
HAL Id: hal-01437611
https://hal.science/hal-01437611

Submitted on 13 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel efficient image compression system based on
independent component analysis
Zafar Shahid, Florent Dupont, Atilla Baskurt

To cite this version:
Zafar Shahid, Florent Dupont, Atilla Baskurt. A novel efficient image compression system based on
independent component analysis. Wavelet Applications in Industrial Processing VI, Jan 2009, San
Jose, CA, United States. pp.9, �10.1117/12.806159�. �hal-01437611�

https://hal.science/hal-01437611
https://hal.archives-ouvertes.fr


A novel efficient Image Compression System based on
Independent Component Analysis

Zafar SHAHID, Florent DUPONT, Atilla BASKURT

LIRIS UMR5205 CNRS, Université de Lyon, INSA-Lyon, Université Lyon 1,
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ABSTRACT

Next generation image compression system should be optimized the way human vision system (HVS) works. HVS
has been evolved over millions of years for the images which exist in our environment. This idea is reinforced by
the fact that sparse codes extracted from natural images resemble the primary visual cortex of HVS. We have
introduced a novel technique in which basis functions trained by Independent Component Analysis (ICA) have
been used to transform the image. ICA has been used to extract the independent features (basis functions) which
are localized, bandlimited and oriented like HVS and resemble wavelet and Gabor bases. A greedy algorithm
named matching pursuit (MP) has been used to transform the image in the ICA domain which is followed by
quantization and multistage entropy coding. We have compared our codec with JPEG from the DCT family
and JPEG2000 from the wavelets family. For fingerprint images, results are also compared with wavelet scalar
quantization (WSQ) codec which has been especially tailored for this type of images. Our codec outperforms
JPEG and WSQ and also performs comparable to JPEG2000 with lower complexity than the latter.

Keywords: Image Compression, Redundant Dictionaries, Matching Pursuit, Independent Component Analysis

1. INTRODUCTION

Independent component analysis (ICA)1 presents a probabilistic image model in which an observed random
vector x containing pixels from an image can be decomposed as:

x = As . (1)

Here s is a vector containing independent sources, which are linearly combined into the observations x through the
basis function Ai where the superscript i denotes the i-th column of A. In non-orthogonal paradigm, collection
of atoms (or basis functions) is termed as a dictionary which may be incomplete, complete or overcomplete. The
terms basis functions and atoms are used interchangeably in this paper.

Basis functions trained by ICA have already been studied in literature. Ferreira et al.2, 3 have presented
ICA based image compression system. They used a small image-database containing four images to train the
basis functions and the results they got were inferior to JPEG20004 (2dB PSNR difference). We have used more
general image database containing wildlife images. Moreover, our entropy coding consists of multiple stages to
better exploit the redundancy of the quantized transformed coefficients. As a result, distortion and perceptual
quality of our codec is better than JPEG and comparable to that of JPEG2000.

We organize our work as follows. In section 2, we introduce transform coding, the method which is used to
transform the data with non-orthogonal dictionaries and ICA based image model. We discuss the image com-
pression problem and explain why ICA dictionaries are suitable for image compression in section 3. Architecture
of our proposed ICA based codec is presented in section 4. Section 5 contains its performance analysis including
its energy compaction capability, feature capturing capability, quantization and comparison with other codecs.
In the end, we present the concluding remarks about the proposed algorithm.
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2. TRANSFORM CODING

Common audio and video sources have a lot of redundancy that is not removed by source coding. It is well-
known that removing redundancy by using transform coding before quantization generates much better codes.
In transform coding, data is transformed to some other space where it has sparse representation with high peak
and heavy tails.

Historically, transforms have been linear and complete. Being orthogonal, they guarantee energy conservation
and can be implemented by a simple matrix multiplication e.g. DCT and DWT. Now the paradigm is shifting to-
wards non-orthogonal dictionaries which may be incomplete, complete or overcomplete. If D = {f1, f2, f3, ..., fm}
is a dictionary, the dictionary is said to be complete if the number of atoms is equal to number of pixels (or
the rank of the observation vector) and the matrix [f1, f2, f3, ..., fm] is full column rank. It is incomplete or
overcomplete based on whether the number of atoms are less or greater than the number of pixels. Iterative
algorithms like MP5 and Basis Pursuit6 are used to transform the image with these dictionaries. In this paper,
we have used MP and its variant orthogonal matching pursuit (OMP) to transform the image in ICA domain.

