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CNRS UMR 6614/CORIA Universite´ de Rouen, 76821 Mont-Saint-Aignan Cedex, France
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The anisotropy of a passive scalar field at the level of second-order moments of the scalar
derivatives is studied starting from the exact equations for the components of the second-rank tensor
E defined byEi j 52D(]u8/]xi)(]u8/]xj ) (D is the molecular diffusivity of scalaru). Analysis
requires also the equations for the components of a mixed tensor defined by the correlations between
scalar and velocity gradients. After the examination of this set of equations, it is conjectured that,
in the case of forcing by a mean scalar gradient in isotropic turbulence, the anisotropy of tensorE
is produced by cliffs of temperature occurring in the direction of the mean gradient. A model for this
mechanism is proposed including possible indirect influence of shear through the large-scale
anisotropy of the scalar field. Predictions in the situation where a mean scalar gradient is combined
with homogeneous shear agree tolerably well with experimental data. This suggests that the
proposed picture describing production of small-scale anisotropy implied by mean gradient forcing
has to be completed. ©2000 American Institute of Physics.@S1070-6631~00!50609-6#
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I. INTRODUCTION

Investigating contamination of small scales by larg
scale features such as anisotropic forcing is akin to the
forts made for testing the concepts introduced in Kolmog
ov’s theory. In this respect, the passive scalar has becom
subject of growing interest since local isotropy of sca
fields in shear flows has been seriously questioned.1,3–6 The
relevance of this problem has furthermore been confirmed
experiments showing that, in isotropic turbulence, forcing
a mean scalar gradient results in a small-scale anisotrop
the scalar field which persists when Reynolds numbe
increased.7,8

A measure of the fine-scale anisotropy of the scalar fi
can be derived from various criteria among which are
value of the derivative skewness and refined tests suc
checking to what extent the derivative spectra agree w
their theoretical, isotropic expressions.9 As shown by Van
Atta,9 anisotropy estimated through second-order mome
of scalar derivatives is not inconsistent with isotropy at
smallest scales since departures from isotropy measure
this way may be explained by anisotropy at the low-wa
number end of the gradient spectra. Possible contamina
of the scalar field at this level, however, deserves invest
tion at least with regard to the question of the validity
isotropy arguments which are set forth in some scalar di
pation measurements and models.

The present work is focused on the anisotropy felt b
passive scalar field at the level of dissipation as a con
quence of forcing by mean gradients. The set of exact eq
tions for the components of tensorsE andF defined, respec-
tively, by Ei j 52D(]u8/]xi)(]u8/]xj ) and Fi jk

5D(]u8/]xi)(]uk8/]xj ) is considered with intent to bring
out the influence of large-scale forcing. The task is delic
in that these equations include not only terms express
direct action of forcing but also unclosed terms in the fo
2301070-6631/2000/12(9)/2302/9/$17.00
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of higher order correlations between gradients which ara
priori not free from anisotropic effects. Thereby, the study
based partly on the analysis of exact equations, partly
modeling. After the general equations are given~Sec. II!,
analysis in the case of forcing by a scalar gradient applie
isotropic turbulence is undertaken~Sec. III!; a mechanism is
put forward for explaining anisotropy of tensorE in this
situation and a model is subsequently devised. An algeb
modeling of the components ofF is also proposed~Sec. IV!.
Finally, the case of forcing by combined scalar gradient a
shear is considered; comparisons of model predictions w
experimental data are reported and discussed~Sec. V!.

II. GENERAL EQUATIONS

A. Scalar gradients correlations

A second-rank tensor,E, is defined as

Ei j 52D
]u8

]xi

]u8

]xj
,

whereD is the molecular diffusivity of the scalar quantity,u.
The overbar denotes Reynolds averaging and prime fluct
ing quantities. The components ofE have the dimension o
scalar variance dissipation; the mean dissipation rate of
scalar fluctuations energy,u82/2, is nothing but the half trace
of E: eu5Eaa/2. The equation forEi j is derived from the
instantaneous convection-diffusion equation foru with the
assumptions of incompressibility and constant diffusivi
The procedure is quite standard and is not reported h
Dropping transport terms~which is justified in the homoge
neous situations which will be considered in the followin!
and in the limit of large Reynolds and Pe´clet numbers:
2 © 2000 American Institute of Physics
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dEi j

dt
52Eia

]ūa

]xj
2Ej a

]ūa

]xi
22~Fi j a1Fj i a!

]ū

]xa
1Si j

1Di j . ~1!

In Eq. ~1!, ui is theith component of the velocity vector,Fi jk

are the components of a mixed tensor:

Fi jk5D
]u8

]xi

]uk8

]xj
,

and

Si j 522DS ]u8

]xi

]u8

]xa

]ua8

]xj
1

]u8

]xj

]u8

]xa

]ua8

]xi
D ;

Di j 524D2
]

]xa
S ]u8

]xi
D ]

]xa
S ]u8

]xj
D .

