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ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG EXTERNAL

MAGNETIC FIELD

FRANCIS FILBET, TAO XIONG AND ERIC SONNENDRÜCKER

Abstract. This paper establishes the long time asymptotic limit of the 2d × 3d Vlasov-Maxwell
system with a strong external magnetic field. Hence, a guiding center approximation is obtained in
the two dimensional case with a self-consistent electromagnetic field given by Poisson type equations.
Then, we propose a high order approximation of the asymptotic model and perform several numerical
experiments which provide a solid validation of the method and illustrate the effect of the self-consistent
magnetic field on the current density.
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1. Introduction

We consider a plasma confined by a strong external magnetic field, hence the charged gas evolves
under its self-consistent electromagnetic field and the confining magnetic field. This configuration is
typical of a tokamak plasma [3, 30], where the magnetic field is used to confine particles inside the
core of the device.

We assume that on the time scale we consider, collisions can be neglected both for ions and elec-
trons, hence collective effects are dominant and the plasma is entirely modelled with kinetic transport
equations, where the unknown is the number density of particles f ≡ f(t,x,v) depending on time
t ≥ 0, position x ∈ D ⊂ R3 and velocity v ∈ R3.

Such a kinetic model provides an appropriate description of turbulent transport in a fairly general
context, but it requires to solve a six dimensional problem which leads to a huge computational cost.
To reduce the cost of numerical simulations, it is classical to derive asymptotic models with a smaller
number of variables than the kinetic description. Large magnetic fields usually lead to the so-called
drift-kinetic limit [1, 8, 28, 27] and we refer to [4, 7, 19, 20, 14, 21] for recent mathematical results
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on this topic. In this regime, due to the large applied magnetic field, particles are confined along
the magnetic field lines and their period of rotation around these lines (called the cyclotron period)
becomes small. It corresponds to the finite Larmor radius scaling for the Vlasov-Poisson equation,
which was introduced by Frénod and Sonnendrücker in the mathematical literature [19, 20]. The
two-dimensional version of the system (obtained when one restricts to the perpendicular dynamics)
and the large magnetic field limit were studied in [14] and more recently in [4, 31, 24]. We also refer
to the recent work [26] of Hauray and Nouri, dealing with the well-posedness theory with a diffusive
version of a related two dimensional system. A version of the full three dimensional system describing
ions with massless electrons was studied by Han-Kwan in [23, 25].

Here we formally derive a new asymptotic model under both assumptions of large magnetic field
and large time asymptotic limit for the two dimensional in space and three dimensional in velocity
(2d × 3d) Vlasov-Maxwell system. An analogous problem for the Vlasov-Poisson system has already
been carefully studied by F. Golse and L. Saint-Raymond in two dimension [21, 32, 22], and recently
by P. Degond and F. Filbet in three dimension [12]. In this paper, we will follow [12] to introduce some
main characteristic scales to rewrite the Vlasov-Maxwell system in a dimensionless form, and refor-
mulate the Maxwell equations by defining two potential functions corresponding to the self-consistent
electromagnetic field. We consider a small cyclotron period, where the plasma frequency is relatively
small as compared to the cyclotron frequency, and study the long time behavior of the plasma. As-
suming a constant strong external magnetic field and that the distribution function is homogeneous
along the external magnetic field, an asymptotic kinetic model can be derived by performing Hilbert
expansions and comparing the first three leading order terms in terms of the small cyclotron period,
thanks to passing in the cylindrical coordinates. The new asymptotic model is composed of two
two dimensional transport equations for the distribution functions of ions and electrons respectively,
averaging in the velocity plane orthogonal to the external magnetic field, and a Poisson’s equation
for determining the electric potential as well as an elliptic equation for the magnetic potential. It
is incompressible with a divergence free transport velocity and shares several good features with the
original Vlasov-Maxwell system, such as conservation of moments in velocity, total energy, as well as
the Lp norm and physical bounds. The existence of weak solutions for the asymptotic model can also
be obtained by following the lines of existence of weak solutions for the Vlasov-Poisson system [2, 13],
with some Lp estimates on the charge density and current. Moreover, as the Mach number goes to 0
in the self-consistent magnetic field, we can recover the two dimensional guiding-center model, which
is an asymptotic model for the Vlasov-Poisson system under the same scalings [21, 36, 29].

A high order numerical scheme will be proposed for solving the new asymptotic model, which is an
extension of the one developed by C. Yang and F. Filbet [36] for the two dimensional guiding center
model. Some other recent numerical methods for the Vlasov-Poisson system or the two dimensional
guiding-center model can be referred to [15, 34, 10, 9, 18, 16, 35] and reference therein. Here a
Hermite weighted essentially non-oscillatory (HWENO) scheme is adopted for the two dimensional
transport equation, as well as the fast Fourier transform (FFT) or a 5-point central difference scheme
for the Poisson equation of the electric potential and the 5-point central difference scheme for the
elliptic equation of the magnetic potential. We will compare the asymptotic kinetic model with the
two dimensional guiding-center model. With some special initial datum as designed in the numerical
examples, we will show that under these settings, the two dimensional guiding-center model stays
steady or nearly steady, while the asymptotic model can create some instabilities with a small initial
nonzero current for the self-magnetic field. These instabilities are similar to some classical instabilities,
such as Kelvin-Helmholtz instability [18], diocotron instability [36] for the two dimensional guiding-
center model with some other perturbed initial conditions, which can validate some good properties
of our new asymptotic model.

The rest of the paper is organized as follows. In Section 2, the dimensionless Vlasov-Maxwell system
under some characteristic scales and the derivation of an asymptotic model will be presented. The
verification of preservation for some good features as well as the existence of weak solutions for the
asymptotic model will also be given. The numerical scheme will be briefly described in Section 3 and
followed by some numerical examples in Section 4. Conclusions and our future work are in Section 5.
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2. Mathematical modeling

In this paper, we start from the Vlasov equation for each species of ions and electrons,

(2.1) ∂tfs + v · ∇xfs +
qs
ms

(
E + v × (B + Bext)

)
· ∇vfs = 0, s = i, e,

where fs ≡ fs(t,x,v) is the distribution function, ms and qs are the mass and charge, with s = i, e
for the ions and electrons respectively. Here we assume that the ions have an opposite charge to
the electrons qi = e = −qe and consider a given large magnetic field Bext, as well as self-consistent
electromagnetic fields E and B, which satisfy the Maxwell equations

(2.2)



∇x ×E = −∂tB,

∇x ×B =
1

c2
∂tE + µ0 J,

∇x ·E =
ρ

ε0
,

∇x ·B = 0,

where c is the speed of light, µ0 is the vacuum permeability, ε0 is the vacuum permittivity and
µ0ε0 = 1/c2. The density ns, average velocity us are related to the distribution function fs by

ns =

∫
R3

fsdv, nsus =

∫
R3

fsvdv,

hence we define the total charge density ρ and total current density J as ρ = e (ni − ne) and
J = e (ni ui − ne ue).

2.1. Rescaling of the Vlasov-Maxwell system. In the following we will derive an appropriate
dimensionless scaling for (2.1) and (2.2) by introducing a set of characteristic scales.

We assume that the plasma is such that the characteristic density and temperature of ions and
electrons are of the same order, that is,

(2.3) n := ni = ne, T := T i = T e.

We choose to perform a scaling with respect to the ions. On the one hand, we set the characteristic
velocity scale v as the thermal velocity corresponding to ions,

v :=

(
κBT

mi

)1/2

,

where κB is the Boltzmann constant. Then we define the characteristic length scale of x given by the
Debye length, which is the same for ions and electrons

x := λD =

(
ε0κBT

ne2

)1/2

.

