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A data driven trimming procedure for robust
classification

Marina Agulló Antolín∗, Eustasio del Barrio∗and Jean-Michel Loubes†

January 17, 2017

Abstract

Classification rules can be severely affected by the presence of disturbing obser-
vations in the training sample. Looking for an optimal classifier with such data may
lead to unnecessarily complex rules. So, simpler effective classification rules could
be achieved if we relax the goal of fitting a good rule for the whole training sample
but only consider a fraction of the data. In this paper we introduce a new method
based on trimming to produce classification rules with guaranteed performance on
a significant fraction of the data. In particular, we provide an automatic way of
determining the right trimming proportion and obtain in this setting oracle bounds
for the classification error on the new data set.

AMS subject classifications: Primary, 62H10; secondary,62E20
Keywords: classification, outliers, robust statistics, trimming procedure.

1 Introduction
In the usual classification setting we observe a collection of pairs of i.i.d copies (Yi, Xi) ∈
{0, 1} × Rp with i = 1, . . . , n of a random variable (Y,X) with distribution P . Y is the
label to be forecast according to the value of the variables X. A classifier is a function
g : Rp 7→ {0, 1} that predicts the label of an observation. An observation is misclassified
if Y 6= g(X). Hence, the performance of a classifier can be measured by its classification
error defined as R(g) = P ((y, x) ∈ {0, 1} × Rp : y 6= g(x)). During the last decades, the
classification problem a.k.a pattern recognition has been extensively studied and there
exists a large variety of methods to find optimal classifiers in different settings. We refer
for instance to [16], [7] or [10] and references therein for a survey.

When the number of observations grows large or in a high dimensional case, some of
the data may contain observation errors and may be considered as contaminating data.
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The presence of such observations, if not removed, hampers the efficiency of classifiers
since many classification methods are very sensitive to outliers. Actually, if the learning
set is too corrupted, training a classifier over this set leads to bad classification rates.
Hence there is a growing need for robust methods to tackle such issue. Pioneered in [18],
we refer to [15] for a review of robust methods.

A solution to cope with this issue is to allow the classifier not to label all points but to
reject some observations that may seem too difficult to be classified. This point of view is
studied in [17] and [4]. Another general idea is to remove a proportion of contaminating
data to guarantee the robustness of the method. Such data are defined as outliers in
the sense that they are far from the model used to generate the data. Yet detecting
automatically outliers is a difficult task since their mere definition is unclear and highly
depends on each particular case. Much research has been done in this direction and
many analysis provide several ways of determining whether an observation is an outlier.
For instance in [9], in the case of SVM classification, the author proposes to remove
observations using an outlier map. In [6], the authors rely on a function that measures
the impact of contamination of the distribution on the classification error obtained by
minimizing the empirical risk criterion. In a regression framework, Lasso estimators suffer
from outliers. They can also be modified in order to enhance robustness as in [5], [22] or
in [1] where the authors discard the points for which the residuals are the largest.

In a probabilistic framework, removing observations that achieve bad classification
error, corresponds to trimming the initial distribution of the observations and replacing
it by a similar distribution Q up to some data that will be considered as outliers for
the classification rule. Trimming methods for data analysis have been described firstly
in [21] and later some statistical properties are studied in [13] or in [8]. Yet very few
theoretical results exist to study how to choose the actual boundary between an acceptable
observation and an outlier. Moreover, in that case little is known about whether this choice
modifies the classification error or how. For both theoretical and practical purposes, such
a choice must be guided in order to take into account the amount of variability generated
by the corrupted data.

In this paper we provide some theoretical guarantee to choose the level of data to be
removed. For this we consider the set of trimmed distributions obtained from the initial
distribution of the data and look for an automatic rule that reduces the classification
error of a collection of classifiers by removing some properly selected observations. The
more data is removed, the easier it becomes to classify the data, leading to a perfect
classification if the classification rate is small enough. Yet, removing too many data
reduces the interest of the classification procedure. If too many observations are left
aside then the chosen classification rule may be good for distribution which is possibly
very far from the true distribution of the data. We provide in this work an empirical
rule that automatically selects the minimum level of trimming to reduce the classification
error for a class of classifiers. Simultaneously, the best classifier for the trimmed set of
observations is chosen among a collection of classification rules and for this, we prove an
oracle inequality that governs the statistical properties of this methodology.

The paper falls into the following parts. Section 2 is devoted to the description of the
probabilistic framework of outlier selection using trimming distributions. We precisely
define the trimmed classification errors and their relationships with the usual classification

2



errors for both the empirical and theoretical error. In section 3 we provide the automatic
selection rule for the trimming level and the best trimmed classifier for which we provide
and oracle inequality. This model selection result is illustrated with the case of linear
classifiers. Section 4 provides some conclusions and perspectives for these results. The
proofs and some technical results are gathered in the Appendix.

2 Partial Classification with trimming

As in the introduction, we assume that we observe an n i.i.d sample (Yi, Xi)i=1,...,n ∈
{0, 1} × Rp with distribution P . Set g : Rp 7→ {0, 1}, a classification rule, we denote the
classification error as

R(g) = P ((y, x) ∈ {0, 1} × Rp : y 6= g(x)).

Since the underlying distribution of the observations is unknown, the classification error
R is estimated by its empirical counterpart, the empirical error defined as

Rn(g) :=
1

n

n∑
i=1

I(g(Xi)6=Yi),

where I(g(X) 6=Y ) = 1 if g(X) 6= Y and 0 otherwise.
Trimming a data sample of size n is usually defined as discarding a given fraction of

the data while reweigthing the other part. Let α be the proportion of observations we can
trim, and consider that nα = k ∈ N. Then, trimming consists of removing k observations
and giving weight 1/(n − k) to the rest. Among all the possible trimmings, we will call
empirical trimmed classification error the one that minimizes the sum

Rn,α(g) := min
w∈W

n∑
j=1

wiI(g(xj)6=yj) (1)

with

W = {w = (w1, . . . , wn)/ 0 ≤ wi ≤
1

n(1− α)
; i = 1, . . . , n ∧

n∑
i=1

wi = 1}. (2)

To study the theoretical counterpart of this quantity, which we will call trimmed clas-
sification error, we will consider the set of trimmed distributions as follows. From a
probabilistic point of view, trimming a distribution consists of replacing the initial distri-
bution of the observations by a new measure built by a partial removal of points in the
support of the initial distribution. We thus can provide the following definition for the
the trimming of a distribution. Here, P denotes the set of probabilities on {0, 1} × Rp.