2.1. Matching pursuit

MP belongs to a class of iterative algorithms that approximate a signal by successive projections on the vectors
of a non-orthogonal, overcomplete dictionary. After n number of iterations, residual is reduced to zero where n is
equal to the size of dictionary, provided the dictionary is complete. Representations by overcomplete dictionaries
are not unique. There exists many solutions and finding the best solution is NP-complete. For the decomposition
of a 1D signal g, let us have atoms from a dictionary set given as:

D = {f1, f2, f3, ..., fm} (2)

where all the atoms are normalized with ‖fi‖ = 1. Decomposition begins by choosing to maximize the absolute
value of the inner product:

α = arg max
γε{1,...,m}

| < gn, fnγ > | (3)

where α is an expansion coefficient for the signal onto the dictionary function, gn is the residual signal in nth
iteration and fnγ is the dictionary atom with index γ which maximizes α in this iteration. Residual signal is
then computed as:

Rn = gn − αfnγ (4)

and in next iteration, this residual signal is then expanded again in the same way as the original signal until
some stopping condition is met which is normally a compromise between maximum number of iterations and
minimum energy residual. After n number of iterations, the signal can be approximated by:

ĝ =
n∑

i=0

αifiγ (5)

where ĝ is the approximated reconstructed version of the original signal. At each stage, dictionary element
which minimizes mean square error (MSE) between original signal g and the coded signal ĝ is chosen. So, MP
bitstream is progressive and scalable. If the dictionary being used is derived by ICA, the components are coded
in order of visual importance. Orthogonal matching pursuit (OMP) is a variant of MP in which each basis vector
is orthogonalized with respect to all previously selected basis vectors at the time of selection.

2.2. ICA based image model

All overcomplete dictionaries like Gabor, anisotropically refined Gaussian7 and B-spline,8 are mathematical
formulas approximating the image model. They target all the possible combinations of pixel values. But natural
images, over which HVS has been optimized over millions of years, do not utilize all the possible pixel combina-
tions and their characteristics have been exploited well by primary visual cortex of HVS.9, 10

Primary visual cortex has two very important characteristics. First, it contains many more neurons than image
data which gives a notion of overcompleteness. Second, any particular neuron triggers rarely but with high
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value11 which gives a notion of sparseness. Here every basis function represents single neuron. So output of
transform coding should be sparse (super-Gaussian). That is why ICA basis functions are extracted by maxi-
mizing the non-Gaussianity of independent components.

3. ICA FOR IMAGE COMPRESSION

Due to its resemblance with curvelets, it is natural to use ICA for image compression. ICA performs well for
compression of natural images and it has also the capability to adapt to a certain image class. Concept of class
specific image codecs already exist e.g. WSQ12 was tailored for fingerprint images because JPEG2000 was not
available at that time and DCT based codec had blocking artifacts. JPEG2000 is now the latest wavelet based
codec and provides better compression than WSQ.13

3.1. Extraction of basis functions

For extraction of basis functions, FastICA14 has been used for incomplete, complete and overcomplete dictio-
naries. tanh non-linearity has been used for maximization of super-Gaussianity. For overcomplete dictionaries it
utilizes the supposition of quasi-orthogonality.15 The algorithm is shown in Fig. 1 and works in the following
steps:

• Images patches are extracted from random locations from a group of images having same statistical char-
acteristics.

• As a preprocessing step, they are processed by approximative orthogonalization prewhitening.

• FastICA algorithm is then used to extract the basis functions which are as independent as possible.

• Basis functions, extracted as independent sources, are not ordered. For better performance of entropy
encoder, we need to order them in a fashion that gives a long trail of zeros in the end and most of nonzero
coefficients (NZs) in the beginning of every block. As ICA basis functions are trained for a specific class,
energy of each basis is a clear indication how much the specific basis function exists in that class. So, energy
level is an appropriate criteria for ordering of basis functions to get better compression. This ordering gives
excellent results for basis functions of both natural images and database images. Thus, in post-processing
step, ICA bases are ordered by their energy level and then are normalized.

For bases estimation of natural images, we have used a dataset of natural images containing 13 wildlife images.
For face and fingerprint databases, a set of images from respective databases have been used. Basis functions
extracted from these datasets for 8x8 image block are shown in Fig. 2. These basis functions have been extracted
after subtracting the arithmetic mean from the image pixels(so there are 63 basis functions for a block size of
8x8 pixels).

Figure 1. Block diagram for extraction of ICA basis functions.

Input: Group of images having same statistical properties.

a: Small image blocks as the columns of a big matrix on which ICA algorithm is to be applied

b: Matrix containing image data having zero mean and unit variance

c: Matrix containing the basis functions (independent components)

Output: Basis functions (Independent Sources) ordered on the basis of their magnitude.
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3.2. Characteristics of ICA dictionaries

By ordering the ICA basis functions in a descending order of magnitude, they are automatically ordered in
ascending order by frequency. It confirms that low frequencies are of greater importance for HVS. In the ICA
domain, most of the NZs are in the beginning irrespective of their orientation and we get a large trail of zeros
which can be well encoded by an entropy encoder. From Fig. 2, one can note that ICA bases are well localized
in space and orientation like Gabor bases. Like wavelets, they represent more or less the same features in
different scales. But they have many more degrees of freedom than wavelets and have different phases. They are
non-separable and represent curves and edges.

