”bag of local sig-

natures” approach. As a consequence, it proves that adding spatial constraints

brings some information in the final signature describing the image considered.

However, the improvement is not so important proving that the essential infor-

mation contained in an image is encoded in the local signatures and not between

them. This could be explain by the fact that spatial information is already partly

taken into account when computing the local descriptor over the region of inter-

est centered on the keypoint. The spatial information brought by our method is

more a whole information that depending on the query, on the object, on the im-

ages, does not always brings significant information. Indeed, a deeper study has

shown that the images newly well classified with our proposed approach always

exhibits a significant spatial organization. For the Pascal dataset, classification

results is really improved by more than 5% for the cars categorie but remains



the same for the people categorie. It is due to the fact that contrarly to people,

cars are hand manufactured objects whose images exhibit strong long edges well

described by our method.

Developing new methods for natural image classification is interesting and

relevant for the computer vision domain if and only if the approaches proposed

can be compared with other major methods presented in the literature.

For the Pascal dataset, the methods are often evaluated by measuring the

Area Under the ROC curve (Receiver Operating Characteristic curve) denoted

AUC in the following. The comparison of classification results presented during

the PASCAL 2005 recognition challenge with our results are presented on table

2. Compared to the results obtained during the challenge, we are ranked 6/18

Class Method Proposed Worst Best Mean

Bicycles 0.957 0.724 0.982 0.905

Cars 0.961 0.578 0.992 0.916

Motorbikes 0.992 0.722 0.998 0.956

People 0.926 0.597 0.979 0.901

Table 2. comparison for the PASCAL dataset

on the motorbikes class, 5/16 on bicycles class, 9/16 on people class and 9/18 on

the cars class. Consequently, our method perform well but is not the best on this

database. However, we have not searched to tune our parameters to obtain the

best results on this particular dataset because we would like to exhibit a generic

architecture whose aim is to perform well on different datasets. It is motivated

by the fact that in a professional application, the parameters are initially fixed

to reach good classification rates for different kind of databases.

For the SIMPLICITY dataset and according to [37], the worst classification

rate ever met is 37.5%. The best results found are those presented in [37] and [9]

with a global classification rate of 84.1%. It is better than our classification rate

of 80.6%. However in these papers, the experiments are made with a leaving-one-



out cross validation method. It consists of testing each image with a classifier

trained with the remaining 999 images of the whole database. We have also tested

our methods with the same approach and we obtain a global classification rate

of 82%. Consequently, it could be said that our method is one of the best on this

dataset.

On the difficult scenes dataset, we obtain a classification rates of 70.6%. In

[32], the authors obtain 72.2% with a bag of features approach similar to ours

and 81.4% by adding to this approach global constraints which are shown im-

portant for this kind of database where global invariance is not needed. For the

13 categories used firstly in the paper [14], we attain 73.5% of correctly classi-

fied instances compared to 65.2% in [14] and 74.7% in [32]. Consequently, the

architecture presented in this paper gives also good results. Nevertheless, adding

global constraint as in [32] seems essential to improve classification results.

6.2 Computing Times

The examination of computing times is very important in the evaluation of a

natural image classification algorithm. Indeed, a commercial application should

be user friendly and it is thus difficult to envisage that a user waits ten seconds

to get the classification results. Due to the architecture of a supervised image

classification application, most of the computing times used is due to:

1. the training step which is in fact the computation of the feature vectors for

the whole training set and the learning of the classifier. It is often realized

offline and can thus be long. As a consequence, it is thus not discussed here.

2. The classification of a new image depending on the computation of the sig-

natures and on the classification algorithm.

Yet, the representation of an image by a set of strings whose node attributes

are local salient signatures is more computationally difficult than representing



an image by a set of local salient signatures due to the addition of the string

creation algorithm and the SOM-SD projection employed to construct the his-

togram representation. However the SOM-SD projection is negligible because

compared to a classical self organizing map, it only adds two values representing

the context vector and increases slightly the time required for the competitive

and the adaptation steps.

On the opposite, the string construction imposes to compute a matrix storing

distances between all interest points in the image considered and its computa-

tional complexity is O(n2) where n is the number of interest points extracted. A

deeper analysis of our implementation has shown that it increases the comput-

ing times of the classical bag of local signatures representation by approximately

50%.

7 Conclusions and Discussions

In this paper, we have proposed an image representation whose goal is to over-

come the major drawback of the ”bag of local signatures” representation that

does not consider any spatial ordering between interest points. For this purpose,

we have proposed to link interest points and thus local signatures with an edge

tracking algorithm in order to represent an image by a set of strings whose nodes

are the local signatures. This set of strings has then been used in order to sum-

marize the image content into a unique but large feature vector that encodes

the frequency of appearance of the different strings. For this purpose, the string

space has been quantized with a dedicated self organizing map.

We have shown that this monodimensional representation of the image can

be easily integrated in a natural image classification environment and that a

SVM classifier is suitable for classifying these high dimensional data. The repre-

sentation achieves promising results on different well known databases. Indeed,



the results obtained are slightly better that those obtained with a ”bag of local

signatures” representation proving thus that it is important to consider the mu-

tual information between interest points in order to better represent the image

content. The computing times are important in a natural image classification

system and at the present time several seconds are necessary for our system to

classify one image depending on its size. We currently work on the algorithm

optimisation.