Definition 2.1. Given α ∈ (0, 1), we define the set of α-trimmed versions of P by

Rα(P ) :=

{
Q ∈ P : Q� P,

dQ

dP
≤ 1

1− α
P − a.s.

}
.
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This entails that a trimmed distribution Q ∈ Rα(P ) can be seen as a close modification
of a distribution P obtained by removing a certain quantity of data (see [2] and [3]). When
dealing with a classification rule, one is interested in looking for the data for which the
classification rule performs well. Hence, we aim at improving the classification error by
changing the underlying distribution of the observations using a trimming scheme in order
to modify the distribution but yet in a controlled, limited way. With this goal we introduce
the trimmed classification error for a rule g : Rp 7→ {0, 1}.

Definition 2.2. Given α ∈ (0, 1), we define the trimmed classification error of a rule as
the infimum of the α-trimmed probabilities of misclassifying future observations

Rα(g) := inf
Q∈Rα(P )

Q(g(x) 6= y).

There is a simple relation between the trimmed classification error and the general
classification error as the next result shows.

Proposition 2.1. Given a trimming level α ∈ (0, 1) and a classification rule g,

Rα(g) =
1

1− α
(R(g)− α)+ . (3)

This proposition shows the effect of trimming on classification. We write gB for the
Bayes classifier, namely, the classification rule that yields the minimal classification error.
We also write

Err(P ) := min
g
R(g) = R(gB),

for the Bayes classification error. The optimal trimming for classification removes the
misclassified points in such a way that if the classification error is less than the percentage
of points that can be removed, then all the points are classified without error.

Similar to the Bayes rule, we can define a trimmed Bayes classification rule and the
trimmed Bayes error as follows.

Definition 2.3. An α-trimmed Bayes classifier or α-trimmed Bayes classification rule is
a classifier that achieves the minimum α-Trimmed classification error

gαB := arg min
g

Rα(g).

The corresponding classification error is thus the α-Trimmed Bayes error defined as

Errα(P ) := inf
Q∈Rα(P )

Err(Q) = min
g
Rα(g) = Rα(gαB).

The following proposition compares these two errors.

Proposition 2.2.

Errα(P ) =
(R(gB)− α)+

1− α
=

(Err(P )− α)+
1− α

.
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If Err(P ) ≤ α then Errα(P ) = 0, but if Err(P ) > α then Errα(P ) =
(Err(P )−α)

+

1−α > 0,
which indicates that Errα(P ) = 0 is equivalent to Err(P ) ≤ α. This means, the minimum
α which gives us the perfect separation is the value that corresponds to the Bayes error.

Usually we do not look for the optimum classifier among all possible classifiers, but
we restrict ourselves to a smaller class of classifiers. Let F be a class of classifiers and let
f ? ∈ F be the classifier which gives us the minimum classification error within the class.
We denote as R(F) the minimum classification error in F , that is

R(F) := min
f∈F

R(f) = R(f ?).

In the same way we denote the trimmed error of the class F as Rα(F). Hence, given
Proposition 2.1,

Rα(F) := min
f∈F

Rα(f) = min
f∈F

(R(f)− α)+
1− α

.

The classifier that minimizes R(f) also minimizes this quantity and so the classifier that
minimizes the error in the class F is a minimizer of the trimmed error in the class.

Proposition 2.1 can be trivially applied to the empirical trimmed classification error
introduced in (1). For convenience we state this fact in the following result.

Rn,α(g) := inf
Q∈Rα(Pn)

Q(g(X) 6= Y ),

where Pn is the empirical distribution of P .

Corollary 2.3. Let g be a given classifier, α a fixed trimming level and n ∈ N the sample
size,

Rn,α(g) =
1

1− α
(Rn(g)− α)+. (4)

In empirical risk minimization methods (see for instance [19] and references therein),
the empirical classification error Rn(g) is used as an estimator of R(g). Among other good
properties, Rn(g) is unbiased as an estimator of R(g). This does not hold for trimmed
errors. The following proposition provides a control over this quantity and shows that the
empirical classification is still an asymptotically unbiased estimate of the classification
error.

Proposition 2.4. For a given trimming level α and a given classifier g

0 ≤ E(Rn,α(g))−Rα(g) ≤
√
R(g)√

2n(1− α)
.

3 Optimal selection of trimming levels in classification

3.1 Main Result

Trimmed models enable to decrease the classification error in such a way that the loss of
information of using less observations can be quantified and controlled. As in any robust
procedure, we aim at selecting the amount of data to be removed, which, in this setting,
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corresponds to the optimal trimming level. Actually the aim is to find a data driven α̂
such that the classification risk is minimized without removing a too large quantity of
information about the initial distribution. We know that the bigger the trimming is, the
smaller the error will be, but the more data we trim, the less information our model will
keep. To look for an equilibrium we will introduce a penalization which will depend on
the size of the chosen trimming level. For the sake of clarity we present first an oracle
bound in the toy setup in which we only consider a fixed classification rule and we aim at
choosing the right trimming proportion. Later we present a more general result which will
deal with the more realistic case in which the classifier is chosen within a more general
collection of models.

Theorem 3.1. Let ξ1 = (Y1, X1), . . . , ξn = (Yn, Xn) be n i.i.d observations with distri-
bution P that take values in {0, 1} × Rp. Let g be a given classifier and αmax ∈ (0, 1).
Consider the penalization function

pen(α) =
1

(1− α)

√
ln(n)

2n

and define
α̂ = arg min

α∈[0,αmax]
Rn,α(g) + pen(α),

then the following bound holds,

E(Rα̂(g)) ≤ inf
α∈[0,αmax]

(
Rα(g) + pen(α) +

√
R(g)√

n(1− α)

)
+

1

(1− αmax)

√
2π

n
+

1

n(1− αmax)2
.