It allows to define a first time scale corresponding to the plasma frequency of ions ωp := v/x.
Finally, the characteristic magnitude of the electric field E can be expressed from n and x by

E :=
e n x

ε0
,

hence the characteristic magnitude of the self-consistent magnetic field B, which is denoted by B, is
related to the scale of the electric field by E = v B.

On the other hand, by denoting Bext the characteristic magnitude of the given magnetic field Bext,
we define the cyclotron frequency corresponding to ions by

ωc :=
eBext

mi
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and ω−1
c corresponds to a second time scale.

With the above introduced scales, we define the scaled variables as

v′ =
v

v
, x′ =

x

x
, t′ =

t

t
,

and the electromagnetic field as

E′(t′,x′) =
E(t,x)

E
, B(t′,x′) =

B(t,x)

B
, B′ext(t

′,x′) =
Bext(t,x)

Bext

.

Furthermore, for each species, we define the characteristic velocity and subsequently, by letting f =
n/v3,

f ′s(t
′,x′,v′) =

fs(t,x,v)

f
, s = i, e.

Inserting all these new variables into (2.1), dividing by ωp and dropping the primes for clarity, we
obtain the following dimensionless Vlasov equation

(2.4)


1

ωp t
∂tfi + v · ∇xfi +

(
E + v ×B +

ωc
ωp

v ×Bext

)
· ∇vfi = 0,

1

ωp t
∂tfe + v · ∇xfe −

mi

me

(
E + v ×B +

ωc
ωp

v ×Bext

)
· ∇vfe = 0,

while the dimensionless Maxwell equations (2.2) are scaled according to the plasma frequency of ions,

(2.5)



∇x ×E = − 1

ωp t
∂tB,

∇x ×B = Ma2

(
1

ωp t
∂tE + J

)
,

∇x ·E = ρ,

∇x ·B = 0,

where Ma = v/c is the Mach number and

(2.6) ρ = ni − ne, J = ni ui − ne ue .

To consider an asymptotic limit, we introduce a dimensionless cyclotron period of ions

ε :=
ωp
ωc
,

where ε is a small parameter and study the long time asymptotic, that is, ε = 1/(ωpt)� 1. We also
denote by α the mass ratio between electrons and ions

α :=
me

mi
.

Under these two scalings, the Vlasov equation (2.4) takes the form

(2.7)


ε ∂tfi + v · ∇xfi +

(
E + v ×B +

1

ε
v ×Bext

)
· ∇vfi = 0,

ε ∂tfe + v · ∇xfe −
1

α

(
E + v ×B +

1

ε
v ×Bext

)
· ∇vfe = 0
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and the Maxwell equations (2.5) are

(2.8)



∇x ×E = −ε ∂tB,

∇x ×B = Ma2 (ε ∂tE + J) ,

∇x ·E = ρ,

∇x ·B = 0,

with ρ and J given by (2.6).

2.2. Asymptotic limit of the Vlasov-Maxwell system. To derive an asymptotic model from
(2.7)-(2.8), let us set our assumptions

Assumption 2.1. Consider Ω ⊂ R2 and D = Ω× [0, Lz], the external magnetic filed only applies in
the z-direction

Bext = (0, 0, 1)t.

For simplicity we consider here periodic boundary conditions in space for the distribution function
and the electromagnetic field.

Assumption 2.2. The plasma is homogeneous in the direction parallel to the applied magnetic field.
Hence, the distribution functions fi and fe do not depend on z.

For any x = (x, y, z)t ∈ R3, we decompose it as x = x⊥ + x‖ according to the orthogonal and

parallel directions to the external magnetic field Bext, that is, x⊥ = (x, y, 0)t and x‖ = (0, 0, z). In

the same manner, the velocity is v = v⊥ + v‖ ∈ R3 with v⊥ = (vx, vy, 0)t and v‖ = (0, 0, vz). Under
these assumptions and notations, the Vlasov equation (2.7) can be written in the following form,

(2.9)


ε ∂tfi + v · ∇xfi + (E + v ×B) · ∇vfi +

v⊥

ε
· ∇vfi = 0,

ε ∂tfe + v · ∇xfe −
1

α
(E + v ×B) · ∇vfe −

v⊥

ε α
· ∇vfe = 0,

where v⊥ = (vy,−vx, 0) for any v ∈ R3.
Now we reformulate the Maxwell equations using Assumption 2.2. Here and after, we will drop the

subindex x for spatial derivatives of macroscopic quantities which do not depend on v, such as E and
B and their related quantities, for clarity. On the one hand, from the divergence free condition of
(2.8), we can write B = ∇x ×A, where A is a magnetic potential verifying the Coulomb’s gauge

∇x ·A = 0.

On the other hand, the electric field E is split into a longitudinal part and a transversal part E =
EL + ET , with  ∇x ×EL = 0,

∇x ·ET = 0.

From (2.8) it is easy to see that EL = −∇xΦ, where the electrical potential Φ is a solution to the
Poisson’s equation,

(2.10) −∆xΦ = ρ.

Then, from (2.8) we get that

∇x ×ET = −∂tB = −ε∇x × (∂tA),

hence using the uniqueness of the decomposition for given boundary conditions, we necessarily have,
assuming periodic boundary conditions, that ET = −ε∂tA and the electric field E is given by

(2.11) E = −∇xΦ − ε∂tA.
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Furthermore, the second equation in (2.8) gives the equation satisfied by the potential A, that is,

(2.12) (εMa)2 ∂2
ttA − ∆xA = Ma2 (J − ε ∂t∇xΦ) .

Gathering (2.10)-(2.12), we finally have E = −∇xΦ − ε ∂tA and B = ∇x ×A,

(2.13)

 (εMa)2 ∂2
ttA − ∆xA = Ma2 (J − ε ∂t∇xΦ) ,

−∆xΦ = ρ.

Now we remind the basic properties of the solution to (2.9) and (2.13)

Proposition 2.3. We consider that Assumptions 2.1 and 2.2 are verified and (f εi , f
ε
e ,Φ

ε,Aε)ε>0 is a
solution to (2.9) and (2.13). Then we have for all t ≥ 0,

‖f εs (t)‖Lp = ‖f εs (0)‖Lp , s = i, e.

Moreover we define the total energy at time t ≥ 0, as

Eε(t) :=

∫
T2×R3

[f εi (t) + α f εe (t)]
|v|2

2
dx⊥ dv +

1

2

∫
T2

[
|∇xΦ|2 + ε|∂tA|2 +

1

Ma2 |∇x ×A|2
]
dx⊥,

which is conserved for all time t ≥ 0, Eε(t) = Eε(0).

We now derive the asymptotic limit of (2.9) and (2.13) by letting ε → 0. We denote the solutions
to the above equations (2.9) and (2.13) as (f εi , f

ε
e ,A

ε,Φε), and perform Hilbert expansions for s = i, e

(2.14)


f εs = fs,0 + εfs,1 + ε2fs,2 + · · · ,

Aε = A0 + εA1 + · · · ,

Φε = Φ0 + εΦ1 + · · · ,
correspondingly

Eε = E0 + εE1 + · · · , Bε = B0 + εB1 + · · · .
We prove the following asymptotic limit

Theorem 2.4 (Formal expansion). Consider that Assumptions 2.1 and 2.2 are satisfied. Let (f εi , f
ε
e ,A

ε,Φε)
be a nonnegative solution to the Vlasov-Maxwell system (2.9) and (2.13) satisfying (2.14). Then, the
leading term (fi,0, fe,0,Φ0,A0) is such that Φ0 ≡ Φ(t,x),

A0 ≡ (0, 0, A(t,x))t.

