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Semi-sharp subdivision surface fitting based on feature lines approximation
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b INSA-Lyon, LIRIS, UMR5205, F-69621, France
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This paper presents an algorithm for approximating arbitrary polygonal meshes with subdivision

surfaces, with the objective of preserving the relevant features of the object while searching the coarsest

possible control mesh. The main idea is to firstly extract the feature lines of the object, and secondly

construct the subdivision surface over this network. Control points are created by approximating these

lines while the connectivity is built with respect to the anisotropy of the object. Our algorithm

reinforces the similarity between the subdivision surface and the original shape by affecting an integer

sharpness degree to each control edge in order to accurately reproduce the different curvature radii of

corresponding fillets and blends.

1. Introduction

Finding an optimal and concise representation for a 3D model

is particularly crucial in computer graphics and computer-aided

design. Indeed, obtaining a synthetic representation of a shape,

usually defined as a redundant dense polygonal mesh, is of interest

for many applications: animation, compression, recognition and

reverse engineering. Subdivision surfaces combine a lot of proper-

ties quite relevant for this issue: this model is very compact,

can represent an arbitrary topology, allows a local control and is

intrinsically multi-resolution. For these reasons, subdivision surfaces

are more and more popular in computer graphics and have been

integrated to the MPEG4 standard. In this context, approximating a

dense verbose polygonal mesh with that model becomes even more

pertinent.

Hence, we present an algorithm for subdivision surface fitting

from arbitrary polygonal meshes, and particularly scanned

models; this algorithm follows our previous approach [1] which

was specifically designed for piecewise smooth hand-made CAD

models. Our main objective is not to focus on approximation error

but rather to preserve the relevant features of the object while

searching the coarsest possible control mesh. Our algorithm

involves three main parts: a first step extracts a smooth feature

line network from the object, using segmentation and smoothing

of the patch boundaries. A second process approximates these

feature lines with subdivision curves and creates a coarse base

mesh by linking corresponding control points. Finally, a relaxing

process affects a sharpness degree to each control edge and

optimizes the control point positions in order to fit the target

object. The whole algorithm is summarized in Fig. 1. Our main

contributions are the following:

� The global subdivision surface fitting framework based on

feature line extraction and approximation, allowing to obtain a

near optimal vertex number.

� The feature line extraction, which extracts smooth feature lines

from arbitrary objects in a very simple way.

� The base mesh construction which is (1) independent of the

connectivity of the target surface, (2) correct even for complex

topology and (3) adapted to the anisotropy of the target object.

� The sharpness relaxation, which assign to each control edge a

semi-sharpness degree according to the curvature of the target

surface.

2. Previous work

2.1. Subdivision surface fitting

Many authors have investigated subdivision surface fitting,

since this issue is quite interesting for compression, reverse

engineering, etc. Most of the existing algorithms rely on the same

scheme: first a coarse base control mesh is constructed by one

of the following approaches: simplifying the original dense mesh

[2–5], face clustering [6], triangulating an octree partition [7],

shrinking an initial mesh towards the surface [8] or global

parameterization and quad dominant remeshing as considered

by Lévy et al. [9].
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Once this coarse base mesh has been constructed, a second

step optimizes its geometry in order to fit exactly the target object

using a global [10,2,4,3] or local [8,11] distance minimization.

Since the base mesh does not own a perfect connectivity, several

authors have also investigated connectivity optimization proce-

dures. Hoppe et al. [10] optimize the connectivity by trying to

collapse, split or swap each edge of the control polyhedron. Their

algorithm produces high quality models but need of course an

extensive computing time. Recently, Marinov and Kobbelt [4]

subdivide faces associated with high errors and flip some edges

to regularize vertex valences, similar to [7]. Lavoué et al. [1] also

consider such local enrichment process piloted by the error

distribution. Finally, Lévy et al. [9] optimize the connectivity of the

control mesh by analysing curvature directions of the target

surface.

