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The anisotropy of a passive scalar field at the level of second-order moments of the scalar
derivatives is studied starting from the exact equations for the components of the second-rank tensor
£ defined by&;=2D(d6'/9x;)(960'/9x;) (D is the molecular diffusivity of scalag). Analysis
requires also the equations for the components of a mixed tensor defined by the correlations between
scalar and velocity gradients. After the examination of this set of equations, it is conjectured that,
in the case of forcing by a mean scalar gradient in isotropic turbulence, the anisotropy of&ensor

is produced by cliffs of temperature occurring in the direction of the mean gradient. A model for this
mechanism is proposed including possible indirect influence of shear through the large-scale
anisotropy of the scalar field. Predictions in the situation where a mean scalar gradient is combined
with homogeneous shear agree tolerably well with experimental data. This suggests that the
proposed picture describing production of small-scale anisotropy implied by mean gradient forcing
has to be completed. @000 American Institute of Physid$$1070-663(100)50609-4

I. INTRODUCTION of higher order correlations between gradients whichare
priori not free from anisotropic effects. Thereby, the study is

Investigating contamination of small scales by large-based partly on the analysis of exact equations, partly on
scale features such as anisotropic forcing is akin to the efmodeling. After the general equations are giv&ec. ),
forts made for testing the concepts introduced in Kolmogor-analysis in the case of forcing by a scalar gradient applied in
ov's theory. In this respect, the passive scalar has becomeisotropic turbulence is undertaké¢8ec. ll); a mechanism is
subject of growing interest since local isotropy of scalarput forward for explaining anisotropy of tens& in this
fields in shear flows has been seriously questidie@The  situation and a model is subsequently devised. An algebraic
relevance of this problem has furthermore been confirmed bynodeling of the components ¢F is also proposedSec. 1V).
experiments showing that, in isotropic turbulence, forcing byFinally, the case of forcing by combined scalar gradient and
a mean scalar gradient results in a small-scale anisotropy shear is considered; comparisons of model predictions with
the scalar field which persists when Reynolds number igxperimental data are reported and discusSet. \j.
increased:®

A measure of the fine-scale anisotropy of the scalar field
can be derived from various criteria among which are the
value of the derivative skewness and refined tests such as
checking to what extent the derivative spectra agree withl. GENERAL EQUATIONS
theirgtheqretical, isot_ropic expression#\s shown by Van A. Scalar gradients correlations
Atta,” anisotropy estimated through second-order moments
of scalar derivatives is not inconsistent with isotropy at the A second-rank tensog, is defined as
smallest scales since departures from isotropy measured in
this way may be explained by anisotropy at the low-wave- a6' 96’
number end of the gradient spectra. Possible contamination ~ij :ZDW’
of the scalar field at this level, however, deserves investiga- P

tion at least with regard to the question of the validity of\\herep is the molecular diffusivity of the scalar quantit,
isotropy arguments which are set forth in some scalar disSirpg gyerbar denotes Reynolds averaging and prime fluctuat-

pation measurements and models. ing quantities. The components &fhave the dimension of

The present work is focused on the anisotropy felt by &5\ar variance dissipation; the mean dissipation rate of the

passive scalar field at the level of dissipation as a CONSE&s.a|ar fluctuations energ_’2/2 is nothing but the half trace
guence of forcing by mean gradients. The set of exact equa; L

i for th s of tensasand 7 defined f & €y=E,,/2. The equation fok;; is derived from the
!ons or the components ot tensatsan elined, reSpec- ;i stantaneous convection-diffusion equation tbwith the
tlvely, by £|]:2D((90//(?X|)((90,/&X1) and ‘ﬁ.ljk

assumptions of incompressibility and constant diffusivity.
=D(96'/9x;)(duy/dx;) is considered with intent to bring The procedure is quite standard and is not reported here.
out the influence of large-scale forcing. The task is delicatdDropping transport termé&vhich is justified in the homoge-

in that these equations include not only terms expressingeous situations which will be considered in the following
direct action of forcing but also unclosed terms in the formand in the limit of large Reynolds and &et numbers:
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d&; au,, c au, i F 4T a§+8
dt - ia &XJ j &Xi ( ija jia)axa ]
Dy (1)

In Eqg. (1), u; is theith component of the velocity vectaf;
are the components of a mixed tensor:
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dFp auy ls*l a6 - au,
dt | iagy,  2°¢ Siakg T Tk
U,
~Fiak gy T it At i 2
j