Furthermore, we define (Fi, Fe) as

Fi(t,x, pz) =
1

2π

∫
R2

fi,0(t,x,v) dvx dvy, Fe(t,x, qz) = α−1 1

2π

∫
R2

fe,0(t,x,v) dvx dvy

where pz = vz +A(t,x) and qz = α vz −A(t,x), and the two Hamiltonians

Hi = Φ +
1

2
(A− pz)2 and He = Φ − 1

2α
(qz +A)2 ,

where (Fi, Fe,Φ, A) is a solution to the following system

(2.15)



∂tFi − ∇⊥xHi · ∇xFi = 0,

∂tFe − ∇⊥xHe · ∇xFe = 0,

−∆xΦ = ρ,

−∆xA + Ma2
(
ni +

ne
α

)
A = Ma2 Jz,
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and the density ni and ne are given by

(2.16) ns =

∫
R
Fs(t,x, rz) drz, s = i, e,

hence the charge density is ρ = ni − ne and the current density corresponds to

(2.17) Jz =

∫
R
rz

(
Fi(t,x, rz) −

1

α
Fe(t,x, rz)

)
drz,

where the Mach number Ma = v/c.

Remark 2.5. Observe that the drift velocity in (2.15) called E ×B = ∇⊥x Φ is the same for the two
species, since it does not depend on the charge of the particle.

Proof. We first start with the self-consistent electromagnetic fields, we can easily find from (2.13) that
E0 = −∇xΦ0 and B0 = ∇x ×A0 with

(2.18)


−∆xΦ0 = ρ0,

−∆xA0 = Ma2 J0,

and at the next order E1 = −∇xΦ1 − ∂tA0 and B1 = ∇x ×A1, with

(2.19)


−∆xΦ1 = ρ1,

−∆xA1 = Ma2 (J1 − ∂t∇xΦ0) ,

where for k = 0, 1,

ρk =

∫
R3

[fi,k − fe,k] dv , Jk =

∫
R3

v [ fi,k − fe,k ] dv.

Substituting the Hilbert expansions into (2.9), and comparing the orders of ε, such as ε−1, ε0 and ε,
we obtain the following three equations for ions:

(2.20)


v⊥ · ∇vfi,0 = 0,

v · ∇xfi,0 + (E0 + v ×B0) · ∇vfi,0 = −v⊥ · ∇vfi,1,

∂tfi,0 + v · ∇xfi,1 + (E0 + v ×B0) · ∇vfi,1 + (E1 + v ×B1) · ∇vfi,0 = −v⊥ · ∇vfi,2

and for electrons:

(2.21)


v⊥ · ∇vfe,0 = 0,

αv · ∇xfe,0 − (E0 + v ×B0) · ∇vfe,0 = v⊥ · ∇vfe,1,

α (∂tfe,0 + v · ∇xfe,1)− (E0 + v ×B0) · ∇vfe,1 − (E1 + v ×B1) · ∇vfe,0 = v⊥ · ∇vfe,2.

We now pass in cylindrical coordinates in velocity v = v⊥ + v‖, with

v⊥ = ω eω,

where we have set ω = |v⊥| and

eω =

cos θ
sin θ

0

 , eθ =

− sin θ
cos θ

0

 .

Using these notations, we now derive the asymptotic limit according to the orders of ε in (2.20)-(2.21).
First the leading order term in (2.20)-(2.21) written in cylindrical coordinates becomes

−∂θfs,0 = 0, s = i, e,

which means that fs,0 does not depend on θ, hence from Assumption 2.2, it yields that fs,0 ≡
fs,0(t,x⊥, ω, vz).
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As a consequence, the current density is such that

(nsus,0)⊥ :=

∫
R3

v⊥fs,0 dv =

∫
R

∫ ∞
0

fs,0

(∫ 2π

0
eωdθ

)
ω2 dω dvz = 0,

which implies that only the third component of the total current density J0 might be nonzero and
therefore only the third component of A0 in (2.18) might be nonzero, that is, A0 = (0, 0, A0) is a
solution to the Poisson’s equation with the source term J0 = (0, 0, jz)

−∆xA0 = Ma2 jz,

hence from B0 = ∇x ×A0, it yields that B0 = ∇⊥xA0 and particularly B0,z = 0.
Finally, since the electric field E0 = −∇xΦ0 and from Assumption 2.2, we also have that E0,z = 0.

Now we treat the zeroth order term in (2.20)-(2.21) and use the cylindrical coordinates in the
velocity variable, it gives

(2.22) ∂θfi,1 = eω · Gi,0, ∂θfe,1 = eω · Ge,0,

with

(2.23)

 Gi,0 = +
(
ω∇xfi,0 − (∇xΦ0 − vz∇xA0) ∂ωfi,0 − ω∇xA0 ∂vzfi,0

)
,

Ge,0 = −
(
αω∇xfe,0 + (∇xΦ0 − vz∇xA0) ∂ωfe,0 + ω∇xA0 ∂vzfe,0

)
.

First notice that Ge,0 and Gi,0 do not depend on θ ∈ (0, 2π) since f0 does not depend on θ and∫ 2π

0
eω dθ = 0,

then the solvability condition of (2.22) is automatically satisfied and after integration in θ, we obtain
f1 as,

(2.24)

 fi,1(t,x⊥, ω, θ, vz) = −eθ ·Gi,0(t,x⊥, ω, vz) + hi(t,x⊥, ω, vz),

fe,1(t,x⊥, ω, θ, vz) = −eθ ·Ge,0(t,x⊥, ω, vz) + he(t,x⊥, ω, vz),

where hi and he are arbitrary functions which do not depend on θ.
Now we focus on the first order with respect to ε in (2.20)-(2.21). Similarly, from the periodic

boundary condition in θ ∈ (0, 2π), we have the following solvability condition

1

2π

∫ 2π

0
∂θfs,2 dθ = 0 , s = i, e.

Therefore, we have
(2.25)

∂tfi,0 +
1

2π

∫ 2π

0

(
v · ∇xfi,1 + (E0 + v ×B0) · ∇vfi,1 + (E1 + v ×B1) · ∇vfi,0

)
dθ = 0,

α∂tfe,0 +
1

2π

∫ 2π

0

(
αv · ∇xfe,1 − (E0 + v ×B0) · ∇vfe,1 − (E1 + v ×B1) · ∇vfe,0

)
dθ = 0.

Each integral term can be explicitly calculated by substituting fi,1 and fe,1 from (2.24). On the one
hand, observing that  ∂ωfs,1 = −eθ · ∂ωGs,0 + ∂ωhs, s = i, e ,

∂θfs,1 = eω ·Gs,0, s = i, e ,

it yields for s = i, e,

(2.26)
1

2π

∫ 2π

0
v · ∇xfs,1 dθ = −ω

2
∇x ·G⊥s,0.
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On the other hand, the same kind of computation leads to for s = i, e,

(2.27)
1

2π

∫ 2π

0
(E0 + v ×B0) · ∇vfs,1dθ = −1

2

[
(E0 + vz∇xA0)

ω
· ∂ω

(
ωG⊥s,0

)
− ω∇xA0 · ∂vzG⊥s,0

]
.

Finally since fs,0 does not depend on θ ∈ (0, 2π) and the electric field does not depend on z, the
last term in (2.25) only gives

(2.28)
1

2π

∫ 2π

0
(E1 + v ×B1) · ∇vfs,0dθ = −∂tA0 ∂vzfs,0, s = i , e.

