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Abstract— In this paper, we use a recent information theoret-
ical result to develop a general framework for finding optimal
power control policies in the case of interference channels.
The aforementioned result characterizes the achievable payoffs
for an N -Agent (transmitters in our application) coordination
problem with a certain information structure. We then provide
an algorithm which exploits the characterization of achievable
payoffs by conditional probability distributions to find optimal
decision functions for the transmitters. Due to its general
nature, the developed framework is conducive for applications
to diverse scenarios in wireless communications. In this article,
we restrict our attention to the case of decentralized power
control in interference channels for different utility functions
namely sum-rate, sum-energy and sum-goodput. Our approach
has the following salient features: 1) The method proposes
optimal power control functions for any given utility function
as opposed to ad-hoc solutions for different utilities proposed in
the literature, and 2) Noise in the channel estimation is taken
into account, thus providing robust optimal solutions.

I. INTRODUCTION

One of the key contributions of this paper is to exploit the
recent theorem derived in [1] to find power control functions
which may exploit the available knowledge optimally (in
the long run). As an example, we treat the well studied
problem of optimal power control in interference channels
([2], [3], [4]) and show that not only does our framework
attain various payoffs identical to the state of the art, it
also provides the optimal power control functions in diverse
scenarios. The scenarios considered resemble those of [5],
[6]. These works propose ad hoc solutions for specific
utilities but not a generic framework which directly provides
a power control function that aims at exploiting the available
and arbitrary information as well as possible. Indeed our
approach is very general and can be used to treat more
complex and interesting scenarios by considering different
kinds of channel state informations available at transmitters,
different common objectives, robust power control taking the
noisy communications into account, vectorial optimization
etc.

The generality of the approach is by virtue of exploitation
of some recent information theoretical results [1]. A similar
approach, albeit with a different information structure and
for only 2 transmitter-reciever pairs was proposed in [7].
The information structure considered in this paper is more
adapted for the application proposed under realistic assump-
tions, the important assumptions being 1) No knowledge
of future realizations of the nature state w.r.t. which the
agents are coordinating, 2) Any number of agents with only

a partial and noisy information about the current nature state,
and 3) Decision functions must be found in a decentralized
manner for having more robustness leading to simpler design
architectures.

Indeed, for the case of power control in wireless inter-
ference channels, these assumptions have been paid some
attention. The necessity of minimizing the information re-
quired at the transmitters for coordination led to approaches
proposed in [8]), [9], [10]. They consider only local channel
state information at the transmitters (CSIT). This is also
important for reducing the complexity of the optimizations
to be performed. For sum-rate maximization, the scenario
considered by us is comparable to a single-carrier version
of the iterative water filling algorithm (IWFA) [11]. In
the case of sum-energy utility, channel inversion strategy
was proposed by [12], whereas the multi-carrier version
of the problem was considered by [13]. Decentralization
of the power control, or for that matter for any wireless
network design, is the reason why game theory has been
extensively applied to such problems [14]. We thus compare
our results to game theoretic equilibria analysis as most
of the decentralized optimization literature only guarantees
convergence to Nash equilibria.

The article follows the structure from more general results
to specific application of the framework proposed. To this
effect, Sec. II describes the performance limits of a general
coordination problem characterizing the optimal achievable
payoffs. The characterization lays the foundation for an al-
gorithm proposed in Sec. III for finding the optimal decision
policies of the coordinating transmitters. While we continu-
ously illustrate what the developed framework corresponds
to for wireless applications, in Sec. IV-A we describe the
specific problem of power control in interference channels.
A numerical analysis is conducted for diverse scenarios and
the results are compared to existing literature in Sec. IV-B.
Concluding remarks are provided in V

II. PERFORMANCE LIMITS OF AN N -TRANSMITTERS
INTERFERENCE COORDINATION PROBLEM

Consider a coordination problem where N transmitter-
receiver pairs are trying to coordinate the power emitted
by them Xi ∈ Xi, i ∈ {1, ..., N} with respect to a nature
state represented by X0 ∈ X0 to optimize a common payoff
function w(x0, x1, x2) over a long time period T . The nature
state X0 for applications to wireless communications is
the channel gain matrix gij = |hij |2, with gij being the



channel gain of the link between transmitter i and reciever
j. X0 = (g11, ..., gNN ) is a random state which affects the
common payoff function for the system and is not controlled
by the coordinating transmitters. The realizations of the
nature state X0,t at each time instant t are i.i.d. and follow a
distribution ρ. In wireless communications ρ is typically an
exponential distribution for each channel gain gij . Our aim
is to characterize all the achievable expected payoffs under
a certain information structure over the large time period T ,
T →∞.

