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Non-linear regularized decomposition of spectral

x-ray projection images
Nicolas Ducros∗, Simon Rit, Bruno Sixou and Françoise Peyrin

Abstract—Spectral computed tomography (CT) exploits mea-
surements from x-rays with different energies to obtain the 3D
description of the patient in a material basis. It requires to solve
two subproblems, namely the material decomposition and the to-
mographic reconstruction problems, either sequentially or jointly.
In this work, we address the material decomposition problem,
which an ill-posed non-linear problem. Our main contribution is
to introduce a material-dependent spatial regularization scheme.
The problem is solved iteratively using the Gauss-Newton’s
method. The framework is validated on numerical experiments
of a thorax phantom made of soft tissue, bone and gadolinium
scanned with a 90 kV source and a 3-bin photon counting
detector.

I. INTRODUCTION

Spectral photon counting detectors [1] can be used to image

high Z contrast agents by exploiting the K-edge discontinuity

of their energy-dependent linear attenuation coefficient (LAC)

[2], [3]. These new scanners open new clinical applications

for x-ray imaging as a functional imaging tool, e.g., for the

characterization of the atherosclerotic plaque [4].

Spectral CT image reconstruction can be split in two

subproblems: (1) decomposition of the energy-resolved data

and (2) tomographic reconstruction. The two subproblems can

be solved sequentially (projection-based approach) or jointly

(image-based approach). Both approaches face challenging

difficulties. First, spectral CT is a non-linear problem. Al-

though it can be linearized [5], taking into account the non-

linearities of the forward model is more adequate [2]. Second,

the sensitivity of spectral imaging is limited [6] and several

groups have investigated statistical penalties and spatial priors

in the image domain in order to improve the signal-to-noise

ratio of the reconstruction [7]–[11].

In this work, we address the basis material decomposition

(BMD) problem of the projection-based approach. The main

contribution of this work is to introduce a material-specific

spatial regularization scheme. Like in [2], our forward model

is non-linear and takes into account the spectral response of the

detector but we also regularize each material projection image.

While the spatial regularization might not be optimal, working

on a smaller problem, i.e., one projection at a time, has several

advantages: the inverse problem is easier to optimize using

explicit computation of sparse matrices, and each problem can

be solved in parallel. We present preliminary simulations on

synthetic data and the projection of a real thorax phantom.
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II. THEORY

We consider a 3-dimensional (3-D) object in Ω that is

imaged with a 2-D detector with a sensing surface S .

A. Physical models

1) X-ray / matter interactions: Let n(E,u) denotes the
number of photons of energy E that reaches the detector at the

pixel position u ∈ S . Neglecting scattering within the object,

n follows the Beer-Lambert law. Mathematically,

n(E,u) = n0(E) exp

[

−

∫

L(u)

µ(E,x) dx

]

(1)

where n0(E) is the source spectrum, L(u) is the acquisition
line that depends on the source emission geometry (parallel,

cone-beam, etc), and µ(E,x) is the local LAC of the object
at energy E and point x ∈ Ω.
2) Detection model: The signal recorded by a photon

counting detector may be modelled by

s(E ,u) =

∫

R

d(E , E)n(E,u) dE (2)

where d(E , E) accounts for the detector response function
and is the probability density function for an x-ray photon

hitting the detector with energy E to be detected at energy E .

The photons detected within the ith energy bin [Ei, Ei+1] are
accumulated electronically thanks to a counting circuit. The

number of photons detected within the ith energy bin is given

by

si(u) =

∫

R

di(E)n(E,u) dE (3)

where

di(E) =

∫ Ei+1

Ei

d(E , E) dE (4)

is the response function of the ith bin of the detector. Note

that the detection model assumes that the value measured at a

given pixel is not correlated to the value measured at another

pixel, i.e. charge sharing can be neglected or is corrected for.

It is common to have charge sharing corrected for at the ASIC

level.