The terms of Eq.~1! can be interpreted as follows. Th
first three terms on right-hand side~rhs! are production terms
and can be viewed as representing large-scale forcing
mean velocity and scalar gradients. The fourth and fi
terms represent, respectively, production by stretching
destruction by molecular dissipation. The order-o
magnitude analysis proves that although the stretching
dissipation terms are of order Rel larger than production
terms (Rel being the Reynolds number based on the Tay
microscale,l), their difference is of the same order as t
latter.10,11

An outstanding feature of theEi j equation is the lack of
terms to which a return to isotropy can explicitly be ascrib
This sharply contrasts with the case of the Reynolds stre
dissipation tensor,e i j 52n(]ui8/]xa)(]uj8/]xa) (n is the ki-
nematic viscosity! the equation of which includes a pressu
term ensuring redistribution.12–14 However, this does no
mean that the components ofE do not experience any retur
to isotropy. Indeed, if such a mechanism were not pres
then, experiments would reveal ever-increasing anisotrop
E, which is not the case. Now, examination of Eq.~1! sug-
gests that return to isotropy has to be ascribed to stretc
and dissipation since other terms represent anisotropic f
ing. Molecular dissipation appears, moreover, to be the b
candidate. In this respect, note that Lumley15 has put forward
the deviatoric part of viscous dissipation acts, in addition
the pressure term, as a redistribution mechanism in the e
tion for the Reynolds stresses.

B. Scalar gradients–velocity gradients correlations

It is worth noting, from Eq.~1!, that forcing by mean
shear involves the components of tensorE itself whereas
forcing by mean scalar gradients set the mixed tensor,F,
into play. Derivation of an evolution equation for the com
ponentsFi jk is similar to that of theEi j equation. The only
difference, this time, lies in the use of the Navier–Stok
equation in addition to the convection–diffusion equation
u. With the same previous assumptions~no transport terms
large Reynolds, and Pe´clet numbers!, this equation is written
as follows:
Downloaded 29 Jun 2009 to 195.83.86.155. Redistribution subject to AIP
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dFi jk

dt
52Fi j a

]ūk

]xa
2

1

2
Sc21ei j ak

]ū

]xa
2Fa jk

]ūa

]xi

2Fiak

]ūa

]xj
1S i jk1D i jk1P i jk . ~2!

Sc is the Schmidt number, Sc5n/D, r0 , the density, and
ei jkl 52n(]uk8/]xi)(]ul8/]xj ). In addition,

S i jk52DS ]u8

]xa

]uk8

]xj

]ua8

]xi
1

]u8

]xi

]uk8

]xa

]ua8

]xj
D ,

D i jk522D2
]

]xa
S ]u8

]xi
D ]

]xa
S ]uk8

]xj
D

2D2~12Sc!
]u8

]xi

]2

]xa]xa
S ]uk8

]xj
D ,

P i jk52
D

r0

]u8

]xi

]2p8

]xj]xk
.

The terms of Eq.~2! can be interpreted, again, as pr
duction by mean gradients~the first to fourth term on the
rhs!, production by stretching and destruction by molecu
dissipation~respectively, the fifth and sixth terms!. In addi-
tion, Eq. ~2! includes a pressure term~the last term on the
rhs! arising from the interaction between the scalar and
velocity fields in the form of a scalar gradient-pressure H
sian correlation. The order-of-magnitude analysis of Eq.~2!
can be undertaken in the same way as for Eq.~1!.

Interestingly, production ofFi jk by mean scalar gradi
ents~the second term on the rhs! involves the components o
the fourth-rank tensor,ei jkl . This implies that forcing by a
mean scalar gradient affects scalar dissipation through
interaction between the large scales of the scalar field and
dissipative scales of the velocity field. Such a mechan
could thereby be a cause of contamination of the scalar
sipation field by the anisotropy~if any! of the turbulence
energy dissipation. The corresponding term is, howev
Schmidt number dependent as it is proportional to Sc21. The
previous interaction is thus ineffective at large Schmidt nu
ber but is enhanced if the Schmidt number assumes sma
moderate values.

The pressure term,P i jk , raises a special problem for
includes the pressure Hessian which plays an important
in vortex dynamics.16,17 The difficulty in modeling the pres-
sure Hessian lies in its nonlocal nature. As shown by Oh
tani and Kishiba,16 it can be expressed as

]2p

]xi]xj
5

1

3

]2p

]xa]xa
d i j 1Ki j ,

in which Ki j is a nonlocal term in the form of an integra
over space. The restricted Euler model proposed
Vieillefosse18 keeps only the isotropic, local part of the pre
sure Hessian. It has been shown19 that this approximation
retains the main features of the velocity gradients behav
at least in isotropic or homogeneous sheared turbule
Martı́n et al.20 recently devised a model for the evolution
the velocity gradients neglecting the anisotropic part of
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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pressure Hessian and retrieved most of the known prope
of the small scales of turbulence. Restricting the press
Hessian to its isotropic part implies, for the pressure term
the Fi jk equation,

P i jk52
D

3r0

]u8

]xi

]2p8

]xa]xa
d jk .

In an incompressible flow, the pressure Laplacian is ea
derived from the equation for the fluctuating velocity whi
finally leads to

P i jk5
1

3
S D

]u8

]xi

]ua8

]xb

]ub8

]xa
12Fiba

]ūb

]xa
D d jk . ~3!

