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Abstract
While Model Driven Engineering is gaining more industrial inter-
est, scalability issues when managing large models have become a
major problem in current modeling frameworks. In particular, there
is a need to store, query, and transform very large models in an ef-
ficient way. Several persistence solutions based on relational and
NoSQL databases have been proposed to tackle these issues. How-
ever, existing solutions often rely on a single data store, which suits
for a specific modeling activity, but may not be optimized for other
scenarios. Furthermore, existing solutions often rely on low-level
model handling API, limiting NoSQL query performance bene-
fits. In this article, we first introduce NEOEMF, a multi-database
model persistence framework able to store very large models in an
efficient way according to specific modeling activities. Then, we
present the MOGWAÏ query framework, able to compute complex
OCL queries over very large models in an efficient way with a small
memory footprint. All the presented work is fully open source and
available online.

Keywords Model Persistence, Model Query, Scalability, NoSQL,
OCL

1. Introduction
The growing use of Model Driven Engineering (MDE) techniques
in industry (Hutchinson et al. 2011; Mohagheghi et al. 2009) has
emphasized scalability of existing technical solutions to store,
query, and transform large models as a major issue (Kolovos et al.
2013; Warmer and Kleppe 2006). Large models containing up to
several millions of elements typically appear in various engineering
fields, such as civil engineering (Azhar 2011), automotive indus-
try (Bergmann et al. 2010), product lines (Pohjonen and Tolvanen
2002), and can be generated in model-driven reverse engineering
processes (Bruneliere et al. 2014), such as software modernization.

Since the publication of the XMI standard (OMG 2016), XML-
based serialization has been the preferred format for storing and
sharing models and metamodels. The Eclipse Modeling Frame-
work (EMF), the de-facto standard for building MDE tools, has
even adopted it as their standard serialization mechanism. However,
XMI-based serialization has two major drawbacks: (i) XMI files are

verbose, favoring human-readability at the expanse of the compact-
ness and (ii) XMI files have to be entirely parsed to obtain a naviga-
ble model of their contents. The first one decreases efficiency of I/O
accesses, while the second greatly increases the memory needed to
load and navigate a model. Moreover, XMI serializations typically
lack support for advanced features such as transactions or collab-
orative edition, and large monolithic model files are challenging
to integrate in existing versioning systems (Barmpis and Kolovos
2013).

To overcome these limitations, several research groups have
proposed their own solutions (detailed in Section 5) based on re-
lational/NoSQL databases (Eclipse Foundation 2016a; Pagán and
Molina 2014; Scheidgen et al. 2012). They often rely on a lazy-
loading mechanism that reduce memory consumption by bringing
objects in memory from the datastore only when they are accessed.

While this evolution of model persistence backends has im-
proved the support for managing large models, they are just a partial
solution to the scalability problem in current modeling frameworks:
they often provide a single generic way to represent models, regard-
less the way they will be used. In particular, most of them are fo-
cused on saving and loading models in an optimized time and mem-
ory consumption, without providing adequate solutions for specific
modeling scenarios, such as interactive editing, query computation,
or model transformations.

Furthermore, all persistence frameworks are based on the use
of low-level model handling APIs (accessing individual model el-
ement, attribute, or reference) which are then used by most other
MDE tools in the framework ecosystem. This approach is clearly
inefficient when used on top of lazy-loading persistence frame-
works because (i) the API granularity is too fine-grained to ben-
efit from the advanced query capabilities of the backend and (ii)
an important time and memory overhead is necessary to construct
navigable intermediate objects that can be used to interact with the
API.

To overcomes these limitations we introduce NEOEMF, a
multi-database persistence framework able to store models in sev-
eral NoSQL databases, depending on the expected usage of the
model. NEOEMF is strictly compatible with the EMF API, and
relies on a modular architecture which allows to change underlying
backend transparently. We also present MOGWAÏ, a query frame-
work that bypasses modeling API to compute OCL queries over
large models in an efficient an scalable way.