Firstly, we need to define the information structure under
consideration. At every instant t, all the transmitters are
assumed to have an image or a partial observation Si,t of the
nature state X0,t with respect to which they are coordinating.
In the case of our application, this could be knowledge of
only local CSIT, i.e. transmitter i observes a noisy version
(in general) of only the direct link channel gain gii. One
could imagine other kinds of information available at the
transmitters: for example, transmitter i observes all the links
gji ∀j. The observations Si,t are assumed to be generated by
a memoryless channel whose transition probability is denoted
by ki(Si,t|X0,t). All transmitters have to choose the power
emitted by them Xi,t based on this information received.
Formally, the sequences of decision functions for each agent
i, σi,t is defined as:

σi,t : Sti × U → Xi (1)
(si(1), si(2)...si(t), u(t)) 7→ xi(t) (2)

where Sti = Si(1) × Si(2)... × Si(t) is the discrete
observation alphabet till the instant t and Xi is the power
emitted for transmitter i with |Si|, |Xi| < ∞. Ut is the
alphabet of the auxiliary variable U which is discussed in
more detail later. si(t), u(t) and xi(t) are the realizations of
the corresponding variables at instant t.

The problem is said to be decentralized as each transmitter
chooses its power independently based on the information
received by it. Since the channel gains are generated by a
random process, and thus in general also the corresponding
chosen power levels, the quantity to be optimized is the
expected objective function:

EQ[w(X)] =
∑
x∈X

w(x0, x1, ..., xN )Q(x0, x1, ..., xN ) (3)

where X = (X0, X1, ..., XN ), x = (x0, x1, ..., xN ), and
X = X0 ×

∏N
i=1 Xi. An important point to note is that

since expectation is a linear operator, optimizing the ex-
pected payoff is equivalent to finding the optimal distribution
Q(x0, x1, ..., xN ). However, the optimization problem is not
so trivial as indeed there are certain restrictions on the
distributions Q that are implementable given the imposed
information structure. For doing that, one first needs to define
the notion of an implementable distribution.

Definition 1 (Implementability). Let the information struc-
ture be as defined in (1). The probability distribution

Q(x0, x1, ..., xN ) is implementable if there exist decision
functions σi,t such that as T → +∞, we have for all x ∈ X ,

1

T

T∑
t=1

QX0...XN ,t(x0, ..., xN , )→ Q(x0, ..., xN ) (4)

where QX0X1...XN ,t = QX1,...XN |X0,i × ρ is the joint
distribution induced by σi,t at stage t.

As seen before, the expected payoff is characterized by
the probability distribution Q over all the variables that
intervene in the payoff function. Thus, the time averaged
expected payoff w is said to be achievable, if and only
if the corresponding distribution Q is implementable. The
following theorem characterizes precisely the distributions
that are implementable under the information structure (1).

Theorem 1. [1] Assume the random process X0,t to be
i.i.d. following a probability distribution ρ and the available
information to the transmitters Si,t to be the output of a
discrete memoryless channel obtained by marginalizing the
conditional probability k(s1, ..., sN |x0) . An expected payoff
w is achievable in the limit T →∞ if and only if it can be
written as:

w =
∑

x0,x1,...xN ,u,s1,...sN

ρ(x0)Pu(u)×

k(s1, ...sN |x0)×(∏N
i=1 PXi|Si,U (xi|si, u)

)
w(x0, x1, ...xN )

(5)

where U is an auxiliary variable which can be optimized.

The auxiliary variable U is an external lottery known to
the transmitters beforehand which can be used to achieve
better coordination. An example for how this variable U can
help coordinate better in the case of power control is shown
in Sec. IV-A.

Theorem 1 helps us find the best achievable payoffs on an
average with arbitrary information to the transmitters as long
as it follows the structure (in terms of when the information
is available to whom) defined in equation (1). However,
this theorem does not provide optimal sequences of decision
functions σi,t for the time averaged expected payoff. In the
following section, we shall give an algorithm which helps
find a suboptimal solution for the decision functions. The
suboptimality is due to the high complexity of a multilinear
optimisation problem. Nonetheless, In Sec.IV-B we see that
the solutions obtained using this algorithm match the state
of the art solutions proposed for different utilities discussed.