III. FORCING BY A MEAN SCALAR GRADIENT IN
ISOTROPIC TURBULENCE

A. Analysis

The effect of forcing by a scalar gradient can be stud
in the basic configuration of the uniform, transverse, me
scalar gradient in isotropic turbulence as first suggested
Corrsin.21 Further experiments in decaying gr
turbulence22–24 have confirmed the steadiness of the sca
gradient with downstream distance as well as the fact
reasonable cross-stream homogeneity of the scalar field
be ensured provided that the scalar profile is generated
device independent of the grid.

In the following, it is assumed that a cross-stream, p
sive, scalar gradientG is applied in isotropic turbulence in
such a way that

ū5G x2 , G5constant, G.0.

Assuming unity Schmidt number, Eqs.~1! and ~2! can then
be written as

dE11

dt
524GF1121S111D11, ~4!

dE22

dt
524GF2221S221D22, ~5!

dE33

dt
524GF3321S331D33, ~6!

dF112

dt
52

1

2
Ge11221S1121D112, ~7!

dF222

dt
52

1

2
Ge22221S2221D2221P222, ~8!

dF332

dt
52

1

2
Ge33221S3321D332. ~9!

The pressure term,P222, is approximated as shown in Sec.
@Eq. ~3!# and, in the present case of zero mean shear, red
to

P2225
D

3

]u8

]x2

]ua8

]xb

]ub8

]xa
.
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The anisotropy of tensorE is described by Eqs.~4!–~9!.
Isotropy of the velocity field~which implies ei j 2250 and
henceFi j 250 when iÞ j ) precludes off-diagonal compo
nents. It is worth noticing that the mean scalar gradient
fects all three diagonal components ofE through interaction
with tensorF @Eqs. ~4!–~6!#. In passing, componentsF112

and F332 which play, respectively, onE11 and E33 are pro-
moted in regions of the flow where vorticity has one comp
nent normal to the mean scalar gradient, whereasF222

~which plays onE22) is promoted in regions where strain ac
along the mean gradient.

Although all three diagonal components ofE are influ-
enced by large-scale forcing, it is experimentally proved th
in the present case,E22/E11 lies between 1.2 and 1.6~and that
E11.E33) independently of Reynolds number.7,8 Starting
from an isotropic situation, the predominance ofE22 can be
explained only by some mechanism promoting this com
nent. However, direct production ofE22 occurs throughF222

which, itself, is produced by2e2222G/2 ~note that, here,
F112, F222, andF332 are negative!. Now, in isotropic turbu-
lence, this latter term is only half the production terms
F112 and F332 since e22225e1122/25e3322/2. In addition, it
will be shown in the following that, in those strain region
whereF222 is promoted, the pressure termP222 is likely to
act as a destruction mechanism. Hence, predominanc
componentE22 over E11 and E33 cannot be understood b
direct production. Most probably, values ofE22/E11 larger
than unity have to be explained through an influence of
mean gradient on stretching and dissipation ofFi jk resulting
in S2221D222,S1121D112, possibly implyingF222,F112

and/or a similar effect felt by the stretching and dissipat
of Ei j , both of these mechanisms leading to enhancemen
E22 with respect toE11 andE33.

B. Proposed mechanism for the anisotropy of E
There is now ample evidence of a persistent skewnes

the scalar derivative]u/]x2 of the same sign as the one o
the imposed mean gradient7,8,23,25–27~positive in the case un
der study!. Besides, recent experiments and simulations7,26,27

have confirmed that, even in unsheared situations, forcing
a mean scalar gradient induces ramp-cliff type events in
scalar time signal. The latter have been invoked to exp
the skewness of]u/]x2 and can be understood as resulti
from the transit, along the gradient, of fluid lumps movin
from the low-u region toward the high-u region andvice
versa~Fig. 1!.23,25 Jumps in]u/]x2 are connected with the
upstream front of these fluid structures. If, following for in
stance Budwiget al.,23 the existence of a local stagnatio
region upstream of each lump is assumed then jumps
]u/]x2 are strongly correlated with negative jumps
]u2 /]x2 .

An inference regarding the pressure termP222 can be
drawn from the above-mentioned picture. This term can
written in function of vorticityv and strains as

P22252
D

3

]u8

]x2
S 1

2
v22s2D ,

with
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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s25
1

2 S ]ua8

]xb

]ua8

]xb
1

]ua8

]xb

]ub8

]xa
D ,

v25
]ua8

]xb

]ua8

]xb
2

]ua8

]xb

]ub8

]xa
.

It follows that P222 is weak in shear regions~where v2/2
.s2) and does not affectF222 in the latter. Furthermore, in
strain regions, whereF222 is mainly produced, P222

.D/3 (]u8/]x2) s2, that is, P222.0, which implies, as
previously mentioned, thatP222 acts onF222 as a destruction
mechanism. The positivity ofP222 is reinforced by the term
]u8/]x2(]u28/]x2)2 as a result of the correlation of jumps
]u/]x2 ~positive in this situation! with those in]u2 /]x2 .