Gathering (2.26)-(2.28), and recalling that E0 = −∇xΦ0, we get for the distribution function fi,0,

∂tfi,0 −
ω

2
∇x ·G⊥i,0 +

1

2

(
∇x (Φ0 − vzA0)

ω
· ∂ω

(
ωG⊥i,0

)
+ ω∇xA0 · ∂vzG⊥i,0

)
− ∂tA0 ∂vzfi,0 = 0.

and for the distribution function fe,0,

α
(
∂tfe,0 −

ω

2
∇x ·G⊥e,0

)
− 1

2

(
∇x (Φ0 − vzA0)

ω
· ∂ω(ωG⊥e,0) + ω∇xA0 · ∂vzG⊥e,0

)
+ ∂tA0 ∂vzfe,0 = 0.

Using the definition of Gs,0 for s = i, e in (2.23) and after some calculations, it finally yields that

(2.29)


∂tfi,0 −∇⊥x (Φ0 − vzA0) · ∇xfi,0 −

(
∇xΦ0 · ∇⊥xA0 + ∂tA0

)
∂vzfi,0 = 0,

α
(
∂tfe,0 −∇⊥x (Φ0 − vzA0) · ∇xfe,0

)
+
(
∇xΦ0 · ∇⊥xA0 + ∂tA0

)
∂vzfe,0 = 0.

Observing that this equation does not explicitly depend on ω, we define

Fs,0(t,x⊥, vz) :=
1

2π

∫
R2

fs,0(t,x⊥,v) dvx dvy, s = i, e .

Multiplying (2.29) by ω and integrating with respect to ω, we get

(2.30)


∂tFi,0 − ∇⊥x (Φ0 − vzA0) · ∇xFi,0 −

(
∇xΦ0 · ∇⊥xA0 + ∂tA0

)
∂vzFi,0 = 0,

α
(
∂tFe,0 − ∇⊥x (Φ0 − vzA0) · ∇xFe,0

)
+
(
∇xΦ0 · ∇⊥xA0 + ∂tA0

)
∂vzFe,0 = 0.

This last equation can be reformulated to remove the time derivative of A0 in the velocity field. To
this aim, we introduce a new variable for pz = vz + A0(t,x) in Fi,0 and qz = α vz − A0(t,x) in Fe,0
and perform a change of variable in velocity

Fi(t,x⊥, pz) = Fi,0(t,x⊥, vz), Fe(t,x⊥, qz) = α−1 Fe,0(t,x⊥, vz).

From now on, we will use Φ(t,x) and A(t,x) in short of Φ0(t,x) and A0(t,x) respectively. Hence
(2.30) now becomes  ∂tFi − ∇⊥xHi · ∇xFi = 0,

∂tFe − ∇⊥xHe · ∇xFe = 0,

with

Hi = Φ +
1

2
(A− pz)2 and He = Φ − 1

2α
(A+ qz)

2 ,

where the charge density is always given by ρ = ni − ne, whereas the current density is now given by

jz = Jz −
(
ni +

ne
α

)
A,
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where (ni, ne) and Jz are respectively defined in (2.16) and (2.17). Finally, the potentials (Φ, A) are
now solutions to 

−∆xΦ = ρ,

−∆xA + Ma2
(
ni +

ne
α

)
A = Ma2Jz,

where Ma = v/c is the Mach number. �

2.3. Weak solutions for the asymptotic model. First notice that the asymptotic model (2.15)
is now two dimensional in space since we assume that the plasma is homogeneous in the parallel
direction to the external magnetic field and one dimensional in moment since we have averaged in the
orthogonal direction to the external magnetic field.

To simplify the presentation, from now on x represents the orthogonal part of x⊥ = (x, y, 0) with
(x, y) ∈ Ω.

For the sake of simplicity in the analysis we have only considered periodic boundary conditions in
space, for x ∈ Ω := (0, Lx)× (0, Ly),

(2.31)



Φ(t, x+ Lx, y) = Φ(t, x, y), Φ(t, x, y + Ly) = Φ(t, x, y),

A(t, x+ Lx, y) = A(t, x, y), A(t, x, y + Ly) = A(t, x, y),

Fi(t, x+ Lx, y, pz) = Fi(t, x, y, pz), Fi(t, x, y + Ly, pz) = Fi(t, x, y, pz), pz ∈ R,

Fe(t, x+ Lx, y, qz) = Fe(t, x, y, qz), Fe(t, x, y + Ly, qz) = Fe(t, x, y, qz), qz ∈ R.
But other kinds of boundary conditions may be treated for the asymptotic model as homogeneous
Dirichlet boundary conditions for the potential Φ and A

(2.32) Φ(t,x) = 0, A(t,x) = 0, x ∈ ∂Ω.

Then let us review the main features of the asymptotic model (2.15), which make this mathematical
model consistent with the initial Vlasov-Maxwell model (2.9) and (2.13).

Proposition 2.6. Consider a solution to the asymptotic model (2.15) with the boundary conditions
(2.31), or (2.32), or a combination of both, then it satisfies

• the flow remains incompressible ;
• for any m > 1, we have conservation of moments in velocity, for any time t ≥ 0,

(2.33)

∫
Ω×R
|rz|m Fs(t,x, rz) drz dx =

∫
Ω×R
|rz|m Fs(0,x, rz) drz dx , s = i, e ;

• for any continuous function φ : R 7→ R, we have for any time t ≥ 0,

(2.34)

∫
Ω

∫
R
φ(Fs(t,x, rz))dx drz =

∫
Ω

∫
R
φ(Fs(0,x, rz))dx drz , s = i, e ;

• the total energy defined by

(2.35) E(t) :=

∫
R

∫
Ω

|rz −A|2

2
Fi +

|rz +A|2

2α
Fedx drz +

1

2

∫
Ω
|∇xΦ|2 +

1

Ma2 |∇xA|2 dx,

is conserved for all time t ≥ 0.

Proof. The velocity field in (2.15) can be written as

Us(t,x, pz) = −∇⊥xHs, s = e, i,

hence ∇x ·Us = 0 is automatically satisfied and the flow is incompressible.
Then observing that the variable rz ∈ R only appears as a parameter in the equation, we prove the

conservation of moments with respect to rz : for any m > 1 we have for s = i, e,∫
Ω×R
|rz|m Fs(t,x, rz) drz dx =

∫
Ω×R
|rz|m F (0,x, rz) drz dx .
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For a given smooth function φ : R 7→ R and s = i, e, if we multiply the first equation in (2.15) by
φ′(Fs), it becomes

∂tφ(Fs) +∇x · (Us φ(Fs)) = 0.

Integrating the above equation in space Ω we obtain

∂

∂t

∫
Ω
φ(Fs)dx = −

∫
∂Ω
φ(Fs) Us(t,x, rz) · νxdσx,

where νx is the outward normal to ∂Ω at x. Now for periodic boundary conditions (2.31), the right
hand side is obviously zero, and for homogeneous Dirichlet boundary conditions (2.32), we observe
that the tangential derivatives verify ∇xΦ · τx = ∇xA · τx = 0, where τx is the tangential vector to ∂Ω
at x. Hence since

Us · νx = 0, on x ∈ ∂Ω,

the right hand side is also zero in that case. Finally a further integration on rz shows that

(2.36)
d

dt

∫
Ω

∫
rz

φ(Fs)drzdx = 0

or ∫
Ω

∫
pz

φ(Fs(t))drzdx =

∫
Ω

∫
R
φ(Fs(0))drzdx, t ≥ 0.

Notice that this result still holds true when φ is only continuous. Taking φ(F ) = F , it ensures the
conservation of mass, φ(Fs) = max(0, Fs) gives the non-negativity of the distribution function for
nonnegative initial datum, while φ(Fs) = F ps for 1 ≤ p <∞, it yields the conservation of Lp norm.