This theorem enables to understand the effect of trimming on the classification error.
For a given classifier g we fix a maximum level of trimming αmax that we do not want to
exceed. Then the automatic penalized rule for choosing the trimming level leads to an
oracle inequality that warrants that the best classification error is achieved. Similar to
model selection rules, the price to pay is a term of order 1/

√
n which does not hamper

the classification error. In particular if the classifier g has a small classification error in
the sense that R(g) is smaller than some α < αmax, we achieve to remove the data that
are misclassified, leading to a smaller classification error.

A natural extension of this result is the case where we consider a class of classification
rules among which the optimal classifier will be selected. A complex class will usually lead
us to rules that have a small bias in the sense that they classify well the data in the training
sample yet at the expense of larger variance error, usually leading to an overfitting of the
classification model. To deal with this necessary control of complexity, the penalties will
not only depend on the trimming level as before but also on the complexity of the class of
classifiers. This complexity will be measured using the Vapnik-Chervonenkis dimension
(VC), see for instant in [14] and references therein. Here F denotes the set of all classifiers.

Theorem 3.2. Let ξ1, . . . , ξn be n independent and identically distributed observations
with distribution P that take values in {0, 1} × Rp. Let {Gm}m∈N ⊂ F be a family of
classes of classifiers with Vapnik-Chervonenkis dimension VGm < ∞ for all m ∈ N. Let
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αmax ∈ (0, 1) and let Σ be a non-negative constant. Consider {xm}m∈N a family of non-
negative weights such that ∑

m∈N

e−xm ≤ Σ <∞.

If we consider the penalization function

pen(α,Gm) =

√
ln(n) + xm
2n(1− α)2

+
1

(1− α)

√
VGm ln(n+ 1) + ln(2)

n

and we define
(α̂, m̂) = arg min

(α,m)∈[0,αmax]×N
Rn,α(Gm) + pen(α,Gm),

the following bound holds

E(Rα̂(Gm̂)) ≤ min
(α,m)∈[0,αmax]×N

(
Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)

)

+
1 + Σ

2(1− αmax)

√
π

2n
+

1

n(1− αmax)2
.

Here, again, we obtain a bound similar to the result provided in [20]. The penalty for
choosing the trimming parameter depends on the VC dimension of the class of classifiers.
Hence, this choice leads to an oracle inequality ensuring the optimality of this selection
procedure. As before, the effect of trimming is that it removes an optimal number of data
that are misclassified by the collection of classifiers, leading to better classification rates
on the set of good data.

For a better understanding about the implications of Theorem 3.2 we include next a
section which explores this bound for the particular case of linear classifiers.

3.2 Example

Assume we have n i.i.d. observations (Y1, X1), . . . , (Yn, Xn) whereXi ∈ Rp and Yi ∈ {0, 1}.
We consider the collection of models {Gm}m∈M where for eachm, Gm is the family of linear
classifiers built only using a selection of variables consisting of the first m components of
Xi. SetM = {1, . . . , p}. For x ∈ Rp let x(m) denote the vector consisting of the first m
components of x. Define the set of possible classifiers as

Gm =
{
g ∈ F : g(x) = I[aT x(m)+b≥0]; a ∈ Rm; b ∈ R

}
.

Let us also denote by Am the collection of all sets

{{0} × {x : gm(x) = 1}}
⋃
{{1} × {x : gm(x) = 0}}

and by Bm the collection of sets

{x ∈ Rp : gm(x) = 1}
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where gm ranges in Gm. Using, for instance, Theorem 13.1 and Corollary 13.1 in [10], we
have that VGm = VAm = m + 1. Then the penalization function considered in Theorem
3.2 can be written as

pen(α,Gm) =

√
ln(n) + xm
2n(1− α)2

+
1

(1− α)

√
(m+ 1) ln(n+ 1) + ln(2)

n
.

We will choose the family of non-negative weights xm = ln(p) for all m ∈ M and the
universal constant Σ = 1. If we define

(α̂, m̂) = arg min
(α,m)∈[0,αmax]×M

(
Rn,α(Gm) +

√
ln(np)

2n(1− α)2

+
1

(1− α)

√
(m+ 1) ln(n+ 1) + ln(2)

n

)
,

this leads to the following bound

E(Rα̂(Gm̂)) ≤ min
(α,m)∈[0,αmax]×M

(
Rα(Gm) +

√
ln(np)

2n(1− α)2

+
1

(1− α)

√
(m+ 1) ln(n+ 1) + ln(2)

n
+

√
R(Gm)√

2n(1− α)

)

+
1

(1− αmax)

√
π

2n
+

1

n(1− αmax)2
.

First we point out that trimming reduces the classification error that may vanish as
long as αmax is large enough to remove a sufficient fraction of observations. As in model
selection techniques, the last three terms of the right hand side of the inequality are of
order 1/

√
n while for a fixed m the third term will be of order

√
m ln(n)/n. Finally, the

second term is of order
√

ln (n)/n+ ln (p)/n. Hence, as long as ln(p) is smaller than n,
the expected value of the best trimmed classification error for the best class will be small
as the number of observations increases.

4 Conclusions and perspectives
In classification theory, many classification rules are affected by the presence of points
which are very difficult to classify. When dealing with high dimensional observations
or when the number of observations is large, this situation occurs quite often and may
drastically hamper the performance of classifiers which take into account all the data. One
may be tempted to focus on these points and modify the classification rule to increase
their classification ranking for these special points. This is the point of view of boosting
algorithms for instance, as described in [12] for example. Yet this is often done at the
expense of the complexity of the rule and its ability to be generalized. Hence a practical
and maybe pragmatic solution is to consider some of these points as outliers and to simply
remove them. Statisticians are reluctant to discard observations, yet in many applications,

8



in particular when confronted to large amounts of observations, this enables to produce
rules that are easier to interpret and that can provide a better understanding of the
phenomenon which is studied, provided not too many data are removed from the training
sample. This is the typical choice made in several papers but not much is said about the
way the outliers are selected and its impact on the classification performance.

This is the reason why we tried to provide in this paper a statistical framework to
robust classification by removal of some observations. We provided a method that con-
siders data as outliers based on their classification error by a classifier or a given class of
classifiers. Within this framework this procedure enables to select in a data driven way
an optimal proportion of observations to be removed in order to achieve a better classi-
fication error. The level of trimming and the best classifier are selected simultaneously
and we obtain an oracle inequality to assess the quality of this procedure. We think that
this result may provide some guidelines to remove outliers for classification problems with
theoretical guarantees.