Another consequence of the previous phenomenolog
model is the enhancement of the stretching ofE22 via the
term 2D(]u8/]x2)2]u28/]x2. The correlation of negative
jumps in]u2 /]x2 with jumps in]u/]x2 caused by the fronts
of the fluid lumps moving alongx2 direction indeed implies
a positive contribution to this strain term. The order of ma
nitude of such a contribution can be estimated as follo
Taking for granted that the typical size of the fluid lumps
the integral scale,L, and that the thickness of their front
of the order of the Taylor microscale,l, the magnitude of a
jump in the scalar derivative isGL/l.7 The resulting contri-
bution to the stretching ofE22 is therefore of order

D
u28

l S G
L

l D 2

;D
u28

l

u82

l2
,

FIG. 1. Phenomenological model of fluid lumps explaining ramp-c
events in the scalar signal and connected jumps in the instantaneous
derivative under influence of a mean scalar gradient@taken from Thoroddsen
and Van Atta~1992! ~Ref. 25! in which the scalar is temperature#.
Downloaded 29 Jun 2009 to 195.83.86.155. Redistribution subject to AIP
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and is larger by Rel than the production term in theE22

equation ~which scales asDu28u82/l2L). However, the
above-mentioned contribution is to be weighted by the fr
tion of ramp-cliff events which Tong and Warhaft,7 from
their measurements of the probability density function
]u/]x2 , show to vary approximately as Rel

21 . On the
whole, the effect of cliff events on the stretching ofE22

thereby appears to be only slightly Reynolds number dep
dent. Nevertheless, this contribution cannot be neglecte
the budget ofE22 since it is of the same order as other term
~including the sum of stretching and dissipation!. It is likely
that, via the same mechanism, the componentF222 is rein-
forced as well.

Finally, the above-mentioned scenario can be summ
rized in a different, although equivalent, way. Isotropy of t
velocity field precludes any preferential direction of stra
However, the compressive strain events occurring along
mean scalar gradient]u/]x2 ~corresponding, for instance, t
the stagnation region upstream of the fronts moving inx2

direction! make the small scales of the scalar feel the lar
scale asymmetry imposed by the mean gradient. This res
here, in enhancement ofE22 with respect toE11 andE33. In
the following, a model for this mechanism is proposed.

C. Consequence for modeling

Accounting for anisotropy at the level of stretching a
dissipation ofE implies that the components of the latter c
be written as

Si j 5S i j
0 1S i j

A , Di j 5D i j
0 1D i j

A .

S i j
0 andD i j

0 represent the isotropic parts ofSi j andDi j . S i j
A

andD i j
A are the components of the anisotropic parts, rep

sented by traceless tensors (S aa
A 50, D aa

A 50).
As already mentioned, although termsS i j

0 andD i j
0 are of

order Rel when compared to other terms, their sum is
order Rel

0 . In the absence of forcing, Newmanet al.28 model
S aa

0 1D aa
0 as a dissipation mechanism~of order Rel

0):

S aa
0 1D aa

0 [2N 0522cu

eu
2

u82
,

where cu , which is a functional of tensorial invariants,
restricted to a linear function ofR, the scalar-to-velocity time
scale ratio (R5u82e/q2eu , with q2/2 ande being, respec-
tively, the kinetic energy of turbulence and its dissipati
rate!:

cu52~CSR1CD!.

ConstantsCS and CD have already been determined.28–32

Lumley15 previously suggested that, in anisotropic situatio
the decay ofeu should depend on the anisotropy of the sca
field. Following this idea, Zeman and Lumley32 include a
production term stemming from the anisotropy of the sca
field in their modeledeu equation. Generalizing this concep
to the componentsS i j

0 1D i j
0 leads to

S i j
0 1D i j

0 [
2

3
~N 01N A!d i j ,

alar
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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where N A is a term resulting from large-scale anisotro
which, here, is written as

N A52CAua8u8
]ū

]xa

eu

u82
.

CA is a constant which will be estimated later on.
Now, the model forSi j 1Di j has to include the effect o

large-scale anisotropy onSi j due to mean scalar gradien
Following the discussion of Sec. II B, it is proposed to mod
this mechanism by a term of order Rel

0 representing produc
tion of Ei j as a result of the transit of fluid lumps along th
mean gradient. In this respect, a general expression coul

P i j
A522CAua8u8

]ū

]xa
S bibj

bbbb
2

1

3
d i j D eu

u82

with

bi5
ui8u8

~q2u82!1/2
.

The nonlinear termbibj /bbbb represents large-scale aniso
ropy of the scalar field and is introduced for including ind
rect effect of shear. The term ind i j /3 ensures thatP aa

A 50. In
the modeled expression forSi j 1Di j , it will cancel with
2N Ad i j /3.

It is to be stressed that there is apparently neither th
retical nor experimental information regarding the return
isotropy of the scalar field at the level of dissipation. At th
stage, the only term of theEi j equation to which such a
mechanism could be ascribed is the anisotropic part of
dissipative termDi j , as already discussed in Sec. II A.
passing, note that the ramp-cliff events also cause jump
the second-order spatial derivative along the mean scalar
dient, which enhances dissipation and most likely tends
balance their above-mentioned production effect. Recent
perimental results7,8 show that anisotropy at the smalle
scales of the scalar field does not seem to relax with incr
ing Reynolds number suggesting that return to isotropy co
be represented by a term which does not depend on the la
Using a relaxation-type expression, return to isotropy co
be modeled as

R i j
A52S Ei j 2

2

3
eud i j D tR

21 .