2.2. Feature preserving remeshing

Very recent remeshing techniques [12–17] are mostly quad-

dominant and outline the importance for the connectivity of

a mesh to follow the salient features of the object and to align

with the geometry (sharp edges, lines of curvature etc.). The main

reason is given by D’Azevedo [18]: the convergence is improved by

such alignment, for both remeshing or fitting. This is linked to the

concept of optimality: for a given number of elements, a mesh

best approximates a smooth surface if its connectivity follows the

lines of curvature. This feature alignment issue is as well relevant

for subdivision surface fitting: the control mesh must respect and

follow the features of the object and especially if the goal is

to provide fewer vertices as possible. Our algorithm considers

segmentation to find feature lines, and then curvature tensor

analysis to complete the connectivity. Our algorithm bears

similarities with the recent remeshing technique from Marinov

and Kobbelt [16] which samples equidistantly feature lines to

remesh the target object. However, our objective is not to produce

a nice control mesh but rather an efficient subdivision surface that

correctly approximates a given shape while containing as less

control points as possible.

2.3. Lofting

This feature line preservation shares some similarities with

another class of algorithms, often referred to as lofting and

of particular interest for designers. These algorithms start from

a network of curves and generate a smooth surface which

interpolates this network. Subdivision surfaces represent a

powerful framework for this task [19–22]. Our algorithm bears

many similarities with a lofting scheme since it considers above

all feature lines to construct the subdivision surface.

A lofting algorithm has to resolve three principal difficulties:

firstly the curve network (usually a set of B-Splines) has to be

compatible with a smooth or piecewise smooth surface, in other

words, is it possible to construct a smooth surface over this

network? Schaefer et al. [22] define the curves with control polygons

associatedwith a specific subdivision scheme to insure this property.

Since our feature lines directly come from a real object to

approximate, we do not encounter compatibility problems.

The second major issue is the skinning step, which consists is

constructing the connectivity of the base control mesh. Basically

many authors consider that the curve network is defined by a

control polygon network, thus for each cycle of polygons bounding

each patch, they construct the corresponding polyhedron by

linking boundary control points and creating some others in order

to have mostly quadrilateral and regular faces. Our scheme

considers only boundary control points and links them according

to curvature directions in order to obtain the most compact and

optimal base mesh.

Most of the authors consider Catmull–Clark subdivision

surfaces in their lofting algorithm; since this kind of surface is

not theoretically capable of interpolating a net of curves, they

modify the original scheme by considering special rules near the

curve network [19,22], or by introducing portions of surface

that specifically define the curve like the polygonal complexes

from Nasri [20,21]. In our case we consider a simple existing

subdivision scheme [23], since we do not search a perfect

interpolation but rather a quite good approximation.

2.4. Subdivision semi-sharpness

Many subdivision rules exist, some of them are adapted for

triangular control meshes, like Loop [24], and others are adapted

for quadrilateral ones, like Catmull–Clark [25]. We have chosen

the hybrid quad/triangle scheme developed by Stam and Loop

[23], since we want to adapt the control mesh connectivity to the

shape of the input object and thus we may obtain faces from

different degrees. This scheme reproduces Catmull–Clark on quad

regions and Loop on triangle regions. The control mesh is firstly

linearly subdivided and then each point is replaced by a linear

combination of itself and its direct neighbours following a

smoothing mask (see Fig. 2, left).

Fig. 1. Overview of our subdivision surface fitting algorithm. Top row: The input

RockerArm mesh (15K vertices) and result of the segmentation (35 regions). Middle

row: Feature line network (left) and control polygon network created from

subdivision curve approximation (right). Bottom row: Subdivision control mesh

(160 vertices) with different sharpness degrees and associated limit surface.

2



Special rules have been introduced by Hoppe et al. [10] for

handling boundary edges, in such a way that the boundary curve

of the limit surface does not depend on any interior control

vertices. These rules can also be used to introduce sharp creases

(see Fig. 3, right). Fig. 2 (right) illustrates the smoothing

coefficients for vertices shared by two sharp edges.

These infinite sharp edges (see Fig. 3, right), introduced by

Hoppe et al. [10] are quite convenient to represent piecewise

smooth surfaces. However, real-world surfaces are never infinitely

sharp, thus DeRose et al. [26] have introduced semi-sharp edges

whose sharpness is an integer sh which can vary from zero

(meaning smooth) to infinite. This semi-sharp subdivision is then

processed by using sharp rules during the first sh subdivision

steps, followed by the use of smooth rules for subsequent

subdivision steps.

With this semi-sharpness concept, the same control edge can

represent blends or fillets associated with different curvature radii

(see Fig. 3). Our algorithm assigns to each edge of the control

mesh the appropriate sharpness degree; to our knowledge no

other existing algorithm carries out such a process.