B. Object decomposition

It is assumed that the LAC is the superposition of M basis

functions that are separable in energy and space. We have

µ(E,x) =
M
∑

m=1

ρm(x)τm(E), ∀x ∈ Ω (5)
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where the τm are some well-chosen basis functions and the ρm
are the corresponding weights in the decomposition. Following

the work of [5], two approaches have emerged for the choice

of the basis functions τm: i) physics-based where τm models

the physical effects, e.g. photoelectric, Compton scattering, k-

edge, and, ii) material-based where τm is the mass attenuation

of the constituents of the objects (in cm2.g−1). Note that in

the latter method, ρm is the density of materialm (in g.cm−3).

C. Forward problem

Substituting (1) and (5) into (3), the measured signal may

be written

si(u) =

∫

R

di(E)n0(E,u) exp

[

−

M
∑

m=1

am(u)τm(E)

]

dE

(6)

where

am(u) =

∫

L(u)

ρm(x) dx (7)

is the projection of the weights ρm along the line integral

L(u). When a material-based decomposition is performed, am
is the mass of the mth material projected onto the detector (in

g.cm−2). One main difficulty of the problem we address is the

non linearity of the forward mapping expressed in (6).

D. Inverse problem

The detector is assumed to be an array of P pixels centred

at up, p ∈ {1, . . . , P}, and have I energy bins. Let s ∈ R
PI

be the measurement vector defined by

s =
[

s1,1 . . . sI,1 . . . . . . s1,P . . . sI,P
]⊤

(8)

and a ∈ R
PM be the (unknown) vector containing the mass

of each material in each pixel, which is defined by

a =
[

a1,1 . . . aM,1 . . . . . . aM,P . . . aM,P
]⊤

. (9)

Our problem is to recover the mass vector a from the

measured data s. This is an ill-posed problem that requires

prior knowledge about the solution to stabilize the inversion

in the presence of noise.

III. MATERIAL AND METHODS

A. Cost function

In this manuscript, we propose to recover the mass vector

minimizing the cost function

C(a) = ‖s−F(a)‖22 + αR(a) (10)

where F(a) is the non-linear forward mapping defined by (6),
R the regularization functional, and α is a global regulariza-

tion parameter.

Fig. 1. Spectrum of the x-ray source (top), detector response per bin (middle)
and LACs of the three constituents used in the numerical experiments.

B. Regularization functional

We adopt the following regularizing functional, which al-

lows the prior of the different materials to be tuned indepen-

dently:

R(a) =
∑

m

αmRm(am), (11)

where Rm is the regularizing functional of the mth material

weighted by the regularization parameter αm and am =
[am,1 . . . am,P ]⊤ is a vector in R

P that accounts for the mass

of the mth material.

C. Optimisation algorithm

We propose to minimize (10) using Gauss-Newton’s

method, which is a classical iterative tool for non-linear

minimization. It starts with an initial guess a(0) and builds

new estimates

a(k+1) = a(k) + ∆a(k) (12)

with the so-called Gauss-Newton step ∆a(k)

(2J(k)
⊤

J(k) +H(k))∆a(k) = −g(k), (13)

where J(k) is the Jacobian matrix of F about a(k), H(k) is

the Hessian matrix of αR about a(k), and g(k) is the gradient

of C about a(k).

D. Numerical simulations

1) Acquisition parameters: We consider the source spec-

trum n0(E) that is depicted on the top row of figure 1. It was
obtained with a tube voltage of 90 kV. Measurements were

performed in I = 3 energy bins. The response function of
each bin is plotted in the middle row of figure 1 and was taken

from [2] (3 out of 8 bins). The measurements were corrupted

by Poisson noise assuming 108 x-ray photons are launched
onto the patient towards each each pixel of the detector. We

The 4th International Conference on Image Formation in X-Ray Computed Tomography

50



(a) ground truth

(b) recovered, α = 10
−3 (c) recovered, α = 10

−0.5

(d) difference, α = 10
−3 (e) difference, α = 10

−0.5

Fig. 2. Mass of the constituents of the phantom in units of g.cm−2, namely soft tissue, bone, and gadolinium. a) ground truth images, b) recovered images
for a small regularization parameter, c) recovered images for the best regularization parameter, d) difference between b) and a), and e) difference between c)
and a).

approximated this Poisson noise to a Gaussian distribution and

the square L2 norm chosen in this work is effective as a data

fidelity term.