Yet we rely on a minimization of a penalized 0 − 1 loss function which is difficult to
handle. A version of this trimming procedure for convex functions that lead to a feasible
way of computing the weights is actually under study. We will thus obtain a way of
detecting outliers and removing them such that the classification error with this new data
set will be theoretically controlled.

5 Appendix

5.1 Technical lemmas

Let A ⊂ {0, 1} × Rp, we denote Ai = {x ∈ Rp : (i, x) ∈ A}, for i = 0, 1. Obviously
A = ({0} × A0) ∪ ({1} × A1) and the union is disjoint, so for every measurable set
A ⊂ {0, 1} × Rp and every probability P ∈ {0, 1} × Rp,

P (A) = p0P0(A0) + p1P1(A1), (5)

where p0 = P ({0} × Rp), p1 = 1 − p0, P0(A0) = P (A|Y = 0) = P ({0} × A0)/p0 and
P1(A1) = P (A|Y = 1) = P ({1} × A1)/p1. P0 and P1 are probabilities in Rp. Conversely,
from p0 ∈ [0, 1] and the probabilities P0 and P1 in Rp the equation (5) defines a probability
in {0, 1} × Rp and the relation is one on one (except for the degenerate cases in which
p0 = 0 or p0 = 1), so we can identify the probability P with the object (p0, P0, P1). We
will set P ≡ (p0, P0, P1).

Lemma 5.1. With the previous notation, if Q ≡ (q0, Q0, Q1) with q0 ∈ (0, 1), then
Q ∈ Rα(P ) if and only if

q0 ≤
p0

1− α
, 1− q0 ≤

1− p0
1− α

, Q0 ∈ R1− q0
p0

(1−α)(P0) and Q1 ∈ R1− 1−q0
1−p0

(1−α)(P1).

(6)

Proof. Note first that q0 = Q({0}×Rp), Q ∈ Rα(P ) implies q0 ≤ 1
1−αP ({0}×Rp) = p0

1−α .
The same argument shows that 1− q0 ≤ 1−p0

1−α if Q ∈ Rα(P ). Observe that the conditions
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q0 ≤ p0
1−α and 1−q0 ≤ 1−p0

1−α guarantee that 0 ≤ 1− q0
p0

(1−α) ≤ 1 and 0 ≤ 1− 1−q0
1−p0 (1−α) ≤ 1,

hence the trimming sets in the statement are well defined. Moreover, if Q ∈ Rα(P ) then

Q0(A0) =
Q({0} × A0)

q0
≤ 1

(1− α)q0
P ({0} × A0) =

1

(1− α) q0
p0

P0(A0),

which proves that Q0 ∈ R1− q0
p0

(1−α)(P0). In a similar way it can be proven that Q1 ∈
R

1− 1−q0
1−p0

(1−α)(P1), which proves that the assumptions (6) are necessary. To prove the suf-

ficiency note that if we have (6) then q0Q0(A0) ≤ 1
1−αP0(A0), (1−q0)Q1(A1) ≤ 1

1−αP1(A1)
and hence

Q(A) = q0Q0(A0) + (1− q0)Q1(A1) ≤
1

1− α
(p0P0(A0) + (1− p0)P1(A1)) =

1

1− α
P (A),

which completes the proof. �

With this identification we now prove the following lemma that will be the first step
to prove Proposition 2.1.

Lemma 5.2. With the previous notation

Rα(g) = min
1− 1−p0

1−α ≤q0≤
p0

1−α

[(
q0 −

p0
1− α

P0(g(x) = 0)

)
+

+

(
1− q0 −

1− p0
1− α

P1(g(x) = 1)

)
+

]
.

(7)

Proof.
The first step consists in writing the probability Q in terms of (q0, Q0, Q1)

Q(g(x) 6= y) = q0

∫
(g(x)=1)

dQ0

dµ
dµ+ (1− q0)

∫
(g(x)=0)

dQ1

dµ
dµ

=

∫ (
q0I(g(x)=1)

dQ0

dµ
+ (1− q0)I(g(x)=0)

dQ1

dµ

)
dµ. (8)

We are looking for the probability that minimizes the probability of error between all the
probabilities Q ∈ Rα(P ), this means we are looking for Q0 and Q1 that minimize (8). We
are going to make the calculations for Q0, Q1 can be gotten analogously.
As we are minimizing, we are going to concentrate the probability Q0 in the set (g(x) = 0).
By Lemma 5.1 we know that Q0 ≤ p0

q0(1−α)P0, so the value of Q0 depends on the value of
P0. There are two possibilities,

1. P0(g(x) = 0) ≥ q0
p0

(1− α): As p0
q0(1−α)P0 ≥ 1 we can group all the probability Q0 in

the set {x ∈ Rp/g(x) = 0} and hence Q0(g(x) = 0) = 1.

2. P0(g(x) = 0) < q0
p0

(1−α): Now we can not give toQ0(g(x) = 0) probability 1 because
we would be violating the condition in Lemma 5.1, hence Q0(g(x) = 0) = P0(g(x)=0)

q0
p0

(1−α) .
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And in the optimum we will have

Q0(g(x) = 0) = min

(
P0(g(x) = 0)
q0
p0

(1− α)
, 1

)
.

As we are concerned in Q0(g(x) = 1) and Q0 is a distribution,

Q0(g(x) = 1) =

(
1− p0

q0(1− α)
P0(g(x) = 0)

)
+

,

analogously

Q1(g(x) = 0) =

(
1− 1− p0

(1− q0)(1− α)
P1(g(x) = 1)

)
+

.

So for a fixed q0 and Q0, Q1 as in Lemma 5.1

min
Q0,Q1

Q(g(x) 6= y) = q0

(
1− p0

q0(1− α)
P0(g(x) = 0)

)
+

+ (1− q0)
(

1− 1− p0
(1− q0)(1− α)

P1(g(x) = 1)

)
+

.

Using that q0 and 1− q0 are positive lead to (7). The limits for q0 are obtained from
Lemma 5.1. �

We prove that both the theoretical trimmed error and the empirical error of two close
trimming levels is close.