Sc is the Schmidt number, Sa/D, pq, the density, and
€ijki = 2v(duy/dx;) (du|1dx;). In addition,

e Daﬁ’ auy,
% ax;” s o7 guy aul, 98’ duy dul,
ik X, IX; IX;  IX; X, IXi |’
and j i
’ ’ ! au,
o opl 0 0 UL 90700 u) Aijk:_zDZL(ﬂ)i(_k)
e IX; IX, IX; X IX, IX; ] MXa\ OXi | X 0%,
9 190\ 9 a0 D2(1-5 90" 9 [duy
D= —4D%—| —| —| —|. ( C)&xi X g% \ X )"
] g\ OXi | OXg | OX;
. D 30" &°p’
The terms of Eq(1) can be interpreted as follows. The Oiy=——— )
] Po (9Xi t?Xj(?Xk

first three terms on right-hand sididns) are production terms
and can be viewed as representing large-scale forcing by The terms of Eq(2) can be interpreted, again, as pro-
mean velocity and scalar gradients. The fourth and fifthqyction by mean gradientghe first to fourth term on the
terms represent, respectively, production by stretching anghs) production by stretching and destruction by molecular
destruction by molecular dissipation. The order-of- gissipation(respectively, the fifth and sixth terjndn addi-
magnitude analysis proves that although the stretching angbn, Eq. (2) includes a pressure terfthe last term on the
dissipation terms are of order Réarger than production rhg) arising from the interaction between the scalar and the
terms (Rg being the Reynolds number based on the Tayloke|ocity fields in the form of a scalar gradient-pressure Hes-
microscale\), their difference is of the same order as thegjan correlation. The order-of-magnitude analysis of €.
latter* can be undertaken in the same way as for @jj.

An OUtStanding feature of théj equation is the lack of |nteresting|y7 production Oﬁrijk by mean scalar gradi-
terms to which a return to isotropy can explicitly be ascribed.ents(the second term on the phisvolves the components of
This sharply contrasts with the case of the Reynolds stress@ge fourth-rank tensore;;,, . This implies that forcing by a
dissipation tensore;; = 2v(dui/dx,)(dui/dx,) (v is the ki-  mean scalar gradient affects scalar dissipation through the
nematic viscositythe equation of which includes a pressure interaction between the large scales of the scalar field and the
term ensuring redistributiotf** However, this does not dissipative scales of the velocity field. Such a mechanism
mean that the components &fdo not experience any return could thereby be a cause of contamination of the scalar dis-
to isotropy. Indeed, if such a mechanism were not presergipation field by the anisotropyif any) of the turbulence
then, experiments would reveal ever-increasing anisotropy anergy dissipation. The corresponding term is, however,
£, which is not the case. Now, examination of Efj) sug-  Schmidt number dependent as it is proportional to’S@he
gests that return to isotropy has to be ascribed to stretchingrevious interaction is thus ineffective at large Schmidt num-
and dissipation since other terms represent anisotropic foréer but is enhanced if the Schmidt number assumes small or
ing. Molecular dissipation appears, moreover, to be the beshoderate values.
candidate. In this respect, note that Lunifdyas put forward The pressure ternil;j, , raises a special problem for it
the deviatoric part of viscous dissipation acts, in addition taincludes the pressure Hessian which plays an important role
the pressure term, as a redistribution mechanism in the equir vortex dynamics®!’ The difficulty in modeling the pres-
tion for the Reynolds stresses. sure Hessian lies in its nonlocal nature. As shown by Ohki-

tani and Kishibd?® it can be expressed as

B. Scalar gradients—velocity gradients correlations ) 5
Ip 1 %P

IXiOX] 3 IXu0X,

It is worth noting, from Eq.(1), that forcing by mean
shear involves the components of tengbritself whereas
forcing by mean scalar gradients set the mixed tenggr, in which K;j; is a nonlocal term in the form of an integral
into play. Derivation of an evolution equation for the com- over space. The restricted Euler model proposed by
ponentsZ;;, is similar to that of theS;; equation. The only Vieillefossé® keeps only the isotropic, local part of the pres-
difference, this time, lies in the use of the Navier—Stokessure Hessian. It has been shdWihat this approximation
equation in addition to the convection—diffusion equation forretains the main features of the velocity gradients behavior,
6. With the same previous assumptigm® transport terms, at least in isotropic or homogeneous sheared turbulence.
large Reynolds, and ket numbers this equation is written  Martin et al?° recently devised a model for the evolution of
as follows: the velocity gradients neglecting the anisotropic part of the

6ij +Kij
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pressure Hessian and retrieved most of the known properties The anisotropy of tenscf is described by Eqg4)—(9).
of the small scales of turbulence. Restricting the pressurésotropy of the velocity field(which implies g;;,,=0 and
Hessian to its isotropic part implies, for the pressure term ohence 7;,=0 wheni#j) precludes off-diagonal compo-

the Fijc equation, nents. It is worth noticing that the mean scalar gradient af-
—_— fects all three diagonal components&fthrough interaction
L= iﬁ a°p : with tensorF [Egs. (4)—(6)]. In passing, components;,
ik 3po IX; XX, K and F33, which play, respectively, o&;; and €53 are pro-

moted in regions of the flow where vorticity has one compo-
Yient normal to the mean scalar gradient, wheréas,
(which plays org,,) is promoted in regions where strain acts
along the mean gradient.