Now let us show the conservation of total energy. On the one hand, we multiply the equation on Fi
by Hi and the one on Fe by He, it gives after a simple integration by part and using the appropriate
boundary conditions (2.31) or (2.32),∫

Ω×R
Hi ∂tFi + He ∂tFe dx drz = 0.

or

(2.37)

∫
Ω×R

(A− rz)2

2
∂tFi +

(A+ rz)
2

2α
∂tFe dx drz +

∫
Ω×R

∂t(ni − ne) Φ dx = 0.

The first and second terms in the latter equality can be written as
I1 :=

∫
Ω×R

(A− rz)2

2
∂tFi dx drz =

d

dt

∫
Ω×R

(A− rz)2

2
Fi dx drz −

∫
Ω

(niA− ni ui) ∂tAdx

I2 :=

∫
Ω×R

(A+ rz)
2

2α
∂tFe dx drz =

d

dt

∫
Ω×R

(A+ rz)
2

2α
Fe dx drz −

1

α

∫
Ω

(neA+ ne ue) ∂tAdx,

which yields using the equation on A in (2.15),

I1 + I2 =
d

dt

∫
Ω×R

[
(A− rz)2

2
Fi +

(A+ rz)
2

2α
Fe

]
dx drz +

1

2 Ma2

d

dt

∫
Ω
|∇xA|2dx.

On the other hand, from the equation on Φ in (2.15), we get

I3 :=

∫
Ω×R

∂t(ni − ne) Φ dx =
1

2

d

dt

∫
Ω
|∇xΦ|2dx.

Finally, using that I1 + I2 + I3 = 0 in (2.37), we obtain the energy conservation (2.35). �

From the conservation of moments (Proposition 2.6), we get Lp estimates [5] on the macroscopic
quantities
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Lemma 2.7. If F ∈ L1 ∩ L∞(Ω× R) and |rz|mF ∈ L1(Ω× R) with 0 ≤ m <∞, then we define

nF =

∫
R
Fdrz, nuF =

∫
R
F rz drz, eF =

∫
R
F |rz|2 drz

and there exists C > 0 such that

‖nF ‖L1+m ≤ C ‖F‖m/(m+1)
L∞

(∫
Ω×R
|rz|m |F |drz dx

)1/(m+1)

and 
‖nuF ‖L(1+m)/2 ≤ C ‖F‖(m−1)/(m+1)

L∞

(∫
Ω×R
|rz|m |F |drz dx

)2/(m+1)

,

‖eF ‖L(1+m)/3 ≤ C ‖F‖(m−2)/(m+1)
L∞

(∫
Ω×R
|rz|m |F |drz dx

)3/(m+1)

.

From Proposition 2.6 and Lemma 2.7 we can prove the existence of weak solutions to (2.15)

Theorem 2.8 (Existence of weak solutions). Assume that the nonnegative initial condition Fs,in ∈
L1 ∩ L∞(Ω× R) for s = i, e and for any m > 5

(2.38)

∫
Ω×R
|rz|mFs(0,x, rz)drz dx <∞.

Then, there exists a weak solution (Fi, Fe,Φ, A) to (2.15), with Fi, Fe ∈ L∞(R+, L1 ∩ L∞(Ω × R)),

and Φ, A ∈ L∞(R+,W 1,p
0 (Ω)), for any p > 1.

Proof. The proof follows the lines of the existence of weak solutions for the Vlasov-Poisson system
[2, 13]. The main point here is to get enough compactness on the potential A since its equation is
nonlinear

−∆xA + Ma2
(
ni +

ne
α

)
A = Ma2Jz.

From (2.38) and Proposition 2.6, we first get the conservation of moments for any l ∈ (0,m] and
s = i, e ∫

Ω×R
|rz|l Fs(t)drz dx =

∫
Ω×R
|rz|l Fs,indrz dx <∞,

hence applying Lemma 2.7, it yields that for any r ∈ [1,m+ 1] and q ∈ [1, (m+ 1)/2]

ρ = ni − ne ∈ L∞(R+, Lr(Ω)), Jz ∈ L∞(R+, Lq(Ω)).

Thus, from the elliptic equations in (2.15) for A and Φ,
−∆xΦ = ρ,

−∆xA + Ma2
(
ni +

ne
α

)
A = Ma2Jz,

it yields

∇xΦ ∈ L∞(R+,W 1,r
0 (Ω)), ∇xA ∈ L∞(R+,W 1,q

0 (Ω)).

Since we can choose r and q > 2, using classical Sobolev inequalities, we have in particular that both
∇xΦ and ∇xA are uniformly bounded in L∞(R+ × Ω).

Furthermore, we obtain an estimate on the time derivative ∂t∇xΦ and ∂t∇xA by differentiating
with respect to the two Poisson equations in (2.15)

−∆x∂tΦ = ∂tρ,

−∆x∂tA+ Ma2
(
ni +

ne
α

)
∂tA = Ma2 ∂tJz −Ma2

(
∂tni +

∂tne
α

)
A.
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Then using the evolution equation satisfied by ρ and Jz
∂tρ = ∇x ·

(
ρ∇⊥x Φ +

(
ni +

ne
α

) ∇⊥xA2

2
− ∇⊥xAJz

)
,

∂tJz = ∇x ·
(
Jz∇⊥x Φ +

(
niui +

neue
α2

) ∇⊥xA2

2
− ∇⊥xA

(
ei −

ee
α2

))
,

where es corresponds to the second order moment in rz,

es(t,x) =

∫
R
Fs(t) |rz|2 drz, for s = i, e

and applying Lemma 2.7, we have that ei, ee ∈ L∞(R+, L2(Ω)), hence both terms ∂t∇xA and ∂t∇xΦ
are uniformly bounded L∞(R+, L2(Ω)).

From these estimates, we get strong compactness on the electromagnetic field E = −∇xΦ and
B = ∇x × A in L2 and weak compactness in L2 allowing to treat the nonlinear terms and prove
existence of weak solutions for (2.15). �

Remark 2.9. Observing that starting from (2.15), and taking the limit Ma → 0, it gives from the
Poisson’s equation that A = 0. Then we integrate (2.15) in rz ∈ R and we recover the two dimensional
guiding-center model [21, 36, 29]

(2.39)

 ∂tρ+∇x · (U ρ) = 0,

−∆xΦ = ρ,

with the divergence free velocity U = −∇⊥x Φ.

2.4. Guiding center model & linear instability. To study the growth rate of the linear insta-
bility for our asymptotic model (2.15), we follow the classical linearization procedure: consider an
equilibrium solution (Fi,0, Fe,0,Φ0, A0) to (2.15) and assume that

(2.40)

∫
R
rz Fi,0 drz =

∫
R
rz Fe,0 drz = 0.

Therefore the potential A0 satisfies a linear Poisson equation with a null source term together with
periodic boundary condition or zero Dirichlet boundary conditions, which means that A0 ≡ 0.

Now we consider (Fi, Fe,Φ, A) a solution to the nonlinear system ((2.15)) and decompose it as the
sum of the equilibrium (Fi,0, Fe,0,Φ0, 0) and a perturbation (F ′i , F

′
e,Φ

′, A′) ,

Fi = Fi,0 + F ′i , Fe = Fe,0 + F ′e, ρ = ρ0 + ρ′, Φ = Φ0 + Φ′, A = A′.