The rest of the paper is structured as follows: Section 2 intro-
duces NEOEMF and gives an overview of its feature and supported
datastores, Section 3 presents the MOGWAÏ, our solution to com-
pute model queries efficiently. Section 4 provides some insights on
the implementation of the presented tools, and Section 5 reviews
existing works in the fields of model persistence and model query.



Finally, Section 6 summarizes the key points of the paper, draws
conclusions and presents our future work.

2. NeoEMF: a Multi-Datastore Persistence
Framework for EMF

Our previous works and experiments on model persistence (Gómez
et al. 2015; Benelallam et al. 2014; Gómez et al. 2015) have shown
that providing a well-suited data store for a specific modeling sce-
nario can dramatically improve performance of client applications.
For example, a graph database can be the optimal solution to com-
pute complex model queries, while it would be quite inefficient
for repeated atomic accesses. Based on this observation, we devel-
oped NEOEMF (Daniel et al. 2016a), a scalable model persistence
framework based on a modular architecture enabling model stor-
age into multiple data stores. It is composed of a transparent persis-
tence layer integrated into EMF, and a set of database connectors
which are in charge of the serialization of the model into specific
databases. Currently, NeoEMF provides three implementations-
map, graph, and column–each one optimized for a specific usage
scenario.

In what follows we first introduce the NEOEMF framework
and its integration into the EMF ecosystem, then we present the
key features of the software, and we briefly introduce the available
backends and the typical modeling scenario they address.

2.1 Framework Overview
Figure 1 presents an overview of the NEOEMF framework and its
integration within the EMF environment. Modelers typically access
a model using Model-based Tools, which provide high-level mod-
eling features such as a graphical interface, interactive console, or
query editor. Model-based Tools internally rely on EMF’s Model
Access API to navigate models, create and delete elements, verify
constraints, etc. In its core, EMF delegates the operations to a per-
sistence manager using its Persistence API, which is in charge of
the serialization/deserialization of the model. The NEOEMF core
component is defined at this level, and can be registered as a per-
sistence manager for EMF, same as, for example, the default XMI
persistence manager. This design makes NEOEMF both transpar-
ent to the client-application and EMF itself, that simply delegates
calls without taking care of the actual storage.

Once the core component has received the modeling operation
to perform, it forwards it to the appropriate database connector
(Map, Graph , or Column), which is in charge of the low-level map-
ping of the model. These connectors translate modeling operations
into Backend API calls, store the results, and reify database records
into EMF EObjects when needed. In addition, NEOEMF embeds
a set of default caching strategies that can be configured transpar-
ently at the EMF API level. These caching strategies can be used to
improve performance of client applications, and enabled/disabled
according to specific requirements.

In addition to this transparent integration into existing EMF ap-
plications, NEOEMF provides its own API, which targets advanced
users / high-performance applications. This API provides utility
methods which overcome EMF limitations, allow fine-grained tun-
ing of the databases, and access to internal caches.

2.2 Software Features
An important characteristic of NEOEMF is its compliance with
the EMF API. All classes/interfaces extending existing EMF
ones strictly define all their methods, and ensure that a call to a
NEOEMF method produces the same behavior (including possi-
ble side effects) as standard EMF API calls. As a result, existing
applications can move from EMF to NEOEMF with a very small
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Figure 1. NeoEMF Integration in EMF Ecosystem

amount of efforts and benefit immediately from its scalability im-
provements.

In particular, NEOEMF supports the following EMF features:

� Code generation: NEOEMF embeds a dedicated code gener-
ator that transparently extends the EMF one, and allows client
applications to manipulate models using generated java classes.

� Reflexive/Dynamic API: in addition to generated code, reflex-
ive and dynamic EMF methods can be used on NEOEMF ob-
jects, and behave as their standard implementations.

� Resource API: NEOEMF also implements the resource spe-
cific API, such as getContents, getAllContents, save, and
load.