In the above-mentioned expression,tR is a characteristic
time scale. In the absence of firm knowledge of this tim
scale and following the statement that return to isotropy
ensured by molecular dissipation, an obvious model cons
in assuming thattR

21 is proportional to the scalar frequenc

tR
215aR

eu

u82
.

An upper bound ofaR can be estimated by noticing tha
some experimental and numerical results6,33,34 display a
stronger anisotropy for scalar gradients than for velocity g
dients. This, indeed, leads one to surmise that return to i
ropy is slower for the scalar gradients. Now, in the model
Downloaded 29 Jun 2009 to 195.83.86.155. Redistribution subject to AIP
l

be

o-

e

in
ra-
to
x-

s-
ld
er.
d

e
s
ts

-
t-
f

Speziale and Gatski14 for the anisotropy of Reynolds stress
dissipation, the return-to-isotropy frequency is appro
mately 12e/q2. It is therefore postulated thataR,12. Fur-
thermore, the relaxation frequency has to be larger than
dissipation one to ensure that, in the decaying case, retu
isotropy effectively acts before complete small-scale mix
is achieved. WithCS.CD.2 ~Refs. 28–32! andR of order
one, this impliesaR.4. In Sec. V, model predictions in th
situation of the Tavoularis and Corrsin’s experiment2,3 will
be obtained withaR57.

The model for stretching and dissipation can finally
written in the following form:

Si j 1Di j [
2

3
~N 01N A!d i j 1P i j

A1R i j
A ,

and thus

Si j 1Di j [2
2

3
~CSR1CD!

eu
2

u82
d i j

22CAua8u8
]ū

]xa

bibj

bbbb

eu

u82

2aRS Ei j 2
2

3
eud i j D eu

u82
. ~10!

In the present case, onlyE22 is affected through the produc
tion term22CAu28u8Geu /u82 (b15b350). If a mean shear
~say,]ū1 /]x2) were superposed upon the mean scalar g
dient, then, sinceb1 would be nonzero, the nonlinear term
bibj /bbbb would makeE11 feel, as well, the effect of cliffs.

Finally, using the above-mentioned model forSi j 1Di j

in Eq. ~1! and contracting the latter results in the followin
eu equation:

deu

dt
52Eab

]ua

]xb
22Faab

]u

]xb

2CAua8u8
]u

]xa

eu

u82
2~CSR1CD!

eu
2

u82
.

The third term on the rhs, although under the form of p
duction by mean scalar gradient, has a different origin th
the second one since it stems from the modeling of the
isotropy of stretching. It can be compared, in fact, with t
additional term that Zeman and Lumley32 have introduced in
their eu model as a measure of anisotropy of the scalar fi
~but have written asua8u8 ua8u8). Current models include
only one term representing production by mean scalar gr
ents; this is equivalent to model production due to interact
betweenF and the scalar gradient and production result
from anisotropy at the level of stretching as a whole. T
fact is used in Sec. IV for connecting the constants of
present model to the production constant of usualeu models
@Eq. ~14!#.
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IV. SCALAR GRADIENTS–VELOCITY GRADIENTS
CORRELATIONS

A. Algebraic modeling

Complete description of the anisotropy of tensorE re-
quires modeling theFi jk components. Note that models fo
the molecular dissipation of the scalar fluxesuk8u8 that is, the
sum (11Sc)Faak , have recently been proposed.35–37 In the
present case, knowledge of the individual components oF
is needed and the model has to be more general. If, instea
modeling theFi jk equation, an algebraic model is devise
then, a natural way consists in writingF in function of the
anisotropy of the scalar field. Nondimensional compone
of F defined as

Fi jk* 5Fi jk~eeu!21/2, ~11!

are written as follows:

Fi jk* 5a1S d i j 2
bibj

baba
Dbk1a3~23d ikbj1d jkbi !. ~12!

This is tantamount to connect anisotropy at the level of d
sipation with large-scale anisotropy.

Equation~12! ensures thatFaak* }bk and that, in isotro-
pic conditions,Fi jk* 50. Continuity is also satisfied sinc
Fiaa* 50.

In passing, note that in the case of forcing by a me
scalar gradientG ( ū5Gx2) in isotropic turbulence:F112*
5F332* 5a1b2 and F222* 522a3b2 . This obviously implies
a1.0 anda3,0.

B. The problem of unknown parameters

At this stage,a1 , a3 , andCA are still to be determined
Experimental data on theFi jk components would help in
determininga1 and a3 but these are unfortunately rath
scarce.2,11 First, it is attempted to get an estimate ofa1 con-
sidering the case of forcing by a transverse mean scalar
dient in isotropic turbulence. Then, the measurements of
tonia and Browne11 in a plane jet are used for approximatin
the ratioa3 /a1 .

Using the model given by Eq.~10! in the equations for
E11 andE22 as well as Eqs.~11! and~12! for expressingF112

andF222, the following equation is derived:

Req
1/2S a112a3

E11

E22
D5

CA

2 S E11

E22
D2

aR2~CSReq1CD!