In an incompressible flow, the pressure Laplacian is easil
derived from the equation for the fluctuating velocity which
finally leads to

" ou’ Ay’ 0 Although all three diagonal components &fare influ-
1 6" au,, dup dug xgonal _

Hijk:§ DW v W'i‘ 23’-}5“% Ojk - 3 enced by large-scale forcing, it is experimentally proved that,

PR O @ in the present cas€,,/ &, lies between 1.2 and 1(&nd that

£11=E39) independently of Reynolds numbéef. Starting

3

IIl. FORCING BY A MEAN SCALAR GRADIENT IN from an isotropic situation, the predominanceég$ can be
ISOTROPIC TURBULENCE explained only by some mechanism promoting this compo-

A. Analysis nent. However, direct production &b, occurs throughF,,,

d/vhich, itself, is produced by-e,,,Jd'/2 (note that, here,

The effect of forcing by a scalar gradient can be studie . S .
in the basic configuration of the uniform, transverse, mear) 112: 7222, and Fsg are negativie Now, in isotropic turbu

; o . ) lence, this latter term is only half the production terms of
scalar gradient in isotropic turbulence as first suggested b : _ N Lo
Corrsin?®  Further experiments in decaying grid = 112 and Fasp SINCE Epp07= €11242=€53,42. I addition, it

turbulencé2-24 have confirmed the steadiness of the scalafil P Shown in the following that, in those strain regions
. . . here F,,, is promoted, the pressure terity,, is likely to

gradient with downstream distance as well as the fact tha . . ;

. : act as a destruction mechanism. Hence, predominance of

reasonable cross-stream homogeneity of the scalar field can

. L component&,, over &1 and £33 cannot be understood b
be ensured provided that the scalar profile is generated byé’}rec% produi:ztion Méét probgably values 64,/&,, larger y
device independent of the grid. ' ! 271l

In the following, it is assumed that a cross-stream, pas'ghan unity have to be explained through an influence of the

sive, scalar gradient is applied in isotropic turbulence in mean gradient on stretching and_ dissipatiqrf-"q{ resulting

such a way that iN oot Agpp<Z11p+ Aqgp, pOssibly implying Fopp< Fi12
and/or a similar effect felt by the stretching and dissipation

0=T X,, ['=constant, I'>0. of &, both of these mechanisms leading to enhancement of

Eoo With respect tafy; and E;3.
Assuming unity Schmidt number, Eqd) and (2) can then

be written as B. Proposed mechanism for the anisotropy of E
déyy There is now ample evidence of a persistent skewness of
T — 4T Fi1ot S11t Dy, (4 the scalar derivative 6/ 9x, of the same sign as the one of
the imposed mean gradiéft>2>-?(positive in the case un-
dé,, der study. Besides, recent experiments and simulatiGf§’
T — AT Foppt S0t Dy, ) have confirmed that, even in unsheared situations, forcing by

a mean scalar gradient induces ramp-cliff type events in the
d&s3 scalar time signal. The latter have been invoked to explain

dat ~ Al Fagot Sgat Dy, ®  the skewness ofi6/ 9x, and can be understood as resulting
from the transit, along the gradient, of fluid lumps moving
dFi 1F S A 5 from the low# region toward the higt region andvice
Tar 2 Gmert 2t A, ™ versa(Fig. 1).232% Jumps ind6/dx, are connected with the
upstream front of these fluid structures. If, following for in-
di222__ El“e St Aot 1T ) stance Budwiget al,?® the existence of a local stagnation
dt 25 T22227 <2z m2zt h2en region upstream of each lump is assumed then jumps in
d0l9x, are strongly correlated with negative jumps in
S SR S (@  Ua2ldX;.
dt 2" "%zl w3k mss An inference regarding the pressure tefiy,, can be

The pressure terni] ,,,, is approximated as shown in Sec. Il drqwn f_rom thg above-m_el_wtloned p|ctur_e. This term can be
ritten in function of vorticityw and straino as

[Eq. (3)] and, in the present case of zero mean shear, reduc®¥
to ’
__bow ( L z)
D 96’ du,, duy, 3 Xz

Ew — 0
22273 9%y g Xy with
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and is larger by Rethan the production term in thé,,
) ~ equation (which scales asDu,6’?/\2A). However, the
W 7 above-mentioned contribution is to be weighted by the frac-
4 > tion of ramp-cliff events which Tong and Warhé&ffrom
P their measurements of the probability density function of
7 cold \~ 96l 9x,, show to vary approximately as Re. On the
e whole, the effect of cliff events on the stretching &f,
’ thereby appears to be only slightly Reynolds number depen-
. dent. Nevertheless, this contribution cannot be neglected in
’ J the budget of,, since it is of the same order as other terms
k _Tt 7 (including the sum of stretching and dissipalioh is likely
~1(2) 2z that, via the same mechanism, the compongst is rein-
forced as well.