As other model persistence solutions (Eclipse Foundation
2016a; Pagán and Molina 2014), NeoEMF achieves scalability
using a lazy-loading mechanism, which loads into memory ob-
jects only when they are accessed, overcoming XMI’s limitations.
Lazy-loading is defined at the core component: NEOEMF imple-
mentation of EObject consists of a simple wrapper delegating all
its method calls to the corresponding database driver. Using this
technique, NEOEMF benefits from data store caches, and only
maintains a small amount of elements in memory (the ones that
have not been saved), reducing drastically the memory consump-
tion of modeling applications.

NeoEMF also contains a set of caching strategies that can be
plugged atop of the data store according to specific needs. Note
that these caches are available for all connectors, unless otherwise
stated.

� EStructuralFeaturesCaching: a cache storing loaded objects
by their accessed feature.

� IsSetCaching: a cache keeping the result of isSet calls to
avoid multiple accesses to the database.

� SizeCaching: a cache storing the size of multi-valued features
to avoid multiple accesses to the database.

� RecordCaches: a set of database-specific caches maintaining
a list of records to improve execution time.

Finally, in our last work (Daniel et al. 2016c) we have extended
the cache support in NEOEMF with an integrated prefetching/-
caching framework that allows to customize data access in order to
speed-up query computation. The PrefetchML framework is com-
posed of a DSL that allows designers to specify prefetching and
caching rules with a high-level of abstraction, and an execution en-
gine that is in charge of triggering the rules and fetching the ele-
ments from the database.



2.3 Data Stores
For now, NEOEMF provide three connectors that are able to repre-
sent model into specific data stores. In this section we present these
connectors and the modeling scenario they are optimized for.

2.3.1 NEOEMF/MAP

NEOEMF/MAP (Gómez et al. 2015) has been designed to provide
fast access to atomic operations, such as accessing a single elemen-
t/attribute, and navigating a single reference. This implementation
is optimized for EMF API-based accesses, which typically generate
atomic and fragmented calls on the model. NEOEMF/MAP embeds
a key-value store, which maintains a set of in-memory/on disk maps
to speed up model element accesses. The benchmarks performed
in previous work (Gómez et al. 2015) show that NEOEMF/MAP is
the most suitable solution to improve performance and scalability
of EMF API-based tools that need to access very large models on a
single machine.

2.3.2 NEOEMF/GRAPH

NEOEMF/GRAPH (Benelallam et al. 2014) relies on the rich
traversal features that graph databases usually provide to compute
efficiently complex queries over models. This specific modeling
scenario is further explained in the next Section, where we present
a framework able to compute OCL queries efficiently by translat-
ing them into graph traversals. NEOEMF/GRAPH maps models to
property graphs, where model elements are translated into vertices,
attributes into vertex properties, and references as edges. Note that
to enable complex query computation, metamodel elements are
also persisted as vertices, and are linked to their instances through
a dedicated INSTANCE_OF relationship.

2.3.3 NEOEMF/COLUMN

NEOEMF/COLUMN (Gómez et al. 2015) relies on a distributed
column-based data store to enable the development of distributed
MDE-based applications. In contrast with Map and Graph imple-
mentations, NEOEMF/COLUMN offers concurrent read/write ca-
pabilities and guarantees ACID properties at model element level. It
exploits the wide availability of distributed clusters in order to dis-
tribute intensive read/write workloads across datanodes. The dis-
tributed nature of this persistence solution is used in the ATL-
MR (Benelallam et al. 2015) tool, a distributed engine for model
transformations in the ATL language on top of MapReduce.

3. Mogwaı̈: a Framework to Perform OCL
Queries on Large Models

In the previous Section we introduced the NEOEMF framework,
that provides a transparent way to store models into NoSQL
databases. While this architecture allows to store very large models
in a scalable way, the presented solution is tailored to the low-level
modeling API, which generates fragmented queries on the data
store, reducing the benefits of advanced database query capabil-
ities. Furthermore, the EMF API imposes to reify each traversed
element into a navigable EMF object, even if it is not part of the
final result of the query, increasing the memory needed to compute
a query.