2) Phantom: We considered the 3D thorax phantom that

was segmented from a CT scan in [12]. Each voxel has

been associated to either soft tissue or bone, according to

the segment it belongs to. The material density in each voxel

was estimated from the CT images. The portal vein was

marked with gadolinium at a concentration of 1 g.cm−3. The

mass attenuations of soft tissue, bone, and gadolinium were

taken from ICRU report 44 [13] and are depicted in figure 1

(bottom row). The projected masses for each material are

finally computed according to (7), by integrating densities

along parallel lines chosen perpendicular to the coronal plane.

The resulting material images are displayed on the top row of

figure 2.

3) Spatial regularization: For this 3-material phantom, we

choose

αR(a) = α
(

‖∆asoft‖
2
2 + ‖∇abone‖

2
2 + ‖∇aGd‖1

)

(14)

where asoft, abone, and aGd represents the projected masses

of soft tissues, bone, and gadolinium, respectively, while ∇
and ∆ are the first- and second-order differential operators,

respectively. This functional promotes solutions for which i)

the soft tissue and bone images are smooth, ii) the marker

image is piecewise constant, and iii) the soft tissue image

is smoother than the bone image. As a first approach, we

set αm = 1 for each of the material images, keeping only

the global regularization parameter as a free parameter. To

compute H(k) and g(k), a smooth approximation of the ℓ1-
norm is considered, namely the pseudo-Huber loss function

[14].

IV. RESULTS

The cost function given by (10) was minimized iteratively

by a Gauss-Newton algorithm according to (12) and (13).

The algorithm is initialized with the uniform material images

a
(0)
soft = 20 g.cm−2, a

(0)
bone = 2 g.cm−2, and a

(0)
Gd = 0 g.cm−2.

The algorithm is stopped when the cost function decrease is

less than 0.1%. The minimization was performed for different

regularization parameters α ranging from 10−2 and 101. For

our 361 × 167 images, updating a(k) took 2 s on a standard

laptop (2.6 GHz i7 CPU and 16 GiB of RAM). Depending

on the regularization parameter, from 15 to 30 iterations were

necessary before convergence, which leads to a computation

time of about 30 to 60 s to minimize (10).

The plot of the points (‖s − F(a)‖22, R(a)) for different

values of the regularization parameter α, which is known

as the L-curve, is provided in figure 3. The reconstruction

error ‖a− atrue‖2/‖atrue‖2 is displayed with respect to α in

figure 4. The smallest reconstruction error was obtained for

α = 10−0.5, which corresponds to the corner of the L-curve,
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Fig. 3. L-curve for the proposed experient, i.e., (‖s−F(a)‖2
2

, R(a)) for a

regularization parameter α ranging from 10−2 to 101.

Fig. 4. Decomposition error with respect to regularization parameter.

indicating than the L-curve may be an appropriate tool for

selecting the regularization parameter when the ground truth

is unknown. The material images recovered by our method

are given in the middle row of figure 2. Two regularization

parameters were considered, one being very small (left) and

the other being the best one according to the L-curve (right).

When no regularisation scheme is used (see figures 2b and

2d), the different materials are poorly separated. However, the

three material images are nicely recovered when an appropriate

regularization scheme is considered.

V. DISCUSSION AND CONCLUSION

These preliminary results indicate that the decomposition

of x-ray spectral projection images greatly benefits from the

implementation of a regularization scheme. Similar results

have been reported in the image domain but working in the

projection domain is advantageous because the dimensionality

is smaller and, therefore, more tractable. For example, we have

been able to compute the L-curve in figure 3, which might not

be tractable considering the image-based approach.

We have used a single regularization parameter in this

work. Future works include the use of several regularization

parameters. We will also investigate other statistical methods

that better accounts for the statistical noise in the projection

images and other regularizations, e.g., a non convex prior for

the gadolinium favoring a small support. After a satisfying

solution has been developed in the projection domain, a set of

projection images can be decomposed and reconstructed using

existing filtered-backprojection or iterative CT reconstruction

algorithms.
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