Then we substitute them into (2.15) and drop the high order small perturbation terms, a linearized
system is obtained as follows:

(2.41)



∂tF
′
i − ∇⊥x Φ0 · ∇xF

′
i −∇⊥x

(
Φ′ − pzA′

)
· ∇xFi,0 = 0,

∂tF
′
e − ∇⊥x Φ0 · ∇xF

′
e −∇⊥x

(
Φ′ − qz

α
A′
)
· ∇xFe,0 = 0,

−∆xΦ′ = ρ′,

−∆xA
′ + Ma2

(
ni,0 +

ne,0
α

)
A′ = Ma2 J ′z := Ma2

∫
R
rz

(
F ′i −

F ′e
α

)
drz.

Now we integrate the first equation in pz ∈ R and the second one in qz ∈ R and using (2.40), we get
a linearized system for the perturbed charge density

(2.42)

 ∂tρ
′ − ∇⊥x Φ0 · ∇xρ

′ −∇⊥x Φ′ · ∇xρ0 = 0,

−∆xΦ′ = ρ′,

which is exactly the linearized system for the two dimensional guiding-center model (2.39).
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Therefore, from an equilibrium (ρ0,Φ0) for the guiding-center model (2.39), we can easily construct
an equilibrium for (2.15) by choosing Fs,0 such that it satisfies (2.40) and

(2.43)

∫
R
Fs,0 drz = ns,0, for s = i, e.

where ns,0 is the equilibrium density satisfying ρ0 = ni,0 − ne,0. For instance, we can choose

Fs,0 =
ns,0√

2π
exp

(
−r

2
z

2

)
.

In terms of the electric charge density ρ and potential Φ, our asymptotic model has the same
mechanism for generating instabilities as the two dimensional guiding-center model, so that the growth
rate of instabilities for the electric field will be the same. We can refer to [33, 29, 11] for the analytical
and numerical studies of the two dimensional guiding-center model. In the next section, we will
numerically verify that the linear growth rates of instabilities for the electric potential of the two
models are the same.

From this point, we observe that by choosing a nonzero initial potential A, that is a small cur-
rent density Jz, we can initiate an instability on the asymptotic model (2.15), whereas the purely
electrostatic guiding center model remains stationary.

Remark 2.10. We would notice that for the distribution function Fi or Fe, due to the extra term of
∇⊥x (pzA

′) ·∇xFi,0 and ∇⊥x (qzA
′/α) ·∇xFe,0 in the first two equations of (2.41), some other instabilities

might also happen to F ′i or F ′e, which is much more complicated to analyze.

3. Numerical scheme

In this section, we will describe a high order numerical scheme for solving the asymptotic kinetic
model (2.15), which depends on (x, pz) or (x, qz) and time t. We will apply a conservative finite
difference scheme with Hermite weighted essentially non-oscillatory (WENO) reconstruction for solving
the conservative transport equations. The Poisson’s equation for the electric potential function Φ will
be solved by a 5-point central finite difference discretization for Dirichlet boundary conditions, or by the
fast Fourier transform (FFT) for periodic boundary conditions on a rectangular domain. The elliptic
equation for the magnetic potential A is solved by a 5-point central finite difference discretization. The
methods described here are natural extensions of those proposed in [36] for solving the two dimensional
guiding-center model (2.39), which we will also adopt here for comparison in the numerical tests. In
the following, we will briefly review these methods and explicitly mention the main differences, we
refer to [36] for more details. Besides, since some instability problems and the linear growth rates will
be numerically studied in the next section, at the end of this section, we will linearize the asymptotic
kinetic model (2.15) and build a link to the two dimensional guiding-center model (2.39) as is analyzed
in [33].

3.1. Hermite WENO finite difference scheme for the transport equation. We consider the
transport equation for ions in a conservative form

∂tFi +∇x · (UiFi) = 0,

with Fi = Fi(t,x, pz) and Ui = Ui(t,x, pz), first in the moment pz direction we consider a cut-off
domain of Ωc = [−Vc, Vc], where Vc is large enough so that Fi outside it is nearly zero. We take a
uniform discretization with Nc grid points on Ωc. Since pz in Fi is a dummy argument, on each fixed
pz the transport equation can be taken as a 2d problem on x. A finite difference scheme for the two
dimensional transport equation is applied dimension by dimension, similarly for the transport equation
of the electrons. In the following we will only need to describe a Hermite WENO reconstruction for a
1d transport equation.

Let us consider a prototype 1d conservative transport equation

(3.1) ft + (uf)x = 0,
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with velocity u = u(t, x). We assume a uniform discretization of the computational domain [xmin, xmax]
with Nx grid points

xmin = x0 < x1 < · · · < xNx−2 < xNx−1 = xmax,

where the mesh size is ∆x = xk+1 − xk for 0 ≤ k < Nx. A conservative finite difference scheme for
(3.1) can be written as

fn+1
i = fni −

∆t

∆x

(
ĥi+ 1

2
− ĥi− 1

2

)
,

where ∆t = tn+1 − tn and fni is the numerical point value at time level tn on the grid point xi. ĥi+ 1
2

is an upwind numerical flux, which is defined as

ĥi+ 1
2

=

h
−
i+ 1

2

, if
uni +uni+1

2 > 0,

h+
i+ 1

2

, otherwise .

h±
i+ 1

2

are the fluxes reconstructed from {hni = uni f
n
i }i by a Hermite WENO reconstruction, from the

left and right sides of xi+ 1
2

respectively. uni is the numerical velocity approximating u(tn, xi).

In this paper, we adopt a fifth order Hermite WENO reconstruction to compute h−
i+ 1

2

. The procedure

is outlined as follows. h+
i+ 1

2

can be obtained in mirror symmetric with respect to xi+ 1
2
. For simplicity,

we drop the superscript n for hni and we have

h−
i+ 1

2

= ωlhl(xi+ 1
2
) + ωchc(xi+ 1

2
) + ωrhr(xi+ 1

2
).

The three polynomials hl(x), hc(x) and hr(x) evaluating at xi+ 1
2

are

hl(xi+ 1
2
) = −2hi−1+2hi+G

′
i− 3

2

, hc(xi+ 1
2
) =
−hi−1 + 5hi + 2hi+1

6
, hr(xi+ 1

2
) =

hi + 5hi+1 − 2G′
i+ 3

2

4
.

The derivative of the primitive function G′
i+ 1

2

is given by a 6th order central difference approximation

G′
i+ 1

2

=
1

60

[
(hi+3 − hi−2)− 8(hi+2 − hi−1) + 37(hi+1 − hi)

]
.

ωl, ωc and ωr are the nonlinear WENO weights and determined according to the smoothness indicators

ωk =
αk

αl + αc + αr
, αk =

ck
(ε+ βk)2

, k = l, c, r.

The linear coefficients are cl = 1/9 and cc = cr = 4/9, and the small parameter ε = 10−6 is to avoid
the denominator to be 0.

To evaluate the smooth indicators βl, βc and βr, we would note that here we measure them on the
cell [xi− 1

2
, xi+ 1

2
] instead of [xi, xi+1] as in [36]. In this way, the smooth indicators are symmetric with

respect to xi, as we can see below:

βl =

∫ x
i+1

2

x
i− 1

2

∆x(h′l(x))2 + ∆x3(h′′l (x))2dx

=
13

16
s2

1 +
3

16
(s1 − 4s2)2, with s1 = hi−1 − hi, s2 = −3hi−1 + h0 +G′

i− 3
2

,

βc =

∫ x
i+1

2

x
i− 1

2

∆x(h′c(x))2 + ∆x3(h′′c (x))2dx

=
1

4
s2

1 +
13

12
s2

2, with s1 = hi+1 − hi−1, s2 = hi+1 − 2h0 + hi−1,

βr =

∫ x
i+1

2

x
i− 1

2

∆x(h′r(x))2 + ∆x3(h′′r(x))2dx

=
13

16
s2

1 +
3

16
(s1 − 4s2)2, with s1 = hi+1 − hi, s2 = −3hi+1 + h0 +G′

i+ 3
2

.
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Remark 3.1. For the two dimensional transport equation with Dirichlet boundary conditions, and/or
if the physical domain is not rectangular, e.g. a disk, an inverse Lax-Wendroff method [17] can be
used to deal with the curved boundary conditions inside a larger rectangular computational domain.