To address these issues we propose the MOGWAÏ (Daniel et al.
2016b) query framework that is able to handle complex queries
on large models. The MOGWAÏ framework takes benefits of the
advanced query language available on NEOEMF/GRAPH’s internal
data store. The MOGWAÏ framework translates queries expressed
in OCL (Object Constraint Language) into Gremlin (Tinkerpop
2016), a graph traversal query language. Generated queries are then
sent to the database that is in charge of their computation, bypassing
EMF API limitations.

In this Section we first show an overview of the Gremlin lan-
guage, then we present our transformation approach, and we intro-
duce some experimental results.

3.1 The Gremlin Language
Gremlin is a Groovy based query language which is part of the Tin-
kerpop initiative, a set of tools that aims to uniform graph database
under a common API.It is built on top of Pipes, a data-flow frame-
work based on process graphs. A process graph is composed of ver-
tices representing computational units and communication edges
which can be combined to create a complex processing. In the
Gremlin terminology, these complex processing are called traver-
sals, and are composed of a chain of simple computational units
named steps.

Existing work have shown that Gremlin is an interesting alterna-
tive to Cypher, the pattern matching language used to query Neo4j
graph database (Holzschuher and Peinl 2013) that can even outper-
form the native query language for specific query scenarios. Grem-
lin defines four types of steps:

� Transform steps: functions mapping inputs of a given type to
outputs of another type. They constitute the core of Gremlin:
they provide access to adjacent vertices, incoming and outgoing
edges, and properties. In addition to built-in navigation steps,
Gremlin defines a generic transformation step that applies a
function to its input and returns the computed results.

� Filter steps: functions to select or reject input elements w.r.t.
a given condition. They are used to check property existence,
compare values, remove duplicated results, or retain particular
objects in a traversal.

� Branch steps: functions to split the computation into several
parallelized sub-traversals and merge their results.

� Side-effect steps: functions returning their input values and ap-
plying side-effect operations (edge or vertex creation, property
update, variable definition or assignation).

In addition, the step interface provides a set of built-in methods
to access meta information: number of objects in a step, output
existence, or first element in a step. These methods can be called
inside a traversal to control its execution or check conditions on
particular elements in a step.

We chose Gremlin as our target language because its expressiv-
ity allows to map the entire OCL, and because it is to our knowl-
edge the only one that is supported by several NoSQL databases.

3.2 Framework Overview
The MOGWAÏ framework is composed of two components: (i) the
OCL2Gremlin model-to-model transformation, which maps OCL
expressions on to Gremlin traversals, and (ii) the NeoEMF/Mogwa��
persistence layer, an extension of NEOEMF/GRAPH that provides
an advanced query API for graph databases. We choose OCL as
our input language because it is a well-known OMG standard used
to complement graphical (meta) modeling languages with textual
descriptions of invariants, operation contracts, derivation rules, and
query expressions. Gremlin is a NoSQL query language designed
to query databases implementing the Blueprints API, an abstraction
layer on top of graph stores which has been implemented by several
databases. Therefore, we choose Gremlin as our target language,
because it is the most mature and generic solution to query a wider
variety of NoSQL databases.

Figure 2 shows the overall query process of (a) the MOGWAÏ
query framework and compares it with (b) standard EMF API
based approaches. An initial textual OCL expression is parsed and
transformed into an OCL query model. This model constitutes the
input of the OCL2Gremlin MOGWAÏ component, which consists



of a model-to-model transformation generating the corresponding
Gremlin traversal model.

This transformation is composed of a mapping from OCL on
to Gremlin and a translation algorithm that implements this map-
ping and merge the created steps into a single query. The Grem-
lin model is then converted to a textual expression and sent to
the NeoEMF/Mogwa�� component, that computes it on the database
side. Query results are then reified as standard EMF objects by
NeoEMF/Mogwa��, making them usable in any EMF-based scenario.