Proposition 5.3. Let α1, α2 be two trimming levels such that α2 ∈ [α1, α1 + 1
n
], let αmax

be such that α1 ≤ α2 ≤ αmax < 1 and let g be a given classifier, then

Rα1(g)−Rα2(g) ≤ 1

n(1− αmax)2
and Rn,α1(g)−Rn,α2(g) ≤ 1

n(1− αmax)2
.

Proof.

Rα1(g)−Rα2(g) =
(R(g)− α1)+

(1− α1)
− (R(g)− α2)+

(1− α2)

=
((1− α2)(R(g)− α1))+ − ((1− α1)(R(g)− α2))+

(1− α1)(1− α2)

≤ 1

(1− α1)(1− α2)
|R(g)− α1 − α2R(g) + α1α2 − (R(g)− α2 − α1R(g) + α1α2)|

=
1

(1− α1)(1− α2)
| − α1 − α2R(g) + α2 + α1R(g)|

=
1

(1− α1)(1− α2)
|(R(g)− 1)(α1 − α2)| =

1

(1− α1)(1− α2)
|R(g)− 1||α1 − α2|.

As we chose α2, |α1 − α2| ≤ 1
n
and as for every value of α we can bound 1

1−α by 1
1−αmax

and |R(g)− 1| ≤ 1, we can conclude that

Rn,α1(g)−Rn,α2(g) ≤ 1

n(1− αmax)2
.

The proof is identical for the empirical trimmed error. �

11



5.2 Proofs

Proof of Proposition 2.1. The result is a direct consequence of the minimization with
respect to q0 of the expression obtained in Lemma 5.2.

First see that Rα(g) = 0 if and only if 1− 1−p0
1−α P1(g(x) = 1) ≤ p0

1−αP0(g(x) = 0). Then
consider the opposite case.
As we are adding two positive terms, the sum is equal to 0 only if both terms are equal
to 0, leading to(

q0 −
p0

1− α
P0(g(x) = 0)

)
+

≤ 0 ⇔ q0 ≤
p0

1− α
P0(g(x) = 0),

in a similar way we obtain(
1− q0 −

1− p0
1− α

P1(g(x) = 1)

)
+

≤ 0 ⇔ q0 ≥ 1− 1− p0
1− α

P1(g(x) = 1).

So Rα(g) = 0 if and only if 1− 1−p0
1−α P1(g(x) = 1) ≤ p0

1−αP0(g(x) = 0).
Now consider the case where this inequality does not hold, this means, 1− 1−p0

1−α P1(g(x) =
1) > p0

1−αP0(g(x) = 0). The first term of (7) is a stepwise lineal function with value 0 until
p0
1−αP0(g(x) = 0) and increasing with slope 1 since then. The second term is also stepwise
linear, in this case it decreases with slope −1 until it reaches 0 in 1 − 1−p0

1−α P1(g(x) = 1)
with value 0 from that point.

Now we are going to see that in this case the interval
[
p0
1−αP0(g(x) = 0), 1− 1−p0

1−α P1(g(x) = 1)
]

gives us the minimal value of (7). If 1 − 1−p0
1−α P1(g(x) = 1) < 1 − 1−p0

1−α or p0
1−αP0(g(x) =

0) > p0
1−α we will eliminate non feasible values of q0 from the optimal set, hence the set of

optimal values of q0 that minimizes Rα(g) are

q0(x) =


[
1− 1−p0

1−α P1(g(x) = 1), p0
1−αP0(g(x) = 0)

]⋂ [
1− 1−p0

1−α ,
p0
1−α

]
si R(g) ≤ α[

p0
1−αP0(g(x) = 0), 1− 1−p0

1−α P1(g(x) = 1)
]⋂ [

1− 1−p0
1−α ,

p0
1−α

]
si R(g) > α

.

(9)
Let us see this. We are going to suppose, for simplicity, that we are in the case

1− 1− p0
1− α

≤ p0
1− α

P0(g(x) = 0) < 1− 1− p0
1− α

P1(g(x) = 1) ≤ p0
1− α

.

Let I1 = [1 − 1−p0
1−α ,

p0
1−αP0(g(x) = 0)], I2 = [ p0

1−αP0(g(x) = 0), 1 − 1−p0
1−α P1(g(x) = 1)],

I3 = [1− 1−p0
1−α P1(g(x) = 1), p0

1−α ], we denote

Ri = min
Ii

[(
q0 −

p0
1− α

P0(g(x) = 0)

)
+

+

(
1− q0 −

1− p0
1− α

P1(g(x) = 1)

)
+

]
,

for i = 1, 2, 3. Obviously Rα(g) = minRi.
In I1 the first term is 0 because q0 ≤ p0

1−αP0(g(x) = 0) and the second term is 1 −
1−p0
1−α P1(g(x) = 1) − q0. As we are looking for a minimization of this value and q0 is

12



subtracting, we will give to it the biggest value it can take, that is, the upper bound of
the interval. Hence,

R1 = 1− 1− p0
1− α

P1(g(x) = 1)− p0
1− α

P0(g(x) = 0)

= 1− (1− p0)(1− P1(g(x) = 0)) + p0(1− P0(g(x) = 1))

1− α

= 1− 1−R(g)

1− α
.

If we are in I2 none of the terms is going to be 0. First one is q0 − p0
1−αP0(g(x) = 0) and

second one 1− 1−p0
1−α P1(g(x) = 1)− q0, when we add them, the q0 in both terms clears and

we obtain

R2 = 1− p0
1− α

P0(g(x) = 0)− 1− p0
1− α

P1(g(x) = 1) = 1− 1−R(g)

1− α
.

Last, in I3 is the second term which becomes 0, letting the first one as q0− p0
1−αP0(g(x) = 0).

In this case q0 is adding, we want to give the minimum value possible so

R3 = 1− 1− p0
1− α

P1(g(x) = 1)− p0
1− α

P0(g(x) = 0) = 1− 1−R(g)

1− α
.

And, as we have already said, the minimum is attained at[
1− 1− p0

1− α
P1(g(x) = 1),

p0
1− α

P0(g(x) = 0)

]
.

Moreover, since R1 = R2 = R3, the value of this minimum will be

Rα(g) = 1− 1−R(g)

1− α
.