3. Overview

Given an input polygonal mesh, we firstly process a decom-

position into several regions Ri, using a modified version of the

segmentation algorithm (VSA) from Cohen-Steiner et al. [27] (see

Fig. 1, top right). We then extract the network of corresponding

boundaries and apply a smoothing mask to obtain a smooth

feature line network (see Section 4, see Fig. 1, middle left).

The feature lines are then approximated with subdivision

curves, near optimal in terms of control points number, using the

algorithm from Lavoué et al. [28]. We thus obtain a control

polygon network (see Fig. 1, middle right). Each region Ri is then

treated separately: from the control polygon surrounding the

region, we create edges and facets by linking control points

with respect to its lines of curvature. We obtain a set of control

meshes Mi which are then assembled together; boundary edges

between them are marked as sharp in order to fit correctly the

input object after subdivisions. We obtain the sharp control mesh

(see Section 5).

At this point, we have created a piecewise smooth subdivision

surface with sharp edges at the emplacement of extracted feature

lines (boundaries between regions Ri). Since this sharpness does

not necessarily correspond to the object aspect, a process relaxes

the sharpness by associating to each control edge an integer

sharpness degree instead of a Boolean value (sharp or not). For this

task we analyse the curvature of the input surface around feature

lines. Finally, since changing the sharpness of the control mesh

induces a shrinking of the limit surface, we perform a geometric

optimization by iteratively relocating control points in order

to minimize a global quadratic distance to the input surface

(see Section 6, see Fig. 1, bottom left).

This algorithm improves over previous work [1] with the

following improvements:

� Previous algorithm was limited to carefully designed CAD

mechanical objects with optimized triangulation, whereas our

new algorithm can approximate arbitrary models and particu-

larly scanned objects.

� The feature line extraction of our previous algorithm was only

suited to CAD models: it was based on a specific CAD

segmentation step [29]. Our new algorithm produces smooth

feature lines for arbitrary models.

� The creation of the base control mesh, in particular the edge

score (see Section 5.2), was improved regarding to robustness

and quality of the connectivity.

� Previous algorithm was creating sharp edges along feature

lines. While this is well suited to some specific objects, it is not

for all. Our new algorithm introduces sharpness relaxation

which assigns to each control edge the appropriate integer

sharpness degree.

� A geometric optimization was processed for every region

separately and thus with few degrees of freedom. We introduce

a global optimization process which allows minimizing a

global asymmetric error between the target object and the

approximating subdivision surface.

4. Feature line extraction

Feature lines of a surface carry the visually most salient

characteristics. They are usually described as local extrema of

principal curvatures along corresponding principal directions.

Several algorithms exist to extract smooth feature lines from an

input mesh [30,31], they are mostly based on computation of high

order derivatives of principal curvatures, then thresholding and

smoothing processes.

Existing algorithms are quite complex and provide a set of

smooth lines which are not especially connected and thus do not

always form a partition of the mesh; however, our algorithm

needs a partition into regions to construct the topology and

connectivity of the base control mesh. Hence, we define our

Fig. 2. Smoothing masks for Loop [24] subdivision rules. (a) Standard vertex. (b)

Sharp (or boundary) vertex. a and b represent, respectively, the weights associated

with a vertex and its neighbourhood in the smoothing operation.

Fig. 3. Example of semi-sharp edges. The control mesh is the cube drawn in

wireframe. Smooth edges are black and colour edges are semi-sharp. From left to

right: Sharpness degree: 0 (black), 1 (blue), 2 (green) and infinite (red).
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feature lines as the boundaries of a set of regions Ri issued from an

appropriate segmentation of the mesh.

4.1. Segmentation

The goal is to obtain a partition of the mesh, such as the

corresponding boundaries represent a coherent set of feature lines

which aligns to geometric salient parts and does not contain too

many unnecessary lines. Hence, the segmentation has to create a

partition such as each region Ri bears a geometrical meaning.

The VSA algorithm from Cohen-Steiner et al. [27] complies well

with our requirements: it is fully automatic and decomposes

the mesh into a set of regions, as flat as possible, aligning with

the geometric structure of the input mesh and capturing its

anisotropy. The VSA is a global optimization method, starting from

initial seeds and updating the shape of the regions at each

iteration. Of course, according to the initial seed positions the

algorithm can fall to a local minimum. Hence we adopt an

incremental technique, quite similar to the farthest-point initiali-

zation proposed by the authors: we add one region at a time,

perform a partitioning (with a fixed number of iterations), and

then add a new region at the maximum error position. Fig. 4 (left)

illustrates the segmentation of the RockerArm model into 45

regions.