To improve classification performance, it can be interesting to implement a

star model [13] instead of a string model. Indeed, an image can be also repre-

sented by a set of stars representing close interest points and the star space can

also be easily discretized by using a SOM-SD algorithm.

Finally, as in the ”bag of local signatures” representation, the string dictio-

nary size can be reduced by using a feature selection algorithm and other kernels

can be used in the SVM classifier in order to take into account the topological

ordering property of the SOM-SD.
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application la recherche par le contenu. In 20e colloque GRETSI sur le traitement du

signal et des images, volume 1, pages 18–32, Louvain-La-Neuve, Belgique, September

2005.

25. Jurie F. and Triggs B. Creating Efficient Codebooks for Visual Recognition. In

International Conference on Computer Vision, pages 604–610, Beijing, China, 2005.

26. Koskela T., Varsta M., Heikkonen J., and Kaski K. Temporal Sequence Processing

Using Recurrent SOM. In KES’98, 2nd International Conference on Knowledge-

Based Intelligent Engineering Systems, volume 1, pages 290–297, Adelaide, Aus-

tralia, April 1998.

27. Laurent C., Laurent N., Maurizot M., and Dorval T. In Depth Analysis and

Evaluation of Saliency-based Color Image Indexing Methods using Wavelet Salient

Features. Multimedia Tools and Application, 31(1):73–94, 2006.

28. Lowe D.G. Distinctive Image Features from Scale-Invariant Keypoints. Interna-

tional Journal of Computer Vision, 60(2):91–110, 2004.

29. Leibe B. and Schiele B. Scale Invariant Object Categorization Using a Scale-

Adaptive Mean-Shift Search. In DAGM’04: 26th Pattern Recognition Symposium,
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A Databases Presentation

In this paper, different datasets have been used to perform experiments and

we propose in this chapter to briefly present them. It is worth noting that all

datasets involved in this paper have been divided into two parts. Indeed, our

work concerns supervised natural image classification and as a consequence a

training set and a testing set are needed to test the algorithms presented.

A.1 PASCAL Dataset

The PASCAL dataset has been built for the PASCAL 2005 recognition chal-

lenge4. The goal of this challenge was to invite various research teams to compare

4 http://www.pascal-network.org/challenges/VOC/voc2005/index.html



their object recognition methods on a common new dataset. More information

about this challenge are presented in [10]. The PASCAL dataset is divided into

a training set, a validation set and two test sets. All images contain one or more

instances of an object class considered. The number of images in the different

parts are summarized in the table 3. The database is quite large and some ex-

Training Validation Training+validation Test1

images objects images objects images objects images objects

Motorbikes 107 109 107 108 214 217 216 220

Bicycles 57 63 57 60 114 123 113 123

People 42 81 42 71 84 152 84 149

Cars 136 159 136 161 272 320 275 341

Table 3. Statistics of the PASCAL 2005 Dataset

amples of this dataset are presented on figure 11. It is worth noting that for

the supervised classification experiments involving this database we do not use

a validation set and as a consequence we have chosen to build a training set by

merging the initial training and validation set.

A.2 Scene Dataset

The scene dataset5 is a difficult dataset due to the totally subjective frontier be-

tween clusters. It contains fifteen scene categories: bedroom, suburb, industrial,

kitchen, livingroom, coast, forest, highway, insidecity, mountain, opencountry,

street, tall building, office and store. Each category contains 200 to 400 images

and the average image size is 300 pixels. Several images of this dataset are shown

on figure 12, and it is worth noting that this dataset is only composed of graylevel

images. For the experiments, the same procedure is used than in [14]. It proposes

to use 100 images per class for training and there are 3000 test images.

5 http://www-cvr.ai.uiuc.edu/ponce grp/data/scene categories/scene categories.zip



Fig. 11. PASCAL 2005 Dataset

A.3 SIMPLIcity Dataset

The SIMPLIcity database contains 1000 images of size 384×256 extracted from

the well known old commercial COREL database. It can be downloaded on

the James Z. Wang website6 and has been first used to test the SIMPLIcity

content based image retrieval system presented in [49]. The database contains

ten clusters representing semantic meaningful categories such as Africa people

and villages, beaches, buildings, buses, dinosaurs, elephants, flowers, food, horses

and mountains and glaciers. There are 100 images per cluster and some images of

this database are presented on figure 13. Whereas the clusters elephants, flowers,

6 http://wang.ist.psu.edu/ jwang/test1.tar



Fig. 12. Scenes Dataset

dinosaurs, foods, horses, buses, Africa people and villages can be used to test

a visual object class categorization applications, the clusters beaches, buildings

and mountains and glaciers are more suited to test a natural scenes images

classification system. In order to test classification algorithm presented in this

thesis, we have divided the database into two equal parts: 500 images are used

for the training and the 500 others are used for testing.



Fig. 13. SIMPLIcity Dataset
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Léonard de Vinci, 33608 Pessac, FRANCE.

Footnotes

1. http://www.infotrends-rgi.com/home/Press/itPress/2005/1.11.05.html.

2. http://www.pascal-network.org/challenges/VOC/voc2005/index.html.

3. http://www-cvr.ai.uiuc.edu/ponce grp/data/scene categories/scene categories.zip

4. http://wang.ist.psu.edu/ jwang/test1.tar.