6~Pu /eu!eq

3S 12
E11

E22
D , ~13!

whereE11/E22 is the ratio ofE11 to E22 at equilibrium.Pu /eu

is the production/dissipation ratio of the scalar varian
(Pu /eu52u28u8G/eu), which, in the case of forcing by a
uniform, transverse, mean scalar gradient, has experim
tally been proved to tend to a constant value, as well as
scalar-to-velocity time scale ratioR.22,24The equilibrium val-
ues of these quantities are, respectively, denoted
(Pu /eu)eq andReq.
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If it is furthermore required that the equation forEaa/2
provides the right level of production ofeu , then identifica-
tion of its production term with the one of the standard mo
eledeu equation28,30 gives

2GFaa21CAu28u8G
eu

u82
5CPu28u8G

eu

u82
,

which can be written as

4~a12a3!Req
1/25CP2CA , ~14!

whereCP is an already determined constant,28,30 CP.2. An
expression fora1 is derived by using Eq.~14! in Eq. ~13!:

a1Req
1/25

CP

2

E11/E22

112~E11/E22!

2
aR2~CSReq1CD!

6~Pu /eu!eq

12~E11/E22!

112~E11/E22!
. ~15!

The assumption of weak anisotropy yields an approximat
of Eq. ~15! namely, thata1Req

1/2 should be slightly smaller
than CP/6. However, it is known thatReq is not universal
even in the simpler case of an homogeneous scalar field
caying in isotropic turbulence. In the situation of an impos
scalar gradient, the experimental results of Sirivat a
Warhaft22 show thatReq is, with some scatter, close to 2/3
the same value can be inferred from the measurement
Mydlarski and Warhaft.8 Req is three times larger in Gibson
and Dakos’s experiment.24 In passing, the experiment of Siri
vat and Warhaft is such that (Pu /eu)eq.1.5 whereas this
ratio is around 2.2 in the case investigated by Gibson
Dakos. The nonuniversality ofReq precludes estimating reli
ably a1 as a constant. For this reason, it is stated thata1 and
a3 depend onR in such a way thata1R1/25a18 anda3R1/2

5a38 , a18 anda38 being constants.
Antonia and Browne11 have measured

(]u8/]x)(]u8/]x) (}F111) and (]u8/]x)(]v8/]x) (}F112)
in a turbulent plane jet. It is straightforward to show that,
this case, using the model expressed by Eq.~12!:

a3

a1
5

1

2 S 12
b2

b1

F111*

F112* D S 11
b1

2

b2
2D 21

.

The ratio of the scalar fluxes,b1 /b2[u8u8/v8u8, on a sec-
tion of the jet can be derived from a study by Antonia38 on a
heated plane jet. Combining these data with those of Anto
and Browne11 on F111 andF112, a3 /a1 is indeed found to
be approximately constant on a significant portion of a tra
versal section, ranging from20.6 at y/Lu50.3 (Lu is the
half-maximum velocity width! to 20.4 aty/Lu50.9, with a
mean value close to20.5. This suggests thata3.20.5a1 .
The model constants are finally estimated as

a38.20.5a18 , CA5CP24~a182a38!,

anda18 slightly smaller thanCP/6.
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V. COMBINED EFFECTS OF SCALAR GRADIENT AND
SHEAR

A. Equations for E in homogeneous sheared
turbulence

Measurements as well as simulations4,6,39,40 have re-
vealed that, in passively heated shear flows, signific
anisotropies occur at the level of temperature variance d
pation. This feature has also been emphasized by the ex
mental study of Tavoularis and Corrsin2,3 in homogeneous
sheared turbulence. In this situation, the flow direction isx1

and the scalar and velocity mean gradients, respectivelyG
and S, are applied in thex2 direction. The mean scalar an
velocity fields are thus defined as

ū5Gx2 , G5constant, G.0, ~16!

ūi5Sx2d i1 , S5constant, S.0. ~17!

Whereas in the case of the pure scalar gradient(]u8/]x1)2

and (]u8/]x3)2 are equal and slightly smaller tha
(]u8/]x2)2,8 Tavoularis and Corrsin’s measurements sh
that (]u8/]x2)2.(]u8/]x3)2.1.8(]u8/]x1)2.3 Such a hier-
archy of the diagonal terms of(]u8/]xi)(]u8/]xj ) has also
been found in nonhomogeneous shear flows.4,6,11

In a homogeneous situation as studied by Tavoularis
Corrsin,2,3 the equations for the components ofE derived
from Eq. ~1! are written as follows:

dE11

dt
524GF1121S111D11,

dE22

dt
522SE2124GF2221S221D22,

dE33

dt
524GF3321S331D33,

dE21

dt
52SE1122G~F2121F122!1S211D21.

Analysis of the previous equations reveals complex mec
nisms. Mean shear affectsE22 through interaction with the
off-diagonal component,E21. The off-diagonal componen
itself results from the interaction of shear withE11. Equa-
tions for E11 andE33 are free from direct shear effects.

As in the case of the pure scalar gradient, compone
F112, F222, andF332 interact with the latter to produce, re
spectively,E11, E22, andE33. Equations for the component
of F ~not displayed here! show that interaction of shear wit
F112 results in the production ofF212 andF122. The latter,
interacting with the mean scalar gradient, play onE21. F222

is directly affected by mean shear butF112 andF332 are not.
The equations forF also reveal intricate interactions due
the effect onF222 andF122 of the respective pressure term
P222 andP122, which, in the present case, include the me
velocity gradient@Eq. ~3!#.