Regarding to our feature line extraction objective, the standard

VSA algorithm is not completely satisfactory, since it produces

only approximately flat regions. For instance the cylindrical part

at the centre of the object in Fig. 4 (left) is cut into several regions

whereas we would rather require one single region, according to

our feature line definition (local extrema of principal curvatures

along corresponding principal directions). Moreover, each region

is further approximated with a subdivision surface constructed by

linking its boundary control points; this kind of subdivision

surface is able to represent not only flat regions but also

anisotropic parts (i.e. surfaces with clearly notable curvature

direction, like elliptic or parabolic parts for instance).

These reasons have led us to process a region merging after the

VSA, according to anisotropy similarity: we merge two regions Ri

and Rj if they share the same curvature value and the same

minimum curvature direction. We simply process an anisotropy

similarity score (ASC) between two regions Ri and Rj:

ASCðRi;RjÞ ¼ kd
i
min � d

j
mink � jcimax � cjmaxj (1)

d
i
min and cimax are, respectively, the minimum curvature direction

and maximum curvature value of the ith region. These values are

calculated by averaging vertex values over the region. For each

vertex, the curvature tensor has been calculated using the normal

cycle algorithm [32] and the principal curvature values and

directions have been extracted; they correspond, respectively, to

the eigenvalues and eigenvectors of the curvature tensor.

We then construct a region adjacency graph, and merge

iteratively pairs of regions associated with smallest scores. The

merging operation stops when a fixed number of regions (chosen

by the user) is obtained or when a minimum score threshold is

reached; in practice such threshold is hard to find a priori but can

be learned from training data for instance. Fig. 4 (right) illustrates

the partition after 10 merging operations processed on the

segmented model on the left. Regions associated with a similar

anisotropy have been correctly merged.

4.2. Feature line smoothing

Our feature line network is represented by the network of

boundaries between regions of the partition. This network is

composed with sets of connected pieces of boundary (polygonal

curves) separated by anchor vertices (vertices adjacent to at least

three regions). These paths between regions are quite jagged since

the connectivity of a scanned model, for instance, does not exactly

follow the natural features of the object, on the contrary to hand-

designed CAD parts. Our further process needs smooth feature

lines, particularly for the curve approximation step. Thus we

process a Laplace smoothing of the polygonal curves representing

each piece of boundary (anchor vertices do not move). The main

disadvantage of Laplace curve smoothing is the shrinkage effect

that deviates the boundary polyline from the surface; fortunately

it is not a problem if the curves do not lie precisely on the

mesh since our goal is not to produce a perfect fitting but rather

to have a correct approximation associated with a very coarse

control mesh. Moreover, the further global optimization process

Fig. 5. A part of the segmented Blade mesh (15K vertices, 45 regions) (left), jagged feature line network (middle), smoothed feature line network (right).

Fig. 4. Segmentation of the RockerArmmodel. Results of the VSA (45 regions) (left).

Results after merging (35 regions) (right).
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(see Section 6.2) will reduce this shrinkage resilient error. Fig. 5

shows the segmented Blade object (left), the jagged boundary

network (centre) and the feature line network after smoothing

(right).

5. Sharp control mesh construction

Our goal is to create the coarsest possible base control mesh,

while respecting the shape and the main features of the input

object. We consider that a correct approximating subdivision

surface should respect/approximate the main feature lines of the

object, and thus has to contain at least the number of control

vertices necessary to approximate these feature lines. Hence our

process is the following: we first approximate the feature line

network with subdivision curves and then edges and facets of the

base control mesh are created by linking only their feature control

points. With this process we create a near optimal control mesh

since only necessary vertices are created, moreover, we link them

with respect to the lines of curvature of the object.

5.1. Feature line approximation

To create the set of feature control points, we approximate the

network of feature lines with subdivision curves. Each smooth

line between two anchor points is approximated separately (see

Fig. 6), then we obtain a control polygon network.

We use the approximation algorithm from Lavoué et al. [28]:

given a smooth polyline and a maximum error value, this

algorithm creates an approximating subdivision curve with a

minimal number of control points.

5.2. Local control mesh construction

At this point, we process each region separately: for each

segmented region (see Fig. 7, top left), the closed cycle B of control

polygons corresponding to its boundary is extracted from the

network (see plain lines in Fig. 7, bottom left). Our task is to form

a local control mesh P whose boundary is exactly B and without

any additional control points (see Fig. 7, bottom right), thus we

construct P by creating control edges (and thus facets) linking

vertices of B (see dotted lines in Fig. 7, bottom left).