Compared to existing query frameworks, MOGWAÏ does not
rely on the EMF API to perform a query. In general, API based
query frameworks translate OCL queries into a sequence of low-
level API calls, which are then performed one after another on the
persistence layer (in this example NeoEMF/Graph). While this ap-
proach has the benefit to be compatible with every EMF-based ap-
plication, it does not take full advantage of the database structure
and query optimizations. Furthermore, each object fetched from the
database has to be reified to be navigable, even if it is not going to
be part of the end result. Therefore, execution time of the EMF-
based solutions strongly depends on the number of intermediate
objects fetched from the database while for the MOGWAÏ frame-
work, execution time does not depend on the number of intermedi-
ate objects, making it more scalable over large models.

3.3 Experimental Results
Experimental results presented in (Daniel et al. 2016b) show
that using the MOGWAÏ framework to perform complex queries
over large models can dramatically improve performances both in
terms of memory consumption and execution time. In particular,
allInstances based queries computed with the MOGWAÏ are up
to 20 times faster and up to 75 times better in terms of memory
consumption than the Eclipse OCL interpreter and the EMF-Query
framework, two state of the art tools in EMF-based model queries.

Instead, if the query traverses a small part of the model, or if
an important part of the intermediate results are needed anyway the
benefits of using the MOGWAÏ framework are reduced. In partic-
ular, the overhead implied by the transformation engine may not
be worthwhile when dealing with relatively small models or simple
queries.

The main disadvantage of the MOGWAÏ framework concerns its
integration to an EMF environment. To benefit from the MOGWAÏ,
other Eclipse plug-ins need to be explicitly instructed to use it. Inte-
gration with the MOGWAÏ framework is straighforward but must be
explicitly done. Instead, other solutions based on the standard EMF
API provide benefits in a transparent manner to all tools using that
API.

4. Tool Support
NEOEMF is composed of a set of open source Eclipse plugins
distributed under the EPL license. Available components are ac-
tively developed and maintained, and the source code repository
is fully available on GitHub (https://github.com/atlanmod/
NeoEMF). The NEOEMF website1 presents an overview of the
supported datastores, the key features, and current ongoing work.
NEOEMF has been released as part of the MONDO platform (Kolovos
et al. 2015).

� NEOEMF/GRAPH relies on Blueprints, a high-level inter-
face designed to unify graph databases under a common API.
Blueprints has been implemented by several datastores such
as Neo4j, OrientDB, and Titan. Using this abstraction layer,
client applications can choose the graph store of their choice to
persist models through NEOEMF/GRAPH. For now, NEOEMF

1 www.neoemf.com

Figure 3. Mogwaı̈ Interactive Console

embeds Blueprints 2.5.0 and provides a convenience wrapper
for Neo4j 1.9.6.

� NEOEMF/MAP is built on top of MapDB 1.0.9, a key-value
store providing Maps, Sets, Lists, and other collections backed
by off-heap or on-disk storage. MapDB provides advanced fea-
tures such as database snapshots, ACID transactions support,
and incremental backups.

� NEOEMF/COLUMN persists models in Apache HBase 0.98.12-
hadoop2, a wide column database providing distributed data
storage on top of HDFS. HBase is designed to handle very large
tables atop clusters of commodity hardware. The distribution of
the model on the cluster is hidden from client applications,
which accesses them transparently through the EMF API.

A prototype of the MOGWAÏ framework has been developed as
part of NEOEMF (https://github.com/atlanmod/Mogwai).
It extends the standard EMF API provided by NEOEMF by defin-
ing additional query methods at the Resource level. The query
API accepts a textual OCL expression or an URI to an OCL file
containing the expressions to compute. In addition, it is possible to
provide input values that represents self and parameter variables.
The framework also provides an OCL console (see Figure 3) inte-
grated into Eclipse that allows to query NEOEMF/GRAPH models
interactively.