III. ALGORITHM FOR FINDING SUB-OPTIMAL
LOW-COMPLEXITY DECISION FUNCTIONS

As seen from Theorem 1, optimal performance for the co-
ordination problem depends only on the vector of conditional
probabilities (PX1|S1,U , ..., PXN |SN ,U ). Thus, it suffices to
find an optimum vector of lotteries for every action Xi

possible to obtain the best achievable payoff. However, one
can see that this task is computationally very demanding.
Instead, we apply a suboptimal approach by searching for



the conditional probabilities in a distributed manner, thus re-
ducing the complexity of the search. To this effect, we apply
sequential best response dynamics [14]. This consists of each
transmitter choosing the best corresponding power given
that others keep their powers constant, and each transmitter
doing so sequentially within an iteration. Note that by doing
so, the optimization problem becomes linear, and hence
its solution lies at a vertex, i.e. either (PXi|S1,U ) = 0 or
(PXi|S1,U ) = 1. Thus the search for conditional probability
distributions simplifies to search for decision functions

fi : Si × U → Xi

(si(t), u(t)) 7→ xi(t)

An important point to note is that we search for stationary
strategy, i.e. fi does not depend on the time instant t.
This simplification is practical as it leads to simpler design
structures and easier to find in terms of complexity. Also,
the auxiliary variable U , which serves a coordination key, is
exchanged offline beforehand and thus does not entail any
signalling cost.

The procedure outlined below is performed many times
till convergence is achieved, typically in a few iterations.
The number of iterations required for convergence of course
depends on the number of agents coordinating, but it scales
up very slowly as best response dynamics normally converge
very fast. Furthermore, since we are considering a common
’team’ payoff w(x0, x1, ..., xN ), the convergence of best
response dynamics is guaranteed [15].

Proposition 1. Algorithm 1 converges always for a common
performance criteria w(x0, x1, ..., xN ).

Proof: The result can be proved by induction or more
generally by calling for an exact potential game property (the
latter argument may hold in the more general case in which
the transmitter have different performance criteria).

For further justification of the simplification made by
finding functions fi instead of conditional probability dis-
tributions, note that the optimization problem is linear
w.r.t. each component of the vector (PXi|S1,U ) that we
are searching. The problem is therefore multilinear and
Algo 1 will converge to the vertex of the polytop defined
by the constraints. Note however that we might lose out
on finding the global optimum by doing so. Nonetheless,
the power control functions obtained by the simplification
are sufficient to compare with the existing literature which
typically provide optimal control functions and not mixed
randomized strategies.

To apply best response dynamics, we rewrite the expected
utility given by Theorem 1 in the following way:

w =
∑

x0,x1,...xN ,u,s1,...sN

ρ(x0)PU (u)× (6)

k(s1, ..., sN |x0)× (7)(
N∏
i=1

PXi|Si,U (xi|si, u)

)
w(x0, x1, ...xN )

=
∑

ai,bi,u

θai,bi,uPXi|Si,U (xai
|sbi , u) (8)

where ai, bi, u are the respective indices of xi, si, u and

θai,bi,u ,

∑
a0

ρ(xa0
)ki(si|xa0

)
∑
a−i

w(xa0
, xa1

, ...xaN
)×

∑
b−i

∏
i′ 6=i

ki′(sbi′ |xa0
)
∏
i′ 6=i

PXi′ |Si′ ,U
(xi′ |sbi′ , u)

PU (u)

(9)

where a−i, b−i are the indices which represent ai, bi
being constant, while all the other indices are summed
over. Written in this form, the linearity of the problem
w.r.t. any one of the variables PXi|Si,U (xi|si, u) is even
more explicit. Note that we have also assumed the inde-
pendence of the observation channels of all the agents, i.e.
k(s|x0) = k1(s1|x0)× . . .× kN (sN |x0). For interference
channels, this assumption is reasonable as all transmitters
receive independent feedback of the channel gains.

An important point to note is that the transmitters can run
this algorithm offline as all they need to know are the channel
statistics ρ. This helps in using the optimal functions for the
entire timeslot where the channel statistics remain constant
right from the start as opposed to taking some time initially
to find the optimal functions online. The latter is the case for
some decentralized solutions proposed such as the algorithms
based on water-filling techniques proposed in [5], [6].