Each region has been extracted due to planarity or anisotropy

similarity criteria, thus there exist basically two classes of regions:

planar or parabolic (i.e. anisotropic). For the planar case our

objective is to create facets with correct proportions; thus we

chose control edges associated with the smallest lengths similarly

to the lofting algorithms from Nasri [20,21]. For the parabolic case

we create edges with respect to the anisotropy and therefore

edges coherent with the minimum curvature directions of the

region (see Fig. 7, top right). In order to take into account these

two cases, a score S is processed for each potential control edge E.

Edge score definition: The mechanism is illustrated by Fig. 8: for

each potential edge E, we consider its vertices Pi, Pj and the

projections P̃i, P̃j of their respective limit positions on the patch

boundary. Then the pseudo geodesic path between these limit

Fig. 6. Construction of the control polygon network. From left to right: results of the segmentation, the jagged boundary between two anchor points, result after smoothing,

subdivision curve approximation (five control points), the complete control polygon network.

Fig. 7. Local control mesh construction. Top row: A region from the RockerArm

object and its directions of minimum curvature. Bottom left: The closed cycle of

control polygons corresponding to its boundaries and the created edges (dotted

segments). Bottom right: The corresponding local control mesh.
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positions is calculated by applying the Dijkstra algorithm on the

vertices of the target region (see Fig. 8, right); this greedy

algorithm [33] computes the shortest path between two points of

a graph. Finally, the curvature tensors of the n vertices V i of this

path are extracted, and particularly the minimum curvature

directions. The score SðEÞ is then defined as follows:

SðEÞ ¼

Pn
i¼1ymini

n
�

Xn�1

i¼1

kV iþ1 � V ik (2)

with ymini the angle between the minimum curvature direction

of the vertex V i and the segment P̃iP̃j. The first term favours edges

coherent with minimum curvature lines and the second term

prevents incoherent edges while favouring short ones.

Connectivity construction: Once scores S have been associated

to every potential edges between all the pairs of boundary control

points from B, the algorithm constructs the potential edge

associated with the smallest score (dotted segment associated

with number 1 in Fig. 7), and the contour is cut along this

edge, creating two sub-contours. This algorithm is repeated

recursively on sub-contours until it remains only plane contours

(the corresponding control points all lie in the same plane). The

planarity is determined by a threshold on the dot products of the

contour segments with its average normal. Then for each plane

contour, we check its convexity, if it is convex, we create a facet,

and if not, we decompose it into convex parts, using the algorithm

from Hertel and Mehlhorn [34]. Our algorithm is also applicable to

regions with holes and thus associated with several cycles of

control polygons. The solution for such cases was proposed and

detailed in our previous algorithm [1]: a single oriented contour

including every boundary control polygons is constructed, linking

them by creating edges and doubling some control points.

5.3. Local control mesh assembly

Once local control meshes corresponding to every regions

have been constructed, they are glued together to form a global

control mesh. Boundary edges are tagged as sharp, to insure that

boundary constrains are respected between patches. Moreover,

this insures that boundary edges match the feature lines after

subdivision.

The obtained subdivision surface is piecewise smooth and

gives a quite good approximation of the object (see Fig. 9),

without any global optimization process. At this point the main

drawback is that we introduce sharp edges in the resulting

subdivision surface (at the boundaries between patches) which

can produce unpleasant discontinuities for smooth objects.

However, such piecewise smooth reconstruction of scanned

mechanical parts can be required for CAD applications.Fig. 8. Mechanism for edge score definition.

Fig. 9. Sharp control mesh examples. Top row: The RockerArm model (15K vertices), the associated control mesh (160 vertices) with sharp edges in red and the limit

surface. Bottom row: The Blade model (15K vertices), the associated control mesh (187 vertices) and the limit surface.
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We have to notice that this framework focuses on obtaining the

coarsest possible control mesh and thus our objective is not to

obtain nice shaped quadrangles or regular connectivity (in terms

of vertex valence). Hence the created control mesh can possibly

have high degree facets or high valence vertices. However, in our

experiments, this has not perturbed the results nor induced

visible artefact.