The direct influence of shear onE22 could explain the
predominance of this component in shear flows. Howev
understanding the reason why, in this type of flow,E33

.E22 is more delicate becauseE33 does not directly experi-
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ence the effect of shear. Now, the algebraic model forFi jk

given by Eq.~12! includes an effect of shear through th
large-scale anisotropy of the scalar field measured by ve
b. As a matter of fact, in the case defined by Eqs.~16! and
~17!, Eq. ~12! implies

F332*

F112*
511

b1
2

b2
2

,

which, in the conditions of Tavoularis and Corrsin
experiment2 (b1.0.43, b2.20.19), leads toF332* .6F112* .
Production by the mean scalar gradient is thus larger in
E33 equation than in theE11 equation as a consequence
indirect effect of shear onFi jk .

In the following, predictions obtained from the equatio
for E11, E22, E33, andE21 are compared with the experimen
tal data of Tavoularis and Corrsin2,3 using the models ex-
pressed by Eqs.~10! and~12! for, respectively,Si j 1Di j and
Fi jk . In this manner, the effect of shear is taken into acco
directly in E21 andE22 equations and, indirectly, through it
effects on theFi jk components as well as onSi j 1Di j via P i j

A

@Eq. ~10!#.

B. Predictions in a homogeneous shear flow

1. Experimental conditions

Tavoularis and Corrsin2,3 have investigated the evolutio
of a temperature field under influence of a passive, m
transverse gradient (G59.5 °C m21) in a homogeneous
shear flow (S546.8 s21). The streamwise, transverse, an
spanwise directions are denoted, respectively, byx1 , x2 , and
x3 . The mean centerline velocity isū1(x2 /h50.5)5Uc

512.4 m s21. The height of the shear generator ish
50.276 m. It can be checked, from the experimental da
that atx1 /h511, Sq2/2e.6.1. Homogeneity of the fluctu
ating velocity and temperature fields as well as of their cr
correlations are rather well ensured on a significant tra
verse portion of the flow. Detailed measurements includ
the fine-scale structure are provided atx1 /h57.5, x1 /h
59.5, andx1 /h511. At x1 /h511, the Reynolds and Pe´clet
numbers based on the longitudinal microscales are, res
tively, Rel11

5266 and Pelu1
5167.

2. Model calculations

Predictions are derived by solving equations for the d
namic field, that is, forq2 and e ~the equilibrium Reynolds
stress anisotropy tensor being given! as well as for the scala
variance,u82, the scalar fluxes,u18u8 and u28u8 and theEi j

components. The initial conditions of the model calculatio
are the experimental data atx1 /h57.5. There is no experi-
mental information about anisotropy of the fine-scale te
perature field at this section. However, some tests have
vealed that calculation is weakly sensitive to the latter a
the results presented in the following have been obtai
with isotropic initial conditions. Values of constantsa18 , a38 ,
andCA area1850.3, a38520.12, CA50.12.

Comparison of predictions with experimental results
displayed in Tables I–III. The overall features of the d
namic and scalar fields are rather well predicted~Table I!. In
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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addition, as shown in Table II,E11 is found to be the weake
diagonal component ofE and the computed off-diagonal an
isotropy, measured byE21/(E11E22)

1/2, compares well with
the corresponding experimental value; prediction of the s
lar microscaleslu i

and ofF112 ~the only measuredF com-
ponent! is reasonable as well. Nevertheless, the ratioE33/E22

is underestimated. Closer examination of the results is s
thesized in Table III, which displays the components of
anisotropy tensorA and its second and third invariant
These latter are sensitive to departures in theEi j components
and correct prediction of their values is a difficult test. Th
are reported here in consideration of the qualitative inform
tion they provide. In fact, the results in Table III reveal th
although the degree of anisotropy is approximately well p
dicted, its structure differs from the experimental one.
deed, the computed values ofA11 and A21 are correct but
A22 is overestimated andA33, though close to its isotropic
value ~as in the experiment!, is not predicted with the righ
sign. Consequently, although the weak values of the p
dicted second and third invariants ofA confirm a moderate
anisotropy in agreement with experiment, the compu

TABLE I. Comparison of predicted dynamic and scalar fields with Tavo
laris and Corrsin’s experimental data~TC81— Ref. 2!. Unless specified,
dimensional quantities are given in SI units.q2 is twice the turbulence
kinetic energy;e, the mean dissipation of turbulence kinetic energy;u82,
the variance of scalar fluctuations;eu , the mean dissipation of scalar fluc

tuations energy,u82/2; R, the scalar-to-velocity time scale ratio,u82e/euq2;

Pu /eu , the production-to-dissipation ratio of scalar variance;ui8u8 ( i
51,2), the longitudinal (i 51) and transversal (i 52) scalar turbulent

fluxes; the following notations are used:ui8[ui8
21/2

andu8[u821/2
.

TC81 Prediction

q2 0.89 0.83
e 3.4 3.2
u82 0.016 0.019
eu 0.18(0.13)a 0.21
R 0.34(0.46)a 0.36
Pu /eu 1.2(1.7)a 1.1

u18u8/u18u8 0.59 0.52

u28u8/u28u8 20.45 20.45

aThe first values correspond toeu estimated from the imbalance of transpo
and production in the scalar variance equation; the values in parenth
correspond toeu computed from the sum of the mean squared tempera
derivatives.