Finally, the above-mentioned scenario can be summa-
rized in a different, although equivalent, way. Isotropy of the
velocity field precludes any preferential direction of strain.
However, the compressive strain events occurring along the
mean scalar gradie@d/ dx, (corresponding, for instance, to
the stagnation region upstream of the fronts movingn

Ve
hot hot

> direction make the small scales of the scalar feel the large-
] | scale gsymmetry imposed by the mean gradient. This results,
6—TGz here, in enhancement &%, with respect taf;; and&s3. In

dz the following, a model for this mechanism is proposed.

FIG. 1. Phenomenological model of fluid lumps explaining ramp-cliff .
events in the scalar signal and connected jumps in the instantaneous scafar Consequence for modeling

derivative under influence of a mean scalar gradititen from Thoroddsen A ting f isot t the | | of stretchi d
and Van Atta(1992 (Ref. 25 in which the scalar is temperatdre o CC_Oun 'ng_ or gmso ropy at the level ot stretching an
dissipation of€ implies that the components of the latter can
be written as
Si=8%+8, D,=D2+DE.
, 1[dug du, dug dug i 20T 2 T

T2\ dxg dXg  IXg IXg) S9 and D represent the isotropic parts §f andD; . Sf}
and D{} are the components of the anisotropic parts, repre-
, dUg du;,  du, dug sented by traceless tensos’y,=0, D%,=0).
T Xg dXg  OXg OXg ' As already mentioned, although ter®§ andD7 are of

) ) ) ) order Re when compared to other terms, their sum is of
It follows that IT55, is weak in shear regiongvhere /2 41ger R . In the absence of forcing, Newmat al?® model

—_ 2 H i .. . .
—a_) and _does not aﬁecz—‘zzz_ln the !atter. Furthermore, in 52Q+D?m as a dissipation mechanisfof order Ré?):
strain regions, whereF,,, is mainly produced,Il,,,

=D/3 (96'19x,) o2, that is, I1,,,>0, which implies, as o o ef)
previously mentioned, thdl ,,, acts onF,,, as a destruction SO 4+DY =2N0=— 2¢9=,2,
mechanism. The positivity dfl,,, is reinforced by the term o

90" 19%5(9uyl 9x,)* as a result of the correlation of jumps in where y,,, which is a functional of tensorial invariants, is
361 9%, (positive in this situatiopwith those indu,/dx;. restricted to a linear function @, the scalar-to-velocity time
Another consequence of the previous phenomenologicalcgje ratio Rzﬁf/qze(?, with g%/2 and e being, respec-
model is the enhancement of the stretchingfef via the  jyely, the kinetic energy of turbulence and its dissipation
term —D(d60'/9x,)%dusldx,. The correlation of negative rate:
jumps indu, / dx, with jumps indé/ 9x, caused by the fronts
of the fluid lumps moving along, direction indeed implies 9= —(CsR+Cp).
a positive contribution to this strain term. The order of mag-
nitude of such a contribution can be estimated as follows
Taking for granted that the typical size of the fluid lumps is
the integral scaleA, and that the thickness of their front is
of the order of the Taylor microscal&, the magnitude of a
jump in the scalar derivative EA/\.” The resulting contri-
bution to the stretching of,, is therefore of order

ConstantsCg and Cp have already been determin®d>?
Lumley®® previously suggested that, in anisotropic situations,
the decay o, should depend on the anisotropy of the scalar
field. Following this idea, Zeman and Lumf&yinclude a
production term stemming from the anisotropy of the scalar
field in their modeledk, equation. Generalizing this concept

to the component§ i + D7 leads to

Up[ A\2 Uy 62 0. 0. 2
X NDYF, Sij+DijE§(NO+NA)5ij.
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where N is a term resulting from large-scale anisotropy Speziale and GatsKifor the anisotropy of Reynolds stresses
which, here, is written as dissipation, the return-to-isotropy frequency is approxi-
mately 12/q2. It is therefore postulated that,<12. Fur-

NA=—C,u’ 6’8—0 €0 thermore, the relaxation frequency has to be larger than the
Ala X, ﬁ dissipation one to ensure that, in the decaying case, return to
_ _ _ _ isotropy effectively acts before complete small-scale mixing
C, is a constant which will be estimated later on. is achieved. WithCs=Cp=2 (Refs. 28—32andR of order

Now, the model foiS; +Dj; has to include the effect of e this impliesaz>4. In Sec. V, model predictions in the
large-scale anisotropy ofj; due to mean scalar gradient. sjyation of the Tavoularis and Corrsin’s experinfénill
Following the discussion of Sec. II B, it is proposed to modelpe optained withry, = 7.
this mechanism by a term of orde_r;REepr_esentlng produc- The model for stretching and dissipation can finally be
tion of &; as a result of the transit of fluid lumps along the yitten in the following form:
mean gradient. In this respect, a general expression could be