6. Semi-sharp control mesh construction

The first part of our algorithm (see previous section) produces

a piecewise smooth approximating subdivision surface, associated

with a quite coarse control polyhedron. We now have to optimize

this surface: firstly the sharpness of control edges is relaxed in

order to reproduce the curved aspect of the target object and then

a global geometry optimization displaces the control points to

minimize an asymmetric quadratic error.

6.1. Sharpness relaxation

Since most of the natural 3D objects, especially scanned

datasets, are rather smooth, the sharp creases introduced by the

first step of our process have to be relaxed. In order to reproduce

more precisely the shape aspect of the target mesh while keeping

the same control point number, we associate to each sharp

edge, an integer sharpness degree from 0 (smooth) to 3 (sharp)

according to the rules introduced by DeRose et al. [26] (see

Section 2.4). We have considered an integer sharpness degree

instead of a real value by reason of simplicity, indeed this

mechanism has thus easily been integrated to the further

geometric optimization (see next section). Moreover, the max-

imum sharpness degree has been limited to 3 in order to speed-up

the process, knowing that this value is sufficient to represent a

visually sharp feature.

For each infinite sharp edge, introduced by the previous

process, we determine the appropriate degree so as to reproduce

the curvature radius of the corresponding fillet or blend on

the target mesh. Fig. 10 illustrates this process: In order to

automatically determine the sharpness degree ShðEiÞ of the

control edge Ei, we associate this edge with different values from

0 to 3. We then compare the curvature radii of the different

resulting surfaces (the three pictures at bottom right) with the

target object (the picture at bottom left). Finally, we choose the

degree that produces the most similar curvature radius (ShðEiÞ ¼ 2

for the example).

Practically, starting from the control polyhedron P1 containing

infinite sharp edges, we create four copies P0, P1, P2 and P3 where

sharp edges are all associated with a degree, respectively, equal to

0,1, 2 and 3. These control meshes are then subdivided (three

iterations) to produce dense meshes Ps
0, P

s
1, P

s
2 and Ps

3. For each

sharp control edge Ei, we choose the appropriate degree by the

following process:

� For each mesh Ps
j , we extract the vertices issued from

subdivisions of Ei and we compute the mean CjðEiÞ of their

maximum curvature values.

� Ei is associated with a boundary between two regions issued

from the segmentation process (see Section 4.1); thus we

extract from the original mesh the vertices from this boundary

Fig. 10. Mechanism for sharpness degree determination.

Fig. 11. Evolution of the root mean square error EL2, along with the number of

optimization iterations, for the RockerArm approximating surface.
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and compute the mean COrigðEiÞ of their maximum curvature

values.

� We choose the sharpness degree j such as CjðEiÞ is the most

similar to COrigðEiÞ.

ShðEiÞ ¼ argminjðjCjðEiÞ � COrigðEiÞjÞ (3)

6.2. Geometry optimization

Relaxing the sharpness of the control edges induces a shrinking

of the limit surface, and thus the control points have to be moved

in order to match correctly the target object. For this task, a global

geometry optimization is conducted, which relocates iteratively

the control points by minimizing a sum of quadratic distances to

the target surface.

(1) Several sample points Sk are chosen on the subdivision

surface, they correspond to vertices of the subdivided

polyhedron at a finer level l0. The associated footpoints

(projections of the sample points on the target surface)

are extracted. Sample points Sk can be computed as linear

combinations of the initial control points P0
i (see the

subdivision rules presented in Section 2.4 and Fig. 2); they

correspond to control points Pl0
i at the finer level l0.

Sk ¼ CkðP
0
1; P

0
2; . . . ; P

0
nÞ (4)

(2) The functions Ck are determined using iterative multiplica-

tions of the subdivision matrices associated with our

subdivision rules including semi-sharpness processing (see

Section 2.4 and Fig. 2 for the sharp subdivision rules).

(3) For all Sk, we express the squared distance Fkd to the target

surface using the quadratic distance approximants defined by

Pottmann and Leopoldseder [35]. The minimization of their

sum F gives the new positions of the control points P0
i .

F ¼
X

k

FkdðSkÞ ¼
X

k

FkdðCkðP
0
1; P

0
2; . . . ; P

0
nÞÞ (5)

The minimization of this quadratic function leads to the

solution of a linear squared system.

The point to surface quadratic distance approximants from

Pottmann and Leopoldseder [35] (recently used for subdivision

surface fitting by Marinov and Kobbelt [4] and Cheng et al. [7])

Fig. 12. Left column: The Hand model. Middle column: Control mesh before

geometry optimization (top) and the limit surface (bottom). Right column: The

output control mesh after geometry optimization (three iterations) and the limit

surface.