TABLE II. Comparison of predicted anisotropy at the level of scalar dis
pation with Tavoularis and Corrsin’s experimental data~TC81 — Ref. 3!.
Ei j 52D(]u8/]xi)(]u8/]xj ) (D is the molecular diffusivity of the scalar!;
the lu i

are the scalar microscales,lu i
5(4Du82/Ei i )

1/2 ~without summation

over i ); F1125D(]u8/]x1) (]u28/]x1).

TC81 Prediction

E22 /E11 1.8 2.4
E33 /E11 1.8 1.3
E21 /(E11E22)

1/2 20.48 20.48
lu1

~mm! 5.0 4.6
lu2

~mm! 3.7 2.9
lu3

~mm! 3.7 4.1
F112 20.018 20.016
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quantity Au5(III u/2)(2II u/3)23/2 does not agree with the
measured one in that the former corresponds to the r
lower part of the anisotropy invariant map (2II u vs IIIu)
~Ref. 6! whereas the latter is close to the left boundary~axi-
symmetry withAu521). Moreover, as already mentione
measurements and simulations in nonhomogene
flows4,6,11 qualitatively confirm the findings of Tavoulari
and Corrsin.3 For instance, the numerical simulation of An
tonia and Kim6 in a channel flow indeed shows tha
(]u8/]x2)2 and(]u8/]x3)2 are nearly equal and prevail ove
(]u8/]x1)2 in the region whereSq2/2e.6 and S/(e/n)1/2

.0.1, which almost corresponds to the conditions of Tav
laris and Corrsin’s experiment.

Data relating to the case of forcing by a mean sca
gradient are reported in Table III in order to emphasize
effects resulting from superposing a shear upon the sc
gradient. As can be seen, symmetry betweenA11 andA33 is
broken under the action of shear, since the former is lesse
~from 20.04 to 20.12! with respect to the zero, isotropi
value and the latter is enhanced beyond isotropy~from
20.04 to 0.059!. ComponentA22 is slightly reduced~from
0.08 to 0.059!, which suggests that the increase ofA33 oc-
curs mainly at the expense ofA11. The way in which the
combined actions of scalar gradient and shear are accou
for here apparently does not represent this mechanism
actly. In this regard, the models expressed throughFi jk and
the production termP i j

A could be questioned. It is also likel
that a relevant effect is absorbed in the terms to be mode
which requires further investigation to be elucidated. In t
regard, recent studies have put forward the key role pla
by fluctuating vorticity in preferential orientation of the in
stantaneous scalar gradient.41

VI. CONCLUSION

Examination of the exact equations forEi j andFi jk has
allowed us to put forward some features of the influence
large-scale forcing felt at the level of scalar dissipation.

In the case of an imposed mean scalar gradient in iso
pic turbulence, all three diagonal components ofE experi-
ence a direct effect of forcing via interaction of the gradie
with components ofF. It has been proposed that, in th
situation, the observed anisotropy ofE results from addi-

-

ses
re

-

TABLE III. Comparison of the predicted structure of anisotropy at the le
of scalar dissipation with Tavoularis and Corrsin’s experimental data~TC81
— Ref. 3!. Typical data related to the case of the pure scalar gradient~PSG!
and corresponding toE115E33 , E2251.4E11 are also indicated.Ai j are the
components of the anisotropy tensor,Ai j 5Ei j /2eu2d i j /3; IIu and IIIu are,
respectively, the second and third invariants ofA: II u52AabAba/2, IIIu

5AabAbgAga/3.

PSG TC81 Prediction

A11 20.04 20.12 20.12
A22 0.08 0.059 0.19
A33 20.04 0.059 20.07
A21 0 20.14 20.16
II u 24.631023 2331022 25.331022

III u 1.231024 21.631023 3.431023

(III u/2)(2II u/3)23/2 1 20.8 0.72
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tional production~felt through the stretching term! due to
cliffs moving along the gradient. A model for this mech
nism including the large-scale anisotropy of the scalar fi
and, thereby, possible indirect effect of shear has been
vised.

In the situation of combined mean scalar gradient a
shear, the picture is more complex. Mean shear selecti
promotes some components ofE andF. In addition, small-
scale anisotropy of the velocity field induced by shear i
plies contamination of the small scales of the scalar fie
this mechanism is represented by the interaction between
scalar gradient and components ofe. The influence of shea
is also felt through the correlation between scalar grad
and pressure Hessian.

The modeled equations for the components ofE includ-
ing an algebraic model forFi jk have been solved in the situ
ation of a mean scalar gradient imposed in a homogene
sheared turbulence. A mechanism of return to isotropy oE
has been assumed and modeled by a relaxation term the
scale of which is proportional to the scalar dissipation ti
scale. The latter process would, however, deserve spe
investigations. Comparisons of predictions with the expe
mental data of Tavoularis and Corrsin2,3 are moderately sat
isfying. The overall anisotropy ofE and the hierarchy of its
diagonal components are retrieved as well as the off-diag
anisotropy. Nevertheless, the fine structure described by
anisotropy tensor and its second and third invariants is
predicted exactly. This induces one to think that, althou
the proposed models include relevant mechanisms, the
nario describing contamination of the scalar field at sm
scales has to be improved when shear is present.
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