OCL queries are parsed using Eclipse MDT OCL, and the core
transformation creating the Gremlin model from the OCL one is
composed of a set of 70 ATL (Jouault et al. 2008) rules and helpers.
The created Gremlin model is then expressed using its textual
syntax and sent to an embedded Gremlin engin, which executes
the query and returns the results. The reification of these results
into model elements is delegated to NEOEMF/GRAPH, that is in
charge of the mapping between graph and model elements.

5. Related Work
In this Section we present existing solutions that aims to tackle
scalability issues to store and query large models and we compare
them with NEOEMF on the persistence side, and the MOGWAÏ
framework on the query one.

5.1 Scalable Model Persistence
The CDO model repository (Eclipse Foundation 2016a) is a scal-
able model persistence framework based on a client-server archi-
tecture to handle large model in a collaborative environment. It
provides some advanced features such as transaction support or ba-
sic prefetching, and provides a lazy-loading mechanism to reduce
memory consumption. CDO can be plugged with several database

https://github.com/atlanmod/NeoEMF
https://github.com/atlanmod/NeoEMF
www.neoemf.com
https://github.com/atlanmod/Mogwai
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connectors to store a model, but in practice only relational ones are
used. In addition, different experiences have shown that CDO faces
scalability issues when dealing with very large models (Pagán and
Molina 2014; Scheidgen et al. 2012).

Morsa (Pagán et al. 2011; Pagán and Molina 2014) is one of
the first approaches that use NoSQL databases to handle very large
EMF models. It relies on a client-server architecture based on Mon-
goDB2 and aims to manage scalability issues using document-
oriented database facilities and a lazy-loading mechanism. Morsa
model persistence is available through the standard EMF mecha-
nisms, making its integration transparent in existing EMF based
applications. NEOEMF is similar to Morsa in several aspects, but
aims to provide multiple backends that can be chosen according to
a specific modeling scenario.

EMF fragments (Scheidgen et al. 2012) is another NoSQL-
based persistence layer for EMF aimed at achieving fast storage
of new data and fast navigation of persisted models. Supported
backends are MongoDB, Apache Hbase and regular files on the
file system. EMF fragments is based on the proxy mechanism used
by EMF for inter-document relationships: models are automatically
partitioned in several chunks (fragments) using metamodel annota-
tions, and linked together using the standard EMF proxy mecha-
nism. Unlike our approach, CDO, and Morsa, all data from a sin-
gle fragment is loaded at a time. Only links to another fragments
are loaded on demand. Another characteristic of this approach is
that metamodels have to be modified to indicate where the parti-
tions should be made to get the partitioning capabilities, whereas
NEOEMF can be plugged directly into existing EMF-based appli-
cations.

5.2 Model Query
There are several frameworks to query models, specially targeting
the EMF framework (including one or more of the EMF backends
mentioned before). The main ones are Eclipse MDT OCL (Eclipse
Foundation 2016b), EMF-Query (The Eclipse Foundation 2016)
and IncQuery (Bergmann et al. 2009).

Eclipse MDT OCL provides an execution environment to eval-
uate OCL invariants and queries over models. It relies on the EMF
API to navigate the model, and stores allInstances results in a
cache to speed up their computation.

EMF-Query is a framework that provides an abstraction layer on
top of the EMF API to query a model. It includes a set of tools to
ease the definition of queries and manipulate results. Compared to
the Mogwaı̈ framework, these two solutions are strongly dependent
on the EMF API, providing on the one hand an easy integration in
existing EMF applications, but on the other hand they are unable to

2 http://www.mongodb.org

benefit from all performance advantages of NoSQL databases due
to this API dependency.