Putting together both cases we have that Rα(g) reaches its minimum in (9) and, since
condition 1− 1−p0

1−α P1(g(x) = 1) > p0
1−αP0(g(x) = 0) holds if and only if R(g) > α, we have

that Rα(g) = 0 ⇔ R(g) ≤ α and hence,

Rα(g) =
1

1− α
(R(g)− α)+.

�

Proof of Proposition 2.2. Note that Err(P ) = R(gB) and Errα(P ) = Rα(gαB). Recall
that

Errα(P ) := inf
Q∈Rα(P )

Err(Q) = inf
Q∈Rα(P )

inf
g
Q(g(x) 6= y) = inf

g
inf

Q∈Rα(P )
Q(g(x) 6= y)

= inf
g
Rα(g) = min

g

(R(g)− α)+
1− α

,

the minimum in the last inequality is due to Proposition 2.1. The infimum is reached so
it is a minimum. Moreover we know that this error is minimal when the classifier is Bayes
classifier, so

Errα(P ) =
(R(gB)− α)+

1− α
=

(Err(P )− α)+
1− α

.
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Proof of Proposition 2.4. The first inequality can be proved by

E(Rn,α(g)) = E

(
(Rn(g)− α)+

1− α

)
=

1

1− α
E ((Rn(g)− α)+)

≥ 1

1− α
(E(Rn(g))− α)+ =

1

1− α
(R(g)− α)+ = Rα(g).

Where we have used (4) for the first equality and the property E(Rn(g)) = R(g) and (3)
for the two last ones. The inequality comes from applying Jensen inequality, and this is
possible due to the fact that (.)+ is a convex function.
For the second inequality we need Proposition 2.1 and by Corollary 2.3,

E(Rn,α(g))−Rα(g) =
E((Rn(g)− α)+)− (R(g)− α)+

(1− α)
. (10)

Let X be a random variable such that X = Rn(g), we know from [19] that E(X) = R(g),
and let ϕ(x) = (x − α)+. ϕ is a convex function, so Jensen’s inequality can be applied,
this means ϕ(E(X)) ≤ E(ϕ(X)). This function also is 1-Lispchitz and increasing, so it
satisfies the property ϕ(y)− ϕ(x) ≤ (y − x)+.
As we are not modifying 1

1−α we are going to let it aside for the moment and we will focus
in the numerator, applying X’s definition, mean’s properties and ϕ’s property mentioned
above

E((Rn(g)− α)+)− (R(g)− α)+ = E(ϕ(X))− ϕ(E(X)) = E(ϕ(X)− ϕ(E(X)))

≤ E((X − E(X))+).

Now let Y be a random variable such that Y =d X, Y and X are independent, this implies
E(Y ) = EX(Y ), applying this, again mean’s properties, Jensen’s inequality (for (.)+) and
conditional mean’s properties we get

E((X − E(X))+) = E((X − E(Y ))+) = E((X − EX(Y ))+) = E((EX(X − Y ))+)

≤ E(EX((X − Y )+)) = E((X − Y )+).

Now we are using that X − Y is a symmetric variable, that it also is a centered variable,
variance’s property for the sum of two independent variables and that X and Y are
identically distributed to obtain

E((X − Y )+) =
1

2
E(X − Y ) ≤ 1

2
(V ar(X − Y ))1/2 =

1

2
(V ar(X) + V ar(Y ))1/2

=
1

2
(2V ar(X))1/2.

Last we are using variance’s properties, the fact that nX ∼ b(n,R(g)) and that (1 −
R(g)) ≤ 1 and we obtain

1

2
(2V ar(X))1/2 =

1

2
(2

1

n2
V ar(nX))1/2 =

1

2
(2

1

n2
nR(g)(1−R(g)))1/2 =

1√
2n

√
R(g).
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Joining this with (10), we get

E(Rn,α(g))−Rα(g) ≤
√
R(g)√

2n(1− α)
.

�

Proof of Theorem 3.1. First consider the case where the trimming parameter only
takes value in the discrete set A = [0, 1

n
, . . . , k0

n
] with k0 = [nαmax]. By definition α̂

satisfies that for all α ∈ A

Rn,α̂(g) + pen(α̂) ≤ Rn,α(g) + pen(α).

This implies that

Rα̂(g)−Rα̂(g) +Rn,α̂(g) + pen(α̂) ≤ Rα(g)−Rα(g) +Rn,α(g) + pen(α)

or, what is the same

Rα̂(g) ≤ Rα(g) + pen(α) + (Rn,α(g)−Rα(g))− pen(α̂) + (Rα̂(g)−Rn,α̂(g)). (11)

Let us focus in the inside of the parenthesis,

Rn,α(g)−Rα(g) = [Rn,α(g)− E(Rn,α(g))] + [E(Rn,α(g))−Rα(g)],

by Proposition 2.4 the second brace can be bounded by
√
R(g)

√
2n(1−α) . For first brace we will

apply McDiarmid’s inequality taking Rn,α(g) = F (ξ1, . . . , ξn) where ξi = (Yi, Xi). As

|F (ξ1, . . . , ξi, . . . , ξn)− F (ξ1, . . . , ξ
′
i, . . . , ξn)| ≤ 1

n(1− α)
,

we can apply the inequality and hence

P (Rn,α(g)− E(Rn,α(g)) ≥ t) ≤ e−2t
2n(1−α)2 .

Given z > 0 take t =
√

z
2n(1−α)2 , we get

P

(
Rn,α(g)− E(Rn,α(g)) ≥

√
z

2n(1− α)2

)
≤ e−z.

Joining this with (11), we get that, except in a set of probability not greater than e−z,

Rα̂(g) ≤ Rα(g)+pen(α)+

√
R(g)√

2n(1− α)
+

√
z

2n(1− α)2
−pen(α̂)+(Rα̂(g)−Rn,α̂(g)). (12)

We are going to focus now in the other parenthesis. As we saw in Proposition 2.4

Rα̂(g)−Rn,α̂(g) ≤ sup
α∈A

(Rα(g)−Rn,α(g)) ≤ sup
α∈A

(E(Rn,α(g))−Rn,α(g)).
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Applying again McDiarmid’s inequality taking this time t =
√

ln(n)+z
2n(1−α)2 we have ∀α′ ∈ A

P

(
E(Rn,α′(g))−Rn,α′(g) ≥

√
ln(n) + z

2n(1− α′)2

)
≤ 1

n
e−z.