— 2
A_ ,_,0-'(9 blbj 1 €y Sij+DijE_(N0+NA)5ij+Pﬁ+Rﬁ,
Pi==2Cala8 b, ~ 3% 52 3
a \Pglp 0
with and thus
_ uj 0’ 2 6{2,
T (qfeR)e Sij+Dij=_§( SR+CD)ﬁ5ij
The nonlinear ternf;b; /bzb; represents large-scale anisot- 7 bb
ropy of the scalar field and is introduced for including indi- —2C,U! 0,‘9_0 D) €0

rect effect of shear. The term i#;/3 ensures tha®%,=0. In X, bghg g2

the modeled expression faf;+D;;, it will cancel with

2NA;13. 2 €
It is to be stressed that there is apparently neither theo- —0173( &j— 5695”):- (10

retical nor experimental information regarding the return to 6'2

isotropy of the scalar field at the level of dissipation. At this ]

stage, the only term of thé; equation to which such a In the present case, onfp; is affected through the produc-

mechanism could be ascribed is the anisotropic part of th#on term—2C,u;0'T'e,/ 6’2 (b;=b3=0). If a mean shear

dissipative termD;;, as already discussed in Sec. Il A. In (say,du,/dx,) were superposed upon the mean scalar gra-

passing, note that the ramp-cliff events also cause jumps idient, then, sincds; would be nonzero, the nonlinear term

the second-order spatial derivative along the mean scalar gré:b; /b b ; would make&;; feel, as well, the effect of cliffs.

dient, which enhances dissipation and most likely tends to  Finally, using the above-mentioned model  + D;;

balance their above-mentioned production effect. Recent exn Eq. (1) and contracting the latter results in the following

perimental resulf$® show that anisotropy at the smallest €, equation:

scales of the scalar field does not seem to relax with increas-

ing Reynolds number suggesting that return to isotropy could  de, au, (94_9
be represented by a term which does not depend on the latter. ——=—Eup— —2F pap
. . . . dt Xg Xg
Using a relaxation-type expression, return to isotropy could
be modeled as i 2
——d0 €4 €y
- CAUL’YH’— _ (C5R+ CD)=

-1
TR - a 6!2 0!2

2
Rf?:—(é’ij—gegc?ij

In the above-mentioned expressiory, is a characteristic The third term on the rhs, although under the form of pro-
time scale. In the absence of firm knowledge of this timeduction by mean scalar gradient, has a different origin than
scale and following the statement that return to isotropy ighe second one since it stems from the modeling of the an-
ensured by molecular dissipation, an obvious model consistisotropy of stretching. It can be compared, in fact, with the
in assuming that," is proportional to the scalar frequency: additional term that Zeman and Lumféhave introduced in
their e, model as a measure of anisotropy of the scalar field

1 € (but have written asu, 6" u,6"). Current models include
only one term representing production by mean scalar gradi-
ents; this is equivalent to model production due to interaction
An upper bound ofai can be estimated by noticing that betweenZ and the scalar gradient and production resulting
some experimental and numerical resiifs** display a from anisotropy at the level of stretching as a whole. This
stronger anisotropy for scalar gradients than for velocity grafact is used in Sec. IV for connecting the constants of the
dients. This, indeed, leads one to surmise that return to isopresent model to the production constant of usyainodels
ropy is slower for the scalar gradients. Now, in the model of(Eq. (14)].
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IV. SCALAR GRADIENTS—-VELOCITY GRADIENTS If it is furthermore required that the equation f6y,/2
CORRELATIONS provides the right level of production ef,, then identifica-
A. Algebraic modeling tion of its production term with the one of the standard mod-

o . eled e, equatior®*° gives
Complete description of the anisotropy of tengbire-

quires modeling the;, components. Note that models for

the molecular dissipation of the scalar fluxg®' that is, the 2T Fppp+ CaU40'T i =Cpusd'T i
sum (1+ Sc)F, ., have recently been propos&d®’ In the 6'? 9’2
present case, knowledge of the individual component#of
is needed and the model has to be more general. If, instead wfhich can be written as
modeling theZ;;, equation, an algebraic model is devised,
then, a natural way consists in writir in function of the 4(a;— az)Ri;=Cp—Chp, (14
anisotropy of the scalar field. Nondimensional components
of F defined as whereCp is an already determined constaht’ Cp=2. An
expression fowy, is derived by using Eq(14) in Eq. (13):
F=TFii(eeg) 2, (11)
Rl/z_ CP 511/522
are written as follows: M1ea = 14 2(611/&5)
bib; ar—(CsReqt Cp) 1—(&11/E))

]:i’\jkza'l 5”_@ bk+a3(—3§ikbj+5jkbi). (12) 6(739/6())9(;] 1+2(€11/522). (15)
This is tantamount to connect anisotropy at the level of disThe assumption of weak anisotropy yields an approximation
sipation with large-scale anisotropy. of Eq. (15 namely, tha’[alRég2 should be slightly smaller