EMF-IncQuery (Bergmann et al. 2009) is an incremental pattern
matcher framework to query EMF models. It bypasses API lim-
itations using a persistence-independent index mechanism to im-
prove model access performance. It is based on an adaptation of a
RETE algorithm, and query results are cached and incrementally
updated using the EMF notification mechanism to improve perfor-
mance. While EMF-IncQuery shows great execution time perfor-
mances (Bergmann et al. 2011) when repeating a query multiple
times on a model, the results presented in this article show miti-
gated performances for single evaluation of queries. This is not the
case for our framework. Caches and indexes must be built for each
query, implying a non-negligible memory overhead compared to
the Mogwaı̈ framework. In addition, the initialization of the index
needs a complete resource traversal, based on EMF API, which can
be costly for lazy-loading persistence frameworks.

6. Conclusion
In this article we have presented NEOEMF, our solution to store
and access very large models using a multi-datastore model per-
sistence framework. NEOEMF relies on a lazy-loading capabil-
ity allowing very large model navigation in a reduced amount of
memory, by loading elements from the datastore only when they
are accessed. NEOEMF has been designed to be fully compatible
with existing EMF-based applications by providing a complete im-
plementation of the EMF API. Datastores’ behavior and internal
caches can be tuned by providing options to the standard save and
load EMF methods. Currently, NEOEMF provides three imple-
mentations (graph, map, and column) that can be plugged trans-
parently to provide an optimized solution to different modeling use
cases: frequent and repeated atomic accesses, complex query com-
putation, and cloud-based model transformation.

In addition to the persistence layer itself, we have introduce the
MOGWAÏ framework that generates Gremlin traversals from OCL
queries in order to maximize the benefits of using a graph back-
end to store large models. MOGWAÏ is integrated in the NEOEMF
infrastructure, extending NEOEMF/GRAPH with custom query ca-
pabilities. OCL queries are translated using model-to-model trans-
formation into Gremlin traversals that are then computed on the
database side, reducing the overhead implied by modeling API and
the reification of intermediate. Experiments detailed in previous
work (Daniel et al. 2016b) have shown that using this approach
brings a significant improvement both in terms of execution time
and memory consumption. NEOEMF and MOGWAÏ are developed
as open-source Eclipse plugins and available online.

http://www.mongodb.org


Model transformations intensively use model queries to navi-
gate the model to transform, match source elements, or set target
values. Integrating the MOGWAÏ framework in model transforma-
tion engines (such as ATL (Jouault et al. 2008)) to compute these
queries could drastically reduce the execution time and memory
consumption implied by the transformation of large models. An-
other possible approach would be to extend the MOGWAÏ to trans-
late the transformation itself into database queries and compute it
entirely on the database side.

As future work we plan to study the interest of other datas-
tores that could be beneficial for specific use cases. For example,
we want to study if a document-based representation could provide
some performance gains. We also want to study how datastores can
be combined to optimize a set of modeling activities (for exam-
ple a map/graph backend that would speed-up both query com-
putation and atomic accesses). Finally, we plan to integrate into
NEOEMF advanced features which are typically needed by mod-
eling processes, such as model versioning, or collaborative edition.
The later could for example benefit of the distributed architecture
provided by NEOEMF/COLUMN.

Another ongoing work is to study the integration of the MOGWAÏ
framework into model persistence solutions that do not rely on a
Gremlin compatible database. For example, we plan to adapt ex-
isting work on EOL to SQL translation (Carlos et al. 2014) to
test our model-to-model transformation-based approach over SQL
databases. Generating SQL queries would also enable to use the
Spark-SQL connector for HBase in order to improve query execu-
tion time and memory consumption over NEOEMF/COLUMN.

References
S. Azhar. Building information modeling (BIM): Trends, benefits, risks,

and challenges for the AEC industry. Leadership and Management in
Engineering, pages 241–252, 2011.

K. Barmpis and D. Kolovos. Hawk: Towards a scalable model indexing
architecture. In Proc. of BigMDE’13, pages 6–9. ACM, 2013.
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