As we were interested in calculating this probability for α̂ we have

P

(
sup
α∈A

(E(Rn,α(g))−Rn,α(g)) ≥

√
ln(n) + z

2n(1− α̂)2

)

≤
∑
α′∈A

P

(
E(Rn,α′(g))−Rn,α′(g) ≥

√
ln(n) + z

2n(1− α′)2

)

≤ n
1

n
e−z ≤ e−z.

Hence with probability at least 1− e−z

E(Rn,α̂(g))−Rn,α̂(g) ≤

√
ln(n) + z

2n(1− α̂)2
. (13)

Now let us consider the complete interval. If α′ ∈ [0, αmax] there exists α′′ ∈ A such that
α′′ ≤ α′ ≤ α′′ + 1

n
. Then by Proposition 5.3, in the set where (13) is satisfied we have

E(Rn,α′(g))−Rn,α′(g)

= E(Rn,α′′(g))−Rn,α′′(g) + E(Rn,α′(g)−Rn,α′′(g))− (Rn,α′(g)−Rn,α′′(g))

≤

√
ln(n) + z

2n(1− α′′)2
+

1

n(1− αmax)2
≤

√
ln(n) + z

2n(1− α′)2
+

1

n(1− αmax)2

≤

√
ln(n)

2n(1− α′)2
+

√
z

2n(1− α′)2
+

1

n(1− αmax)2

for all α′ ∈ [0, αmax].
If we take as penalty

pen(α) =

√
ln(n)

2n(1− α)2

and we substitute in (12). Given that, by Proposition 2.4, Rα′(g) ≤ E(Rn,α′(g)), with
probability at least 1− 2e−z

Rα̂(g)

≤ Rα(g) + pen(α) +

√
R(g)√

2n(1− α)
+

√
z

2n(1− α)2
− pen(α̂) +

√
ln(n) + z

2n(1− α′)2
+

1

n(1− αmax)2

≤ Rα(g) + pen(α) +

√
R(g)√

2n(1− α)
+ 2

√
z

2n(1− αmax)2
+

1

n(1− αmax)2
.
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Integrating with respect to z and taking the infimum for α ∈ [0, αmax] we can conclude
that

E(Rα̂(g)) ≤ inf
α∈[0,αmax]

(
Rα(g) + pen(α) +

√
R(g)√

n(1− α)

)
+

1

(1− αmax)

√
2π

n
+

1

n(1− αmax)2
.

�

Proof of Theorem 3.2. To proof the theorem we need the following elemental result
whose proof is omitted.

Lemma 5.4. Given two functions f and g and a real number k > 0,

|f(x)− g(x)| ≤ k ⇒ | sup
x
f(x)− sup

x
g(x)| ≤ k,

|f(x)− g(x)| ≤ k ⇒ |min
x
f(x)−min

x
g(x)| ≤ k.

As in the previous Theorem we define the set A = {0, 1
n
, 2
n
, . . . k0

n
} with k0 = [nαmax].

Then, by definition, α̂ and m̂ satisfy that for all α ∈ A and m ∈ N

Rn,α̂(Gm̂) + pen(α̂,Gm̂) ≤ Rn,α(Gm) + pen(α,Gm).

Adding and subtracting Rα̂(Gm) and Rα(Gm) and organizing the terms we get the following
inequality. We bound the remaining terms in the parenthesis,

Rα̂(Gm̂) ≤ Rα(Gm)+pen(α,Gm)+(Rn,α(Gm)−Rα(Gm))−pen(α̂,Gm̂)+(Rα̂(Gm̂)−Rn,α̂(Gm̂)).

First we are going to bound

Rn,α(Gm)−Rα(Gm) = min
g∈Gm

Rn,α(Gm)− min
g∈Gm

Rα(Gm) ≤ Rn,α(g′)−Rα(g′)

with g′ := arg min
g∈Gm

Rα(g). We are now in the same conditions as in Theorem 3.1 and we

can bound these quantities except on a set of probability not greater than e−z, with a
given z > 0 by

Rn,α(g′)−Rα(g′) ≤ R(g′)√
2n(1− α)

+

√
z

2n(1− α)2
,

which leads us to

Rα̂(Gm̂) ≤ Rα(Gm)+pen(α,Gm)+

√
R(g′)√

2n(1− α)
+

√
z

2n(1− α)2
−pen(α̂,Gm̂)+(Rα̂(Gm̂)−Rn,α̂(Gm̂)).

(14)
Now we want to bound

Rα̂(Gm̂)−Rn,α̂(Gm̂) ≤ sup
(α′,m′)∈A×N

(Rα′(Gm′)−Rn,α′(Gm′)) ≤ sup
(α′,m′)∈A×N

sup
g∈Gm′

(Rα′(g)−Rn,α′(g)).

Let us focus on
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sup
g∈Gm

(Rα(g)−Rn,α(g)) = E

(
sup
g∈Gm

(Rα(g)−Rn,α(g))

)
(15)

+

[
sup
g∈Gm

(Rα(g)−Rn,α(g))− E
(

sup
g∈Gm

(Rα(g)−Rn,α(g))

)]
.(16)

To bounding (16) we will make use again of McDiarmid’s inequality. First we need to see
that the bounded difference conditions is met.
We define Z := f(ξ1, . . . , ξn) = sup

g∈Gm
(Rα(g)−Rn,α(g)) and Z(i) := f(ξ1, . . . , ξ

′
i, . . . , ξn), we

want to prove
|Z − Z(i)| ≤ ci, (17)

for certain constants ci. The empirical error Rn,α(g) is defined as in (1) and R(i)
n,α(g) as

the empirical error associated to the sample ξ1, . . . , ξ′i, . . . , ξn. We start from

|(Rα(g)−Rn,α(g))− (Rα(g)−R(i)
n,α(g))|

which implies, using Lemma 5.4, that (17).

|Rn,α(g)−R(i)
n,α(g)| =

∣∣∣∣∣ min
(w1,...,wn)

∑
j

wjI(g(Xj) 6=Yj) − min
(w1,...,wn)

∑
j

wjI(g(X′j)6=Y ′j )

∣∣∣∣∣ ,
where (Y ′, X ′) stands for the sample ξ1, . . . , ξ′i, . . . , ξn. For a vector (w1, . . . , wn) that
satisfies the conditions (2),∣∣∣∣∣∑

j

wjI(g(Xj)6=Yj) −
∑
j

wjI(g(X′j)6=Y ′j )

∣∣∣∣∣ = wj
∣∣(I(g(Xi)6=Yi) − Ig(X′i)6=Y ′i )∣∣ ≤ 1

n(1− α)
.