Equation(12) ensures thaf . <b, and that, in isotro- than Cp/6. However, it is known thaR., is not universal
pic conditions,]-‘i'}kzo_ Continuity is also satisfied since even in the simpler case of an homogeneous scalar field de-
Fa=0. caying in isotropic turbulence. In the situation of an imposed
In passing, note that in the case of forcing by a mearscalar gradient, the experimental results of Sirivat and
scalar gradien” (6=T'x,) in isotropic turbulence:F%;, Warhaft? show thatReq is, with some scatter, close to 2/3;
= Fha=a1b, and Fh,,= —2asb,. This obviously implies the same value can be mferred fro.m the measurements of
a;>0 anda3<0. Mydlarski and Warhaff. Ry, is three times larger in Gibson
and Dakos’s experimeRf.In passing, the experiment of Siri-
B. The problem of unknown parameters vat and Warhaft is such thatPy/ey)~1.5 whereas this
ratio is around 2.2 in the case investigated by Gibson and
Dakos. The nonuniversality d?., precludes estimating reli-

ably a4 as a constant. For this reason, it is stated thaand

At this stagewq, a3, andC, are still to be determined.
Experimental data on thé;, components would help in
determininga; and a3 but these are unfortunately rather , depend orR in such a way that;RY?=a/ and a;RY?
scarceé#! First, it is attempted to get an estimateaf con- :3a/ o anda!, being constants .
sidering the case of forcing by a transverse mean scalar gra- Xntolnia 3and Brownbll have measured
diept in isotropic tqrbulence. Then, the measuremeqts of A“(&e’/ax)(&u’/ax) (o Fyyp) and (30'19x) (0 19x) (= Fi12)
tonia and Brown€ in a plane jet are used for approximating in a turbulent plane jet. It is straightforward to show that, in

the ratioas/a;. thi ina th del db i
Using the model given by Ed10) in the equations for 's case, using the model expressed by #Q):

&1 and&y, as well as Eqs(11) and(12) for expressingFii» 1 b, b2\ 1
and F,,,, the following equation is derived: Y3 _( 1- 22 Lﬂ) ( 1+ _1) _
a2 by Fl1z b%
Rl/z a2 @.):% @.)_ aR_(CSReq+CD) ) o
eq| “1 38,0 2 \ &y 6(Pyl€4)eq The ratio of the scalar fluxe®, /b,=u’6'/v’'6#’, on a sec-
tion of the jet can be derived from a study by Antofiian a
%|1- 5_11) (13) heated plane jet. Combining these data with those of Antonia
Ex)’ and Browné! on Fy;; and Fy1,, az/a; is indeed found to

be approximately constant on a significant portion of a trans-
where&y,/&5; is the ratio oféy; to €5, at equilibrium.Py/e;  versal section, ranging from-0.6 aty/L,=0.3 (L, is the
is the production/dissipation ratio of the scalar variancenalf-maximum velocity widthto —0.4 aty/L,=0.9, with a
(Pyleg=—u,6'T"/€5), which, in the case of forcing by a mean value close te-0.5. This suggests that;=— 0.5« .
uniform, transverse, mean scalar gradient, has experimerrhe model constants are finally estimated as
tally been proved to tend to a constant value, as well as the

scalar-to-velocity time scale ratR?>24The equilibrium val- ab=—05a], Cp=Cp—4(a)—a}),
ues of these quantities are, respectively, denoted by
(Pyl €p)eq and Req. and a; slightly smaller tharCp/6.
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V. COMBINED EFFECTS OF SCALAR GRADIENT AND ence the effect of shear. Now, the algebraic modelZgg

SHEAR given by Eq.(12) includes an effect of shear through the
A. Equations for £ in homogeneous sheared large-scale anisotropy of the scalar field measured by vector
turbulence b. As a matter of fact, in the case defined by Ed$) and

Measurements as well as simulatibhd®4° have re- (17, Bq. (12) implies

vealed that, in passively heated shear flows, significant 7%, bi

anisotropies occur at the level of temperature variance dissi- fT =1+ F

pation. This feature has also been emphasized by the experi- 112 2

mental study of Tavoularis and Corréthin homogeneous which, in the conditions of Tavoularis and Corrsin’'s
sheared turbulence. In this situation, the flow directiorjis experimertt (b;=0.43, b,=—0.19), leads taF;,~6F7;,.

and the scalar and velocity mean gradients, respectiVely, Production by the mean scalar gradient is thus larger in the
andS, are applied in the, direction. The mean scalar and £33 equation than in the;; equation as a consequence of
velocity fields are thus defined as indirect effect of shear orFjjy .