Fig. 14. The RockerArm model, output control mesh, limit surface and its distance map to the original shape.

Fig. 13. Segmentation, output control mesh and limit surface for the Blade model.
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leads to a much faster convergence than traditional point to point

distance (used by Ma et al. [3], for instance).

Steps (1)–(3) are repeated for three iterations since it has

proven to be sufficient to obtain good visual results and a good

trade-off between processing time and quality. Fig. 11 illustrates,

for the RockerArm model, the evolution of the root mean square

error EL2 of the approximating surface, along with the number

of iterations; the convergence is very fast and the precision gain is

marginal after three iterations. Depending on the case, the

convergence may be not completely reached, but our objective

is not to focus on a very punctilious approximation. Concerning

the choice of the number of sample points Sk, we have chosen

l0 ¼ 2 refinements for all examples in this article. As for each

refinement, the number of vertices increases by a factor of at least

four, the number of equations is about sixteen times the number

of unknowns. That ensures a stable solution when solving Eq. (5)

in the least squares sense. Fig. 12 illustrates a result of the

optimization algorithm (three iterations).

7. Experiments and results

We have tested our algorithm on several models from different

natures: scanned mechanical models (see Figs. 13 and 14),

scanned organic data (see Fig. 12) and hand-designed model with

sharp edges (see Fig. 15). Table 1 presents some statistics about

our algorithm.

Properties of the approximating subdivision surfaces: The algo-

rithm provides extremely coarse subdivision control meshes

(less than 200 vertices for the presented examples) even for

complex shapes. Moreover, corresponding limit surfaces present a

very satisfying visual similarity with original objects. Thank to

the semi-sharpness optimization, limit surfaces well reproduce

the curved aspect of the original shapes. This is particularly visible

on the scanned mechanical pieces which present rolling ball

blends with a large variety of curvature radii.

The approximation errors: Mean (EL1) and root mean squared

(EL2) approximation errors are quite small, while maximal errors

(EL1) are larger. This is due to our approximation mechanism:

since we want to obtain very coarse control meshes, it sometimes

lacks degrees of freedom to well approximate some parts of the

object, particularly tiny details. The distance map from the limit

surface to the original shape presented in Fig. 14 well illustrates

this repartition of the error in some localized areas (red parts).

A solution to this drawback could be to conduct a local

enrichment of the mesh in such high error parts, or to consider

a finer segmentation. However, our objective is not to focus on

approximation error but rather to preserve the main features of

the object.

Processing time: Processing times are illustrated in the last

three columns of Table 1. The whole first part of the algorithm

(feature line extraction and sharp control mesh construction,

see Sections 4 and 5) takes about 30 s for a mesh with 30K faces

(on a 2GHz XEON bi-processor). The sharpness relaxation is also

quite fast (less than 10 s for the examples); however, the geometry

optimization (see Section 6.2) can take several minutes, particu-

larly because of the multiplications of the large subdivision

matrices. We could consider a local process to optimize the

positions of vertices after the sharpness relaxation, in particular

some rules could be found that calculate the shrinking due to the

sharpness change.

Applications: Applications of our fitting process are numerous:

even if the approximation is not highly precise, such coarse

control meshes may represent a good start point for reverse

engineering of scanned mechanical parts. In particular such

control polyhedron may facilitate B-Spline surface retrieval;

indeed several methods build a network of B-Spline patches

starting from a subdivision control polyhedron [36,37]. The semi-

sharp subdivision representation is particularly used for character

animation, in the context of 3D movies [26]. Our algorithm can

retrieve the semi-sharp control mesh from a scanned humanoid

or other organic model. Applying animation parameters to this

coarse control mesh is far easier than animating the original dense

mesh. Finally, the approximating subdivision surface can be

considered for compression, indeed the control mesh is extremely

compact in terms of amount of data and leads to a quite satisfying

approximation after subdivisions. For instance the encoding of the

RockerArm object with the compression algorithm from Touma

and Gotsman [38] (12 bits precision) gives a 35 kbytes binary

stream; the encoding of the associated control mesh (see Fig. 14)

with 12 bits quantization associated with prediction for geometry,

the Facefixer algorithm [39] for connectivity and 2 bits per edge

for the sharpness degrees gives about 900 bytes. This kind of lossy

high rate compression is particularly adapted for transmission on

low bandwidth channel, moreover, the properties of subdivision

surface allow to display the object to the desired resolution

according to the terminal capacity for instance.