IV. APPLICATION TO POWER CONTROL IN
INTERFERENCE CHANNELS

In the previous sections, we developed the framework,
giving intuition as to what the defined quantities might
represent in diverse optimization problems of wireless com-
munications. In this section, we concentrate on the problem
of power control in interference channels [14] and provide
numerical analysis of some special cases for the above
problem.

A. System Model

Consider N single-antenna Transmitter-Receiver pairs
Transmitteri, Recieveri, i ∈ {1, 2..., N} with a single band
interference channel with the channel gains being gij , i, j ∈
{1, 2..., N} and gij ∈ G. G is considered to be a discrete set
and represents the alphabet of the possible channel gains.
A well accepted model of statistics for the channel gains
gij = |hij |2 is Rayleigh fading. In this model, due to central
limit theorem, the real and the imaginary components of hij



Algorithm 1: Proposed decentralized Algorithm for find-
ing a control function

inputs : Xi ∀i ∈ {0, ..., N}, w(x0, x1, ...xN ) ∀x,
ρ(x0),kS|X0

(s|x0) ∀x0, f initi ∀i ∈ {1...N},
PU (u)

output: f∗i (si, ui) ∀i ∈ {1...N}

Initialization - f0i = f initi , iter = 0,
itermax = 100

while ∀i ‖f (iter−1)i − f iteri ‖2 ≥ ε AND iter ≤ itermax

OR

iter=0do
iter = iter+1;

forall the i ∈ {1, . . . , N} do
forall the si ∈ Si do

forall the u ∈ U do
forall the xi ∈ Xi do

Find the minimum (or maximum)
coefficient θai,bi,u for minimization
(or maximization) of payoff using
(9);

Update the function
f iteri (si, ui) ∈ arg min

ai

θai,bi,u;

end
end

end
end

end

follow a normal distribution, and thus the channel gain gij
follows exponential distribution (|hij | follows Rayleigh dis-
tribution). We also assume that all channel gain distributions
are independent of each other and that their realizations for
each timeslot t is i.i.d. The transmitters transmit at discrete
power levels Pi ∈ Pi quantized uniformly (in dB) between
[0, Pmax]. The utility for the pair Transmitteri, Recieveri
depends on their signal to interference plus noise ratio
(SINR) γi(P , g) where P is the vector with each component
Pi being the power emitted by the ith transmitter. More
precisely,

γi(P , g) =
Pigii

σ2 +
∑
i 6=j

Pjgji
(10)

where σ2 is the noise variance. Without loss of generality,
we’ll consider σ2 = 1, and change Pmax to regulate the
signal to noise ratio (SNR). SNR is defined to be the ratio
Pmax/σ

2.

We shall consider only local CSIT, i.e. the direct channel
gain gii available at each transmitter i, based on which they
have to choose the power level to emit at. For evaluation
of the solutions found using our method, we shall consider
3 different payoff functions, which have vastly different
optimal solutions and show that our method gives the same
results as the state of the art which employ different methods
for each payoff. The following common payoffs considered
are:
• Sum-rate: wR(P , g) =

∑
i

log(1 + γi)

• Sum-goodput: wG(P , g) =
∑
i

Ω(γi)

• Sum-energy: wE(P , g) =
∑
i

Ω(γi)

Pi

Typical functions for Ω are Ω(x) = e−
c
x [16], where

c > 0 or Ω(x) = (1 − e−x)M where M ≥ 1 is the packet
length [12]. In simulations, we supposed c = 1 as it only
changes the optimal solutions by a multiplicative constant.
Note that proposition 1 holds for the above payoffs as we are
considering sum of individual payoffs which trivially satisfies
the required condition for convergence.

The following table explicits the relation between the input
variables for the algorithm 1 and the corresponding quantities
for the application to power control defined above.

General model Power Control Application

Nature State - X0 Channel state - (g11, ..., gNN )
Decision of Transmitter i - Xi Power emitted Pi ∈ Pi

w(x0, x1...xN ) wR(P , g), wG(P , g), wE(P , g)

ρ(x0)
∏N

i=1

∏N
j=1 e

−gij , gij = E(gij)
k(si|x0) si = gii or si = ĝii
f init
i fi = Pmax∀s ∈ S

TABLE I
CORRESPONDENCE BETWEEN THE GENERAL FRAMEWORK AND ITS

APPLICATION TO POWER CONTROL

In Theorem 1, we introduced an auxiliary variable U
which could help in achieving better coordination. For better
intuition, we show how a simply constructed external lottery
helps transmitters coordinate in the case of power control.