3.2. Discretization of the elliptic equations. There are two elliptic equations in (2.15): one is
the Poisson’s equation for the electric potential Φ, the other is the Poisson’s equation with another
quasilinear term Ma2

(
ni + ne

α

)
A for the magnetic potential A. For the Poisson’s equation of the

electric potential Φ, if it is defined on a rectangular domain with periodic boundary conditions, it can
be easily solved by FFT. Otherwise, a classic 5-point central finite difference approximation is used
to discretize the Laplacian operator. For the elliptic equation of the magnetic potential A, since the
quasilinear term has the coefficient Ma2

(
ni + ne

α

)
A which depends on x, FFT is not available, we will

always use the 5-point central finite difference approximation. We notice that Ma2
(
ni + ne

α

)
is always

positive to ensure a positive definite mass matrix. Here the density ns defined in (2.16) and current
density Jz in (2.17), are integrated by a mid-point rule with spectral accuracy [6].

For a problem with curved physical boundary, e.g., a disk, some points of the 5-point discretization
of the Laplacian operator near the boundary might not always be available. The method developed
for the two dimensional guiding-center model in [36] can be used here. The main idea is that if a
grid point xg is outside of the interior domain, it is extrapolated by some interior points xh and x2h

along the normal direction going through xg (see Fig. 6 in [36]). These interior points are selected
with equal distance h = min(∆x,∆y), starting from the cross point of the normal vector and the
physical boundary at xp, that is h = |xp − xh| = |xh − x2h|. Then the interior points xh and x2h are
interpolated by a Lagrangian polynomial reconstructed from 9 nearest points, which are adjacent to
the cross points of the normal vector with the grid lines around xh and x2h. For some wild geometries,
if 9 points are not all available, we turn to use lower order Lagrangian polynomials with four points
or even one point.

4. Numerical Examples

In this section, several numerical tests are performed to illustrate the properties of the the as-
ymptotic kinetic model (2.15) involving a self-consistent electromagnetic field and to compare the
results with those obtained with the macroscopic guiding-center model (2.39) taking into account only
electrostatic effects [36, 29]. The scheme described in the above section coupled with a fourth-order
Runge-Kutta scheme for the time discretization is adopted. Three examples are considered: a linear
equation with prescribed electromagnetic field, the diocotron instability problem and the Kelvin-
Helmholtz instability problem. We mainly show that the new asymptotic model (2.15) can generate
the same instability as the two dimensional guiding-center model (2.39), while some other instabilities
can also be created due to some small perturbations purely in the self-consistent magnetic field.

In the following, for the asymptotic kinetic model (2.15), we all take the cut-off domain in velocity
as [−8, 8] and discretize it with N = 32 uniform grid points.

4.1. Linear equation. In the first example, we consider a problem with a given electromagnetic field
E ≡ −∇xΦ(x) and B = ∇x ×A(x), hence we set the Hamiltonian

H = Φ +
1

2
(A− pz)2

and the distribution function F ≡ F (t,x, pz) is a solution to

(4.1) ∂tF −∇⊥xH · ∇xF = 0,

which is supplemented by an initial data F0 and periodic boundary conditions in x. Moreover, both
potentials Φ and A are prescribed so that the velocity field is given and does not depend on time.

The initial distribution function F is chosen as

(4.2) F0(x, pz) =
n0(x)√

2π
exp

(
−(pz − u0(x))2

2

)
,
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with n0(x) = sin(y) set on a square [0, 4π]× [0, 2π] and a shift u0(x) in the pz direction as

(4.3) u0(x) = − cos
(x

2

)
.

Furthermore the magnetic potential is chosen to be A = −0.05 sin(x/2), which induces a drift in the
y direction, whereas the electric potential is Φ = sin(y), which generates a drift in the x direction.

Observe that with such a choice, (n0,Φ) is an exact solution to the stationary linear guiding center
model

(4.4) −∇⊥x Φ · ∇xn = 0,

but not to the linear kinetic model (4.1) due to the drift u0 and the magnetic potential A.
This numerical test illustrates that even a small magnetic potential A may generate a drift and

oscillations in space which cannot be observed on the purely electrostatic case when we neglect the
magnetic field generated by the potential A.

On the one hand, we present in Figure 4.1 the numerical results corresponding to (4.1) with a grid
Nx ×Ny = 256× 256. Due to the effect of the drift from the magnetic field A, we can observe highly
oscillatory solutions in the y direction on the density n given by

n(t,x) =

∫
R
F (t,x, pz)dpz.

It is worth to mention here that no oscillation occurs when the magnetic potential A is set to be zero.
We also observe that since Φ and A do not depend on time, the total energy defined in (2.35)

corresponding to the Hamiltonian H, is still conserved with respect to time and all Lp norms are also
conserved. In Figure 4.2, we show the time evolution of the relative error for the total energy (2.35),
the L2 norm of F . For this linear problem, these quantities are preserved well and the minimum
bound of F is also strictly maintained.

4.2. Diocotron instability. We set

H = Φ +
1

2
(A− pz)2

and consider the nonlinear asymptotic model (2.15) where the density of electrons is neglected and
the reduced distribution function of ions is denoted by F and is a solution to

(4.5)


∂tF −∇⊥xH · ∇xF = 0,

−∆Φ = n,

−∆A + Ma2 nA = Ma2 Jz,

where

n =

∫
R
F (t) dpz, Jz =

∫
R
F (t)pz dpz.

This solution can be compared to the two dimensional guiding center model (2.39), where we neglect
the effect of the self-consistent magnetic field B = ∇x × A, corresponding to the low Mach number
limit Ma→ 0 of (4.5), it yields

(4.6)

 ∂tn−∇⊥x Φ · ∇xn = 0,

−∆Φ = n.

In this example, we choose Ma = 0.1 and we would like to verify that the asymptotic kinetic model
(4.5) has indeed the same instability on the density n as compared to the two dimensional guiding-
center model (4.6). We choose a discontinuous initial density n0 which is linearly unstable [11, 29].
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Figure 4.1. Linear equation. The density n with a given electromagnetic field for
the 2d × 1d asymptotic model (2.15). From left to right, top to bottom: t =
40, 60, 80, 100.

Therefore, we consider Ω as a ball centered in 0 of radius R = 10 with the initial density

(4.7) n0(x) =

{
1 + ε cos(lθ), if r− ≤

√
x2 + y2 ≤ r+,

0, else,

where ε = 0.02, l = 3, r− = 3, r+ = 5, which will create a small instability for the two-dimensional
model (4.6).

Now for the asymptotic model (4.5), we still consider the same density n0 as an initial data, but
introduce an additional perturbation on the moment pz by choosing

(4.8) F0(x, pz) =
n0(x)√

2π
exp

(
−( pz − u0(x) )2

2

)
.
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(a) (b)

Figure 4.2. Linear equation. Time evolution of the relative error of the total energy
(2.35), the L2 norm of F for the 2d× 1d asymptotic model (2.15).

with u0 = δ cos(mθ), where θ = atan2(y, x), δ = 0.1, m = 3. It is expected that the instability will
now be driven by the perturbation on the density n0 corresponding to the mode l = 3 but also by the
perturbation on the current density Jz due to u0 corresponding to the mode m = 3.