(a) Natural (b) Face (c) Fingerprint

Figure 2. Complete Basis Functions for 8x8 blocks from different image datasets.

4. CODEC ARCHITECTURE

Transform coding can be applied either on full image or small blocks. Other implementations of MP normally
use a full frame as a single block. It gives better compression without any blocking artifacts but it is not good
for error resilience over noisy channels. Additively, computation is very heavy as MP is an iterative algorithm.
To enhance error resilience capability alongwith reduced computational load, we have processed the image in
blocks of 16x16 pixels. These blocks are encoded using variable number of coefficients until either of the stopping
criteria is met which are minimum error threshold and maximum number of encoded coefficients. We have used
MP and OMP to transform the image in ICA domain. These transform coefficients are then uniformly quantized.
Lastly, entropy coding is performed to exploit the statistical redundancy of quantized coefficients as shown in
Fig. 3.

Entropy coding is lot more sophisticated as compared to that used in previous ICA based works3 and is
performed in a number of steps. As ICA coefficients are very sparse and have lot of zeros, arithmetic coding
cannot compress them efficiently. Thus, runlength coding has been employed firstly to produce separate streams
of DC coefficients, AC coefficients and their indexes. The correlation among DC coefficients is exploited by
using differential pulse code modulation (DPCM). Similarly indexes of the AC coefficients are also decorrelated
by DPCM. In the end, all the three are coded using adaptive arithmetic coding.16 Three different histograms,
trained on a set of coefficients of the same image class, are used for DC coefficients, AC coefficients and indexes.

5. PERFORMANCE ANALYSIS

To measure the image quality, we have used both objective and subjective quality measures. Signal to noise
ratio (SNR) and peak signal to noise ratio (PSNR) have been used as objective quality measures while picture
quality scale (PQS)17 has been employed for subjective quality measure. In contrast to SNR and PSNR which
examines differences for every single pixel, PQS takes into account both local and global image features that are
important for HVS. Mean opinion score (MOS) ranges from 0 (worst quality) to 5 (best quality). PQS provides a
numerical measure of image quality well correlated with MOS at the middle range(2-3). For low quality images,
it has negative value and for high quality images, it is greater than 5.
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Figure 3. ICA based image compression system (a) Encoder, (b) Decoder.

5.1. Optimum ICA dictionary size

A comparison of incomplete, complete and overcomplete dictionaries for different image classes is presented as
shown in Fig. 4. Incomplete dictionary contains 160 bases for 16x16 block. For Lena image, there is a difference
of 6dB of PSNR when it is compressed by incomplete and 4-times overcomplete dictionaries. But for face and
fingerprint images, this difference is only 2dB.

For different image classes, an optimum dictionary size depends on the diversity of structures in that image
class. For natural images which contain very diverse structures, overcomplete dictionary performs better than
complete and incomplete dictionaries. For database images which contain limited number of structures, an in-
complete ICA dictionary performs well. As the angle between ICA bases is normally above 70 degrees, OMP
gives only a little quality improvement for overcomplete bases but for incomplete dictionaries, the improvement
in quality is up to 0.2dB of PSNR.

5.2. Feature capturing capability of ICA

ICA basis functions capture the image in order of importance of features. Image structure is captured first and
then fine details are encoded. Fig. 5 shows the result when images are coded using only 2, 4, 6 and 8 NZs per
block, at maximum. After just 4 coefficients per block, SNR is more than 21dB and image quality is good.
In Fig. 5.a, maximum number of NZs is set to 2 which imply that whole of the 512x512 image can take 2048
coefficients but this image has taken only 1874 NZs with 19.34dB of SNR.

5.3. Quantization of ICA coefficients

Quantization is the only lossy part in the whole compression system and results in decrease of PSNR value.
Quantization also produces blocking artifacts which becomes visible when quantized by a higher value. In con-
trast to DCT coefficients, ICA coefficients have less quantization artifacts. Being very sparse, every coefficient
is important and represents some feature. There is considerable loss of quality if any coefficient becomes zero

SPIE-IS&T/ Vol. 7248  724808-5



34

32

30

28

n 26

24

22

20

Lena ImagNaturai Image Basis)

Complete4times

Complete3times
-S<- Complete2times
-.- Complete

InComplete

205 10 IS

max ICA Coeff per 16x16 block

34

32

30

28

26

24

22

20

Face Image

Complete4timea

Complete3times
Complete2timea -

--Complete
InComplete

205 10 IS

max ICA Coeff per 16x16 block

36

34

32

30

, 20

26

24

22

Fingerprint Image

-.-- Compkt4tim
-- CompIte3times
->- CompIete2tim -

--CompIet
InComplete

205 10 IS

mex ICA Coeff per 16x16 block

r,
1874 19.34dB 3141

(a)
21.77dB 3968 23.0 dB 4485 22.64dB

(d)(b) (c)