Comparison with other algorithms: We have compared our

results with two algorithms: (1) simplification then geometric

optimization, a basic scheme followed by many authors [2–4] and

(2) the approach from Kanai [5]. Table 2 and Fig. 16 illustrate the

results. For both algorithms (1) and (2), we have created

subdivision surfaces associated with 200 control points against

only 160 for our method; thus the three models are associated

with approximatively the same data size (our model contains less

vertices but the supplementary sharpness information to encode).

Table 1

Statistics of our subdivision surface fitting algorithm for various 3D models.

NbReg F=V Orig F=V Ctrl EL1 EL2 EL1 Ctrl (4–5) Relax (6.1) Optim (6.2)

Blade 45 30K/15K 260/187 1:25 2:45 25:4 00:32 00:09 04:36

RockerArm 45 30.2K/15.1K 253/160 1:19 1:60 8:0 00:25 00:08 02:59

Hand 20 5K/2.5K 200/119 2:13 3:71 23:3 00:07 00:06 00:45

Cup 25 11.3K/5.7K 215/123 1:93 2:64 26:1 00:19 00:06 02:05

Number of regions from the segmentation, face/vertex number from original surface and control mesh. Approximation error (�10�3), objects are normalized in a unit cube.

Processing times (min:s) of sharp control mesh construction, sharpness relaxation and geometry optimization.

Fig. 15. The Cup model, output control mesh and limit surface.
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In terms of geometric approximation errors, our method

provides better results than both others, for EL1, EL2 and EL1. For

instance, the root mean square error (EL2) is 1:60� 10�3 for our

algorithm against 2:20� 10�3 for the simplification-based ap-

proach and 5:63� 10�3 for the Kanai algorithm [5]. The Hausdorff

distance (EL1) is also much better with our approximation

(8:0� 10�3 against respectively 14:7� 10�3 and 31:1� 10�3).

Regarding the visual quality of the approximating shape (see

Fig. 16), the subdivision surface associated with our semi-sharp

control mesh appears once again much better than others. In

particular, the centre cylindrical part is very similar to the original

one in comparison with both other algorithms; the extremities

of the model are also very nicely approximated and present no

visible artifact, contrarily to both other methods. Some tiny details

are nevertheless missing at the bottom of the model presented in

the second row, by reason of the high coarseness of the control

mesh.

Fig. 17 illustrates the control meshes corresponding to the

approximation; compared with the other methods, the control

edges produced by our algorithmwell follow the main lines of the

Fig. 16. Comparison of the approximation results of the RockerArm object for different algorithms.

Fig. 17. Comparison of the control meshes corresponding to the approximation of the RockerArm object for different algorithms.

Table 2

Face/vertex numbers from control mesh (F=V Ctrl) and approximation error

(�10�3Þ for different algorithms, for the RockerArm model.

F=V Ctrl EL1 EL2 EL1

Simplif-optim 400/200 1:39 2:20 14:7

Kanai [5] 400/200 4:07 5:63 31:1

Our method 253/160 1:19 1:60 8:0
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shape. Moreover, for both other algorithms, the control meshes

present thin and elongated triangles, and also some degenerated

cases like faces crossing themselves, or flipping. These phenom-

ena are mainly caused by the geometric optimization steps which

can produce unstable results. In our case, the base mesh (before

optimization) is constrained by the feature lines of the object and

is very close to the final result, hence the geometry optimization

does not introduce such artifacts.

8. Conclusion

We have presented an original subdivision surface fitting

algorithm based on feature line approximation, anisotropy

analysis for connectivity construction and edge sharpness relaxa-

tion. These mechanisms yield to a subdivision surface associated

with a very coarse control polyhedron and respecting the visual

aspect and the relevant features of the object. This approximating

surface is quite pertinent regarding to many applications: reverse

engineering, animation or compression.

In the case of noised 3D objects we obtain of course a

smoothed approximation, indeed our objective is not to represent

accurately each detail because the size of the control mesh will

blow up. However, it could be interesting to associate this smooth

approximation to a multi-resolution bumpmap or vector field. We

also plan to drastically reduce the computing time by suppressing

the global geometry optimization; a solution could be to evaluate

quantitatively the shrinking (direction and strength) induced by

the sharpness relaxation and to displace the vertices accordingly.
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