In Figure 4.3, we can clearly see three vortexes are formed at t = 40, which is the same as the
diocotron instability for the two dimensional guiding-center model (4.6) and agrees with the linear
instability analysis in Section 2.4. At t = 60, 80, 100, these vortexes continue moving and start to mix
with each other. Here the grid is Nx×Ny = 600× 600. However, we would notice that for the current
density Jz, as shown in Figure 4.4, we can also observe three vortexes, which might be caused by the
perturbation on the moment pz from the self-consistent magnetic field which are different from the
instabilities of the density n.

In Figure 4.5, we show the time evolution of the L∞ norm for the difference of the electrical potential
‖Φ(t)− Φ(0)‖L∞ and ‖A(t)‖L∞ , on the grids of Nx ×Ny = 600× 600 and Nx ×Ny = 300× 300. We
can see convergent results. Especially an exponential growth rate on ‖Φ(t)−Φ(0)‖L∞ can be observed
for t < 50, while the magnitude of the self-consistent magnetic field A is at the level of 10−4. We
measure the growth rate for ‖Φ(t)− Φ(0)‖L∞ by taking the time interval [10, 30], so the growth rate
is about 0.0999. The growth rate from a linear instability analysis based on the formula (6.38)-(6.42)
in [11] with ωD = 1/2, is about 0.1051. These two growth rates agree with each other very well.

We also note that for this example, the dominating instability would be caused by the perturbation
on the initial density n0. Numerically we observe the exponential growth rate of ‖Φ(t)−Φ(0)‖L∞ for
the two dimensional guiding center model is almost the same as the asymptotic model and we omit
them in Figure 4.5 for clarity.

Then we show the time evolution of the relative difference for the total energy (2.35), the L2 norm
of F in Figure 4.6, on the grids of Nx ×Ny = 600× 600 and Nx ×Ny = 300× 300. These quantities
are preserved relatively well and the total energy can be greatly improved by mesh refinement.
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Figure 4.3. Diocotron instability. The density n for the 2d×1d asymptotic model
(2.15). From left to right, top to bottom: t = 40, 60, 80, 100.

4.3. Kelvin-Helmholtz instability. In this example, we consider a plasma for ions with a neutral
background. The distribution function F of the asymptotic model (4.5) for the ions is a solution to
the following system

(4.9)



∂tF −∇⊥x
(

Φ +
A2

2
− pzA

)
· ∇xF = 0,

−∆xΦ = ρ := n− ne,

−∆xA + Ma2
(
n+

ne
α

)
A = Ma2Jz,
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Figure 4.4. Diocotron instability. The current density Jz for the 2d× 1d asymp-
totic model (2.15). From left to right, top to bottom: t = 40, 60, 80, 100.

with α = 1/1836.5 which corresponds to the mass ratio of one electron and one proton. The current
density is

Jz =

∫
R
F (t)pzdpz

and we choose the initial density n for the ions to be

(4.10) n0(x) = 2 + sin y,

while for the electrons, we fix it with ne = 2 so that the spatial average of the total charge density
ρ = n− ne. We take the initial distribution function F of the ions as

(4.11) F0(x, pz) =
n0(x)√

2π
exp

(
−(pz − u0(x))2

2

)
,
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(a) (b)

Figure 4.5. Diocotron instability. Time evolution of the norm ‖Φ(t) − Φ(0)‖L∞
and ‖A(t)−A(0)‖L∞ for the 2d× 1d asymptotic model (2.15).

(a) (b)

Figure 4.6. Diocotron instability. Time evolution of the relative error of the total
energy (2.35), the L2 norm of F for the 2d× 1d asymptotic model (2.15).

where the shifted velocity u0(x) is

(4.12) u0(x) = −0.01
(

sin
(x

2

)
− cos(y)

)
,

which contributes as a small perturbation in the pz direction and its corresponding initial current
density Jz will be small but nonzero. The distribution function of the electrons Fe is set to be at an
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equilibrium as

Fe := Fe(qz) =
ne√
2π

exp

(
−q

2
z

2

)
,

so that
∫
R Fe(rz)rzdrz = 0 and it does not contribute to the total current Jz in the equation of (2.17)

for the magnetic potential A. Similarly if we neglect the effect of the self-consistent magnetic field
B, which corresponds to the low Mach limit Ma → 0 of (4.9), it yields the two-dimensional guiding
center model in the following form

(4.13)

 ∂tn−∇⊥x Φ · ∇xn = 0,

−∆Φ = n− ne.

The computational domain is in a square [0, 4π]× [0, 2π] with periodic boundary conditions and the
Mach number in (4.9) is taken to be Ma = 0.1.

Here we see that without perturbation on the initial data (4.10), the density n of the 2d guiding-
center model (4.13) is a the steady state n(t,x) = sin(y). Furthermore, when we choose u0 ≡ 0, the
solution is a steady state for both models (4.13) and (4.9) and remains stable on the time interval
[0, 100]. However, for the asymptotic model (4.9) with a non zero u0 as (4.12), due to the effect of the
self-consistent magnetic field A and a small nonzero current Jz, we observe in Figure 4.7 that some
instabilities are created on the density n at t = 40, 60, 80, 100. Here the grid is Nx ×Ny = 256× 256.
These instabilities are very similar to the Kelvin-Helmholtz instability for the 2d guiding-center model
(4.13) as compared to Figure 9 in [18], which do not happen on the current settings. Moreover,
these instability structures can also be observed on the current density Jz as shown in Figure 4.8,
which greatly indicate the capability of the self-consistent magnetic field as another source on the
development of physical instabilities.

For the 2d×1d asymptotic model, in Figure 4.9 we show the time evolution of the L∞ norm for the
difference of the electrical potential ‖Φ(t)−Φ(0)‖L∞ and ‖A(t)‖L∞ , on the grids of Nx×Ny = 256×256
and Nx×Ny = 128× 128. The results are also convergent and an exponential growth rate is observed
for ‖Φ(t) − Φ(0)‖L∞ for t < 65, which explicitly demonstrates the instabilities caused by the small
current density Jz on the self-consistent magnetic field A, even we notice that the magnitude of A is
overall getting smaller as shown on the right side of Figure 4.9. Here we are also able to measure the
growth rate for ‖Φ(t)−Φ(0)‖L∞ by taking the time interval [20, 40], the growth rate is about 0.2606,
which is very close to the growth rate from the numerical predicted value 0.26 in [33] (see Figure 1
with ky = 0.5 and kys = 1) for the two dimensional nonlinear guiding-center model, which indicates
that the instability for these two models might be similar.

We show the time evolution of the relative difference for the total energy (2.35), the L2 norm of F
in Figure 4.10, on the grids of Nx ×Ny = 256× 256 and Nx ×Ny = 128× 128. These quantities are
preserved well, which are similar to the last example.

5. Conclusion

In this paper, an asymptotic kinetic model is derived from a 2d × 3d Vlasov-Maxwell system, by
taking into account of the self-consistent magnetic field. We have assumed both a large applied
magnetic field and large time in the asymptotic limit. The new asymptotic model could validate
some effect on the dynamics of the plasma from the self-consistent magnetic field, even if initially
the current is small, as compared to the two dimensional guiding-center model for the Vlasov-Poisson
system. Numerical examples demonstrate the good properties of our new model.
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Figure 4.7. Kelvin-Helmholtz instability. The density n for the 2d× 1d asymp-
totic model (4.9). From left to right, top to bottom: t = 40, 60, 80, 100.
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Figure 4.8. Kelvin-Helmholtz instability. The current density Jz for the 2d× 1d
asymptotic model (4.9). From left to right, top to bottom: t = 40, 60, 80, 100.
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