And using the second statement of Lemma 5.4 leads to

|Rn,α(g)−R(i)
n,α(g)| ≤ 1

n(1− α)
,

or written in a different way

|(Rα(g)−Rn,α(g))− (Rα(g)−R(i)
n,α(g))| ≤ 1

n(1− α)
.

Applying again Lemma 5.4, we get to (17) with ci = 1
n(1−α) . Now we can use McDiarmid’s

inequality to prove

P

(
sup
g∈Gm

(Rα(g)−Rn,α(g))− E( sup
g∈Gm

(Rα(g)−Rn,α(g))) ≥

√
ln(n) + z + xm

2n(1− α)2

)
≤ 1

n
e−z−xm .

(18)
To bound (15) we will use Vapnik-Chervonenkis theory from [11] or [19]. Before we are
able to apply this theory we need to transform our functions in suitable functions. For
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this we will use the equalities (3) and (4) and the fact that the function positive part,
defines as X+ := max(0, X), is Lipschitz.

E

(
sup
g∈Gm

(Rα(g)−Rn,α(g))

)
=

1

1− α
E

(
sup
g∈Gm

((R(g)− α)+(Rn(g)− α)+)

)
≤ 1

1− α
E

(
sup
g∈Gm

|R(g)−Rn(g)|
)

≤ 2

1− α

√
VAGm ln(n+ 1) + ln(2)

n
. (19)

The last inequality comes from section 4.2 in [11]. Joining (18) and (19) we get ∀α′ ∈ A
and ∀m′ ∈ N

P

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g)) ≥

√
ln(n) + z + xm′

2n(1− α′)2
+

2

1− α′

√
VGm′ ln(n+ 1) + ln(2)

n

)
≤ 1

n
e−z−xm′ .

(20)
As we are looking for a bound for Rα̂(Gm̂)−Rn,α̂(Gm̂), we have that

P

 ⋃
(α′,m′)∈A×N

sup
g∈Gm′

(Rα′(g)−Rn,α′(g)) ≥

√
ln(n) + z + xm′

2n(1− α′)2
+

2

1− α′

√
VGm′ ln(n+ 1) + ln(2)

n


≤
∑
α′∈A

∑
m′∈N

P

(
Rα′(g)−Rn,α′(g) ≥

√
ln(n) + z + xm′

2n(1− α′)2
+

2

1− α′

√
VGm′ ln(n+ 1) + ln(2)

n

)

≤
∑
α′∈

∑
m′∈N

1

n
e−z−xm′ ≤

∑
m′∈N

e−z−xm′ ≤ Σe−z.

Considering now the complete interval, if α′ ∈ [0, αmax], then ∃α′′ ∈ A such that
α′′ ≤ α′ ≤ α′′ + 1

n
. So from (20), with probability greater than 1

n
e−z−xm′ ,

sup
g∈Gm′

(Rα′′(g)−Rn,α′′(g)) ≤

√
ln(n) + z + xm′

2n(1− α′′)2
+

2

1− α′′

√
VGm′ ln(n+ 1) + ln(2)

n
,

then for all α′ ∈ [0, αmax]

sup
g∈Gm′

(Rα′(g)−Rn,α′(g))

= sup
g∈Gm′

(Rα′(g)−Rn,α′(g) +Rα′′(g)−Rα′′(g) +Rn,α′′(g)−Rn,α′′(g))

= sup
g∈Gm′

([Rα′′(g)−Rn,α′′(g)] + [Rα′(g)−Rα′′(g)] + [Rn,α′′(g)−Rn,α′(g)])

≤

√
ln(n) + z + xm′

2n(1− α′′)2
+

2

1− α′′

√
VGm′ ln(n+ 1) + ln(2)

n
+

1

n(1− αmax)2

≤

√
ln(n) + xm′

2n(1− α′)2
+

√
z

2n(1− α′)2
+

2

1− α′

√
VGm′ ln(n+ 1) + ln(2)

n
+

1

n(1− αmax)2
.
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Where the next-to-last inequality comes from applying Proposition 5.3 and thatRn,α′(g) ≤
Rn,α′′(g) and hence Rn,α′(g)−Rn,α′′(g) ≤ 0 and the last one comes from α′′ ≤ α′. We can
conclude that

Rα̂(Gm̂)−Rn,α̂(Gm̂) ≤

√
ln(n) + z + xm̂

2n(1− α̂)2
+

2

1− α̂

√
VGm̂ ln(n+ 1) + ln(2)

n
+

1

n(1− αmax)2
.

Going back to (14), except in a set of probability not greater than (Σ + 1)e−z

Rα̂(Gm̂) ≤ Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)
+

√
z

2n(1− α)2
− pen(α̂,Gm̂)

+

√
ln(n) + xm̂
2n(1− α̂)2

+

√
z

2n(1− α̂)2
+

2

1− α̂

√
VGm̂ ln(n+ 1) + ln(2)

n
+

1

n(1− αmax)2
.

Considering

pen(α,Gm) =

√
ln(n+ 1) + xm

2n(1− α)2
+

1

(1− α)

√
VGm ln(n+ 1) + ln(2)

n
,

we have

Rα̂(Gm̂) ≤ Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)
+

√
z

2n(1− α)2
+

√
z

2n(1− α̂)2
+

1

n(1− αmax)2

≤ Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)
+

√
2z

n(1− k0
n

)2
+

1

n(1− αmax)2
.

Now grouping and integrating with respect to z,

E(Rα̂(Gm̂)) ≤ min
(α,m)∈[0,αmax]×N

(
Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)

)

+
1 + Σ

2(1− αmax)

√
π

2n
+

1

n(1− αmax)2
.

�
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