Consider only N = 2 transmitter-receiver pairs
communicating over a single band interference chan-
nel while maximizing the sum-rate wR(P , g). From
[9], we know that the optimal solutions (P ∗1 , P

∗
2 ) ∈

{(Pmax, 0), (0, Pmax), (Pmax, Pmax)}. However, if trans-
mitters try to maximise their individual utility log(1 + γi),
the Nash equilibrium is (Pmax, Pmax) [14].

Now consider the following probability distribution for a
random variable U with the realizations u ∈ U , |U| = 3.

PU (u) =

 Pr(u = u1) = α1

Pr(u = u2) = α2

Pr(u = u3) = α3 = 1− (α1 + α2)
(11)

A large sequence of realizations for U are drawn with the
probability distribution specified in (11) and all transmitters



share this drawn sequence. Now consider a trivial function
common to all transmitters ∆ : U → P which maps every
realization of U , ui to one of three possible optimal power
control vectors {(Pmax, 0), (0, Pmax)(Pmax, Pmax)}. Under
this setup, one can do monte-carlo simulations for a large
number of channel gain realizations, and find the optimal
probabilities (α∗1, α

∗
2) by doing an exhaustive search. This is

done by searching over a discrete space αi ∈ [0, 1], i ∈ {1, 2.
For the discretization, the step size is chosen to be 0.01 for
obtaining reasonably precise ’optimal’ probability values.
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Fig. 1. The figure shows the performance in terms of sum-rate with : the
proposed coordination mechanism using a public key shared beforehand;
the single-carrier counterpart of the iterative water-filling algorithm. Without
additional signalling, a significant gain is obtained.

In Fig. 1, we plot the average payoff for the coordinated
policy using the pre-drawn lottery U in terms of SNR
(which is equal to Pmax due to normalization of channel
noise variance σ2). We compare the average payoffs for the
coordinated policy as well as for nash equilibrium and see
that at higher SNR, it is indeed preferable to coordinate
using U . This is not surprising at all, as at higher SNRs,
the interference generated is too high, whereas time-sharing
helps avoid this.

In the following section, we provide the simulation setup
and discuss the power control functions given by our ap-
proach. We do not consider the pre-drawn lottery U in our
analysis, although in general U will only help improve the
coordination performance. This is because the solution where
transmitters ignore the coordination key is always possible.

B. Numerical Analysis

1) Simulation Setup: We implement Algo. 1 for the case
of power control in a single band interference channel [14].
To this effect, we use the correspondence established in
Sec. IV-A. We consider the case when N = 2. Note that
exponential distributions for channel gain statistics gij are
characterized only by their mean gij . We shall consider
standard scenarios where (gii, gij) = (1, 0.3), i 6= j.

As mentioned before, the noise variance of the channel
has been normalized to one. Thus, the SNR is regulated
via Pmax = 20db. The possible power levels emitted by
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Fig. 2. The figure represents the power control functions provided by
Algorithm 1 for the three performance metrics under consideration in this
paper. In particular, it is seen that for maximizing sum-energy, the obtained
power control function exhibits a threshold under which transmission should
not occur for a given transmitter.

transmitters (Pi) are uniformly quantized between Pi ∈
[−20, 20]db, with 50 quantization points.

Since the setup considered is symmetric for all Transmitter
-Reciever pairs, we plot the power control functions fi(si),
where Si = Gii, for the transmitter i. Note that since we
do not consider the auxiliary variable u from here on, the
function fi is represented with only one argument si.

2) Results: In Fig. 2, we plot the power control functions
fi obtained using the Algo 1 for the case N = 2 against gii
the direct channel gain between the ith Transmitter-Receiver
pair. We do not consider noise in the channel estimation
for the moment, and thus in this case si = gii. Three
different utilities are considered, sum-rate, sum-energy, and
sum-goodput.

For the case of sum-rate, it is known that binary power
control Pi ∈ {Pmin, Pmax} is optimal for 2 Transmitter-
Reciever pairs [9]. Moreover, as shown in [8], optimal power
control functions with only local CSIT (gii) amounts to
Pi(gii) = Pmin if gii ≤ g∗ and Pi(gii) = Pmax otherwise.It
is reassuring to find that our results verify this. Thus, in the
case of sum-rate with local CSIT, we find exactly the same
results as state of the art.