In the following, predictions obtained from the equations
for £11, €22, £33, andE,q are compared with the experimen-
tal data of Tavoularis and Corrgif using the models ex-
pressed by Eqg10) and(12) for, respectivelyS;; + D;; and
Whereas in the case of the pure scalar gra(ﬂ@ﬂ(/axl)z ‘7:ijk . In this manner, the effect of shear is taken into account
and (96'/dx3)? are equal and slightly smaller than directly in &4 and &, equations and, indirectly, through its
(3960'19x,)2,8 Tavoularis and Corrsin’s measurements showeffects on theF;;c components as well as & + D;; via P}
that (90’ /9xg)2=(30'19x5)2=1.8(08"13%,)2.% Such a hier- [EQ- (10)].
archy of the diagonal terms ¢b6'/dx;)(760'/dx;) has also
been found in nonhomogeneous shear fl6®&:

In a homogeneous situation as studied by Tavoularis and. Experimental conditions

9=Tx,, ['=constant, I'>0, (16)

u;=Sx%d,, S=constant, S>0. 17

B. Predictions in a homogeneous shear flow

Corrsin?® the equations for the components &f derived Tavoularis and CorrsfT have investigated the evolution
from Eq. (1) are written as follows: of a temperature field under influence of a passive, mean
de, transverse gradientI'(=9.5°Cm!) in a homogeneous
— =—4I' F115+ 811+ Dy, shear flow 6=46.8 s'!). The streamwise, transverse, and

dt spanwise directions are denoted, respectivelyshyx,, and
d&,, X3. The mean centerline velocity ig;(x,/h=0.5)=U,
gt - 2Sa Al Faurt oot Do, =12.4 ms?'. The height of the shear generator I
=0.276 m. It can be checked, from the experimental data,
d&ss that atx, /h=11, Scf/2e=6.1. Homogeneity of the fluctu-
ar 4T Fazyt Sagt Dag, ating velocity and temperature fields as well as of their cross

correlations are rather well ensured on a significant trans-
déxn verse portion of the flow. Detailed measurements including
dt = = SEu= 21 (Farzt Fazd + Sart Don. the fine-scale structure are provided »xat/h=7.5, x;/h

=9.5, andx, /h=11. Atx,/h=11, the Reynolds and Blet

Analysis of the previous equations reveals complex mechg; ners hased on the longitudinal microscales are, respec-
nisms. Mean shear affect, through interaction with the tively, Re, =266 and Pg =167
! 11 01 '

off-diagonal component{,;. The off-diagonal component
itself results from the interaction of shear with;. Equa-
tions for &, and £33 are free from direct shear effects.

As in the case of the pure scalar gradient, components Predictions are derived by solving equations for the dy-
Fi12, Fana, and Fag, interact with the latter to produce, re- namic field, that is, foig? and e (the equilibrium Reynolds
spectively,£11, £, and&;;. Equations for the components Stress anisotropy tensor being giyas well as for the scalar
of F (not displayed hedeshow that interaction of shear with variance,f’?, the scalar fluxes; 8’ andu,6’ and theg;

Fi1o results in the production af,;, and F;,,. The latter, components. The initial conditions of the model calculations

interacting with the mean scalar gradient, play&n. F,,,  are the experimental data ®t/h=7.5. There is no experi-

is directly affected by mean shear hft;, and 755, are not.  mental information about anisotropy of the fine-scale tem-

The equations fofF also reveal intricate interactions due to perature field at this section. However, some tests have re-
the effect onF,,, and F;,, of the respective pressure terms vealed that calculation is weakly sensitive to the latter and

I1,,, andIl,,,, which, in the present case, include the meanthe results presented in the following have been obtained
velocity gradienf{Eq. (3)]. with isotropic initial conditions. Values of constant$, a3,

The direct influence of shear afy, could explain the andC, area;=0.3, a3=-0.12,C,=0.12.
predominance of this component in shear flows. However, Comparison of predictions with experimental results is
understanding the reason why, in this type of flof4;  displayed in Tables I-Ill. The overall features of the dy-
=&,, is more delicate becaus; does not directly experi- namic and scalar fields are rather well predigt€dble |). In

2. Model calculations
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TABLE |. Comparison of predicted dynamic and scalar fields with Tavou- TABLE Ill. Comparison of the predicted structure of anisotropy at the level
laris and Corrsin’s experimental dat@C81— Ref. 2. Unless specified, of scalar dissipation with Tavoularis and Corrsin’s experimental (€81

dimensional quantities are given in S| unitg is twice the turbulence — Ref. 3. Typical data related to the case of the pure scalar gratRS®
kinetic energy;e, the mean dissipation of turbulence kinetic ener@, and corresponding t6;,=E;3, E,p=1.45,, are also indicated4;; are the
the variance of scalar fluctuations;, the mean dissipation of scalar fluc- components of the anisotropy tensgt,; =&;;/2e,— &;/3; I, and lll, are,
tuations energy§’2/2; R, the scalar-to-velocity time scale ratiey,2e/ € ,02; respectively, the second and third invariantsf Il = — A, 5 Ag,/2, I,
Pyley, the production-to-dissipation ratio of scalar varianegp’ (i = AapApyAyal3.