32

31

30

27

26

La Img(Nturi 1mge Basis) N=1 5

50 100 150 200 250

Qntilon Viue

32

31

30

27

26

Face Image N=15

50 100 150 200 250

QuantimIon Vaiue

36

34

32

30

20

Fmgrprint 1mge N=I 5

50 100 150 200 250

Qntilon Viue

(a) Natural (b) Face (c) Fingerprint

Figure 4. Energy compaction of ICA bases with incomplete, complete and over complete dictionaries for both general
and class specific bases functions

Figure 5. Lena image encoded with (a) 2, (b) 4, (3) 6, (d) 8 NZs at maximum per 16x16 blocks. (Value at bottom left
is NZs and SNR is in bottom right)

because of quantization. Fig. 6 shows the decrease in PSNR value with increase in quantization.

Figure 6. Effect of quantization on the quality of ICA compressed image. The maximum number of allowed coefficients
per block was set to be 15.

For iterative methods like MP, quantization can be done either inloop or a posteriori.18 Fig. 6 shows
the difference in quality when inloop and a posteriori quantization are used. Owing to non-orthogonal nature
of overcomplete dictionaries, the quantization residual of one coefficient can be absorbed by other coefficients
in inloop quantization. Hence inloop quantization performs better. When compared in terms of PSNR, the
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difference between PSNR of images quantized by inloop and a posteriori is around 0.3dB. If it is analyzed in
terms of PQS which is much correlated with HVS, the difference is about 0.2 over a scale of 5 which shows that
the loss, because of a posteriori quantization, is considerable and should be avoided if possible.

5.4. Comparison with other codecs

Both for general and class specific compression, the images which are being compressed do not belong to group
of images which are used to train the basis functions using ICA. They are not part of the image groups which
are used to train histograms for adaptive arithmetic coding either.

5.4.1. General Image Compression

To show ICA capability to compress natural images, Lena image has been compressed with basis functions
trained by ICA on a set of natural images∗ which contains 13 wildlife images. Natural images have a lot of
diversity, so overcomplete dictionary gives better results. Lena image of 512x512 pixels is compressed with 2
times overcomplete ICA dictionary using MP as shown in Fig. 7. ICA based image compression system performs
better than JPEG and comparable to JPEG2000.

Figure 7. Image compression comparison of Lena image (a) Original Image, Image compressed by (b) ICA, (c) JPEG2000,
(d) JPEG (Image size is at bottom left(in bytes), PSNR is at bottom right and PQS is at top right).

5.4.2. Class specific image compression

To demonstrate ICA adaptability to class specific images, face† and fingerprint‡ images were compressed with ICA
basis functions trained on a set of images from the respective databases. Incomplete ICA dictionary has been used
with OMP for compression of a face image of 272x336 pixels and fingerprint image of 288x288 pixels. The results
shown in Fig. 8 shows that ICA based image compression system performs better than JPEG and comparable
to JPEG2000 for face images. For fingerprint image, ICA based image compression system outperforms both
WSQ and JPEG2000 as shown in Fig. 9. Results recommend ICA based codec for compression of class specific
images.

6. CONCLUSION

A novel set of basis functions and codec architecture, based on MP, has been evaluated and compared against
standard codecs. The generalization ability of the ICA bases has been presented for natural images and its
adaptation to specific class is explained for face and fingerprint images. For natural images which contain lot
of diversity, overcomplete basis functions perform better than incomplete basis functions. In case of database

∗www.cis.hut.fi/projects/ica/imageica
†www.bsp.brain.riken.jp/ICALAB/
‡http://www.cognaxon.com
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Figure 8. Image compression comparison of face image (a) Original Image, Image compressed by (b) ICA, (c) JPEG2000,
(d) JPEG (Image size is at bottom left(in bytes) and PSNR is at bottom right).

Figure 9. Image compression comparison of fingerprint image (a) Original Image, Image compressed by (b) ICA, (c)
JPEG2000, (d) WSQ (Image size is at bottom left(in bytes), PSNR is at bottom right and PQS is at top right).

images, incomplete, complete, and overcomplete bases produce roughly the same results and hence, incomplete
bases are recommended for database images.

ICA based codec has given promising results both for class specific and general images at low and medium
bitrates. ICA based image compression system encodes image features in order of visual importance. Image
structure is captured first and then the finer details are encoded. Images compressed with this codec contain
less blocking artifacts as ICA bases are localized both in space and frequency and present lower complexity than
JPEG2000. Based on the results, ICA based codec is recommended both for general and class-specific images.
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