In the case of sum-energy, we see that all the available
power Pmax is not used. Indeed, even in the case of only 1
Transmitter-Reciever pair, the optimal power control function
is c

g11
. We see that there is also a threshold value of gii below

which, Pi = Pmin. Above the threshold value, the function
is similar to the optimal solution obtained in the case of
only 1 Transmitter-Receiver pair. The threshold function is
also seen as solution in the case of Sum packet rate. This is
because the utility function is not monotonous w.r.t. SINR.
To the best of our knowledge, the power control functions
found for sum-energy are new. Solutions in literature do
not propose thresholding of power control functions to help
reduce interference in case of bad direct channel gains.
Admittedly, this requires greater analysis and comparisons
with the state of the art.
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Fig. 3. Our algorithm reveals the shape of good power control functions
in the presence of interference. In contrast with related works on energy-
efficiency, our work shows that thresholding is required to manage interfer-
ence efficiently.

To investigate the function for sum-energy further, in 3
we compare the function obtained using our algorithm with
that proposed by [12]. We see that unlike [12], we find a
threshold below which emitting no power is more optimal.
We also see that the presence of noise is makes the power
control function more uniform. Our approach is shown to be
much more robust to noise than one proposed by [12] as the
function 1/gii is very sensitive to noise at low values of gii.
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Fig. 4. Relative performance gain (wf − wNash/wNash in % ) of our
algorithm when compared to average payoffs obtained by Nash equilibrium
for sum-rate and sum-energy. The curve for sum-energy saturates as at high
SNR, Pmax is not utilized as power emitted is much lower.

In Fig. 4, we compare the performance of the power
control function with that of Nash equilibrium for different
SNRs in the case of sum-energy and sum-rate. Thus, on
the y − axis we see the relative performance gain (wf −
wNash/wNash in % ) of our algorithm when compared to
average payoffs obtained by Nash equilibrium. Current state
of the art propose solutions which converge to the Nash
equilibrium. Thus, the solutions are generally not optimal
while maximizing common utilities that are sum of the
individual utilities. The evaluations for obtaining average

expected payoffs was done for 106 channel realizations. They
were drawn according to the distribution

∏N
i=1

∏N
j=1 e

−gij .
The channel gain statistics gij were the same as the ones
used for running the algorithm.

We see that for sum-energy, there is no performance gain
at higher SNRs. This is because as seen from Fig. 2, the
optimal power used is very low for all gii. However, we
see that when compared to nash equilibrium, we obtain
a significant gain of around 55 %. In the case of sum-
rate, performance obtained matches with [8] since the power
control functions obtained are identical. Not suprisingly, at
higher SNRs, Algo 1 does much better as Nash equilibrium,
which is all transmitters transmitting at Pmax generates too
much interference.

One of the advantages of our framework is that it provides
optimal power control functions even for noisy channel
estimates. We illustrate this in Fig. 5 where power control
functions for different levels of noise in channel estimation
are plotted. This noise simulates the error in estimation due
to noise in feedback transmission, or just simply statistical
estimation error. The noise for the simulations is modeled
to be gaussian, i.e. si = gii + z where Z ∼ N(0, σ2

z). As
expected, the power control functions become more uniform
at higher noise levels, as the information received is less
reliable, and thus transmitters emit at a power level which
maximizes the utility for an average case.
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Fig. 5. Influence of channel estimation noise on the power control
functions. We see that as noise increases, the optimal power emitted becomes
more uniform. This is intuitive as higher the noise, higher the uncertainty in
the observation leading to same power emitted for all channel gains observed
in the asymptotic case.

V. CONCLUSIONS

The proposed framework was shown to be relevant in
diverse scenarios of single band interference channel for
finding optimal power control functions. Moreover, the
power control functions depended only on local CSIT, thus
having the merit of being implementable in a completely
decentralized manner. Also, the solutions obtained take noise
in the estimation of the channel gain into account. All the
above features illustrate the generality of our approach in



tackling problems of power control for maximizing sum-
utility functions.

However, the framework can be exploited further for tack-
ling other problems in wireless communications as well. For
example, one could consider the problem of power allocation
in a multi-band interference channel. Also, the auxiliary vari-
able U was not exploited, which in general will only make
the solution more optimal. One could also consider different
information available at transmitter i: gij∀j. In future, we
hope to analyze more complex problems and show the merit
of the proposed framework in finding decentralized strategies
for transmitters to cooperate for optimizing common utilities.
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