=1,2), the longitudinal i(=1) and transversali&2) scalar turbulent

. X 2 —512 PSG TC81 Prediction
fluxes; the following notations are useqf:=u/“"" and6'=6"'".
Ay -0.04 -0.12 -0.12
TC81 Prediction Aoy 0.08 0.059 0.19
A -0.04 0.059 -0.07
@ 0.89 0.83 o 0 -0.14 ~0.16
€ 3.4 3.2 2 ' '
— 0.016 0.019 I, —4.6x10°%  —-3x102 —5.3x1072
0 0.16(0.13) 021 I, 12x10%  —1.6x10°° 3.4x10°3
€9 : : : 1 5/2) (=11 4/3) 7% 1 -0.8 0.72
R 0.34(0.46% 0.36 (2= 11/9)
Pyle, 1.2(1.7¢ 11
u;6'/us 6’ 0.59 0.52
"0 Iule’ —-0.45 -0.45 . _ .
uz0"/u;6 quantity A,= (Il ,//2)(— 11 ,/3)"%2 does not agree with the

“The first values correspond &g estimated from the imbalance of transport Measured one in that the former corresponds to the right
and production in the scalar variance equation; the values in parentheséower part of the anisotropy invariant map-(l, vs lll,)
correspond ta, computed from the sum of the mean squared temperaturgRef. 6 whereas the latter is close to the left bound@uyi-
derivatives. symmetry withA,= —1). Moreover, as already mentioned,
measurements and simulations in nonhomogeneous
flows*®1! qualitatively confirm the findings of Tavoularis
and Corrsirt For instance, the numerical simulation of An-
tonia and Kinf in a channel flow indeed shows that
(90'19x,)% and(96'/9x3)? are nearly equal and prevail over

addition, as shown in Table IE,, is found to be the weaker
diagonal component &€ and the computed off-diagonal an-
isotropy, measured by,,/(£1:0) Y% compares well with
the corresponding experimental value; prediction of the sc - > , 12
lar microscales\, and of F;,, (the only measured com- (96'/9%,)" in the region whereS f/2¢=6 and S/(e/v)
. i . =0.1, which almost corresponds to the conditions of Tavou-
ponenj is reasonable as well. Nevertheless, the réiig&,, lari d Corrsin’ ;
is underestimated. Closer examination of the results is synf’lrIS and L-orrsin s experiment. .
. . ' . . Data relating to the case of forcing by a mean scalar
thesized in Table Ill, which displays the components of the . . . .
: : L . gradient are reported in Table Ill in order to emphasize the
anisotropy tensorA and its second and third invariants.

These latter are sensitive to departures indheomponents effects resuiting from superposing a shear upon the scalar
o . . i radient. As can be seen, symmetry betweggpand Ay, is
and correct prediction of their values is a difficult test. Theyg y y ek Ass

. . . o broken under the action of shear, since the former is lessened
are reported here in consideration of the qualitative mforma—(from ~0.04 to —0.12 with respect to the zero, isotropic
gﬁﬂ;ﬁgz Fgg\ggg'r;re] giC;,ntizstrrs;;Iif ;%;g@i%giggv\iﬂItg?é_value and the latter is enhanced beyond isotr@frgm

dicted, its structure differs from the experimental one. In-- 0:04 10 0.05%. Componentdy, is slightly reduced from

0.08 to 0.059 which suggests that the increase.4f; oc-
deed, the computed values gl; and A, are correct but curs mainly at the expense of;;. The way in which the
A,, is overestimated andlz;, though close to its isotropic . . :
i . . . . . combined actions of scalar gradient and shear are accounted
value (as in the experimeptis not predicted with the right

) for here apparently does not represent this mechanism ex-
sign. Consequently, although the weak values of the pre PP Y P

. N . . actly. In this regard, the models expressed thro. and
dicted second and third invariants gt confirm a moderate y '.S 9 A S exp . SS . Ak .
anisotro in aqreement with experiment the comoute he production ternP;; could be questioned. It is also likely

Py 9 P ’ P hat a relevant effect is absorbed in the terms to be modeled,

which requires further investigation to be elucidated. In this
TABLE II. Comparison of predicted anisotropy at the level of scalar dissi- "'€gard, recent studies have put forward the key role played
pation with Tavoularis and Corrsin’s experimental def€81 — Ref. 3. by fluctuating vorticity in preferential orientation of the in-

&j=2D(d6'19%)(30'19x;) (D is the molecular diffusivity of the scalar stantaneous scalar gradiéht_
the \,, are the scalar microscales, = (4D §'%/&;)"* (without summation

overi); Fi15=D(90'/9x1) (dusldX4). VI]. CONCLUSION

TC81 Prediction Examination of the exact equations 6§ and 7 has
£l s 18 24 allowed us to put forward some features of the influence of
Eaal €1 1.8 1.3 large-scale forcing felt at the level of scalar dissipation.
Enrl(Enéa)™? —-0.48 —-0.48 In the case of an imposed mean scalar gradient in isotro-
Ay, (Mmm) 5.0 4.6 pic turbulence, all three diagonal componentséoexperi-
’)zb’z Ezg g; ‘2"? ence a direct effect of forcing via interaction of the gradient
fﬁz _0.018 0.016 with components ofF. It has been proposed that, in this

situation, the observed anisotropy &f results from addi-
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