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Abstract
The present work is the hygric characterization of wood fibre insulation boards, using dynamic measure-

ments of relative humidity and sample weight, analyzed in the frame of Bayesian inference for parameter
identification under uncertainty. It is an attempt at identifying detailed profiles of moisture-dependent prop-
erties, and thus a relatively high number of parameters. Because of this ambition, some caution should be
exercised once the outcome of the inversion algorithm is available: in addition to confidence intervals of
parameters provided by the Bayesian framework, a simplified form of identifiability analysis is performed by
analysing a posteriori parameter correlations and likelihood-based confidence intervals.

The characterization methodology does not require for the model structure to have a differentiable analyt-
ical formulation, or for material samples to reach mass equilibrium between each RH step of the experimental
process. Two separate experimental designs were used for material characterization and for validation, re-
spectively. Results show a clear relation between available information (experimental data) and inference
(confidence intervals of parameters). A single relative humidity step is not informative enough for a precise
inference of moisture-dependent properties such as vapour permeability and moisture capacity. A two-step
experiment however holds enough information to significantly reduce parameter uncertainty.

Keywords HAM ; characterization ; MCMC ; identifiability

1 Introduction
Heat, air and moisture (HAM) transfer phenomena in porous building materials may be simulated with
various levels of detail, from simplified models (Effective Moisture Penetration Depth, Moisture Buffer Value)
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Table 1: List of abbreviations
HAM Heat, air and moisture
RH Relative humidity
MCMC Markov Chain Monte-Carlo
ACF Auto-correlation function
MLE Maximum likelihood estimator
FEM Finite-element method

to detailed FEM calculations of coupled transfer. In the latter case, the extensive knowledge of material
properties such as liquid conductivity, water vapour permeability and retention curve may be required for
an accurate prediction of these phenomena. This is problematic because of constraints on the measurement
of each of these properties: the estimation of a sorption isotherm is time consuming (ISO 12571, 2013); the
standard method for measuring water vapour permeability is also a time-consuming steady-state method
(ISO 12572, 2013) and its accuracy concerning highly hygroscopic materials has been questioned [14]; the full
profile of liquid conductivity requires specific equipment in addition to a simple moisture uptake test. Such
issues motivate the application of inverse methods for characterization, relying on dynamic measurements
interpreted by advanced algorithms.

The purpose of inverse problems is to learn the structure or the parameters of a model from the physical
observation of its outputs. Inverse methods are now well anchored in the field of heat transfer [4] and there
is a large, well-documented knowledge base for addressing their challenges [24, 25, 2, 21, 34]. In the general
field of building physics, inverse methods are applied in many particular cases, though without a systematic
reference for proper use. They are not quite as widespread as in other fields but are progressively gaining
interest because of their increasing accessibility to non-mathematicians. Possible applications may be, among
others: inverse modelling of multi-zone buildings [11, 22]; in-situ diagnostics of thermal properties [8, 7, 6];
model selection and calibration for thermal retrofit investigation [20].

Hygrothermal material property characterization is also a recent application of optimization-like algo-
rithms, because of its constraints mentioned above. They allow the interpretation of dynamic temperature
and concentration measurements, which contain more information than steady-state observations tradition-
ally used by standard methods. [5] address coupled heat and mass transfer and identify non-dimensional
transport and storage properties of several materials through a Levenberg-Marquardt optimization scheme.
[33] add regularisation to a Covariance Matrix Adaptation algorithm to identify the parameters of a coupled
HAM model. [13] show how the Moisture Buffer Value test can be improved by using its dynamic measure-
ments as observations in a Bayesian inference scheme. [28] also analyse dynamic RH measurements to infer
a mass diffusion coefficient of several hygroscopic materials. A common questioning in many applications of
inverse methods is: what level of detail can be reached in the description of each property (such as moisture
permeability, sorption isotherm), by harnessing a given set of observations. This question can be inversely
formulated: which experimental design, possibly with a moderate time cost, will yield the most informative
characterization of a given parameterization. This is the purpose of optimal experimental design [15].

Another important questioning, and a crucial step in the discussions on the results of an inverse problem,
is how reliable these results are. The main difficulty in solving an inverse problem arises from the combination
of its ill-posed nature and the amplification effect of the measurement noise [35]. In the case of linear inverse
problems, this is equivalent to inversing a badly-conditioned matrix [24]. The consequence is that small
measurement errors may result in large error on parameter estimations. Thus, the identifiability of each
parameter is not always guaranteed: the solution of an inverse problem must therefore be presented along
with a measure of its reliability. We will argue that the application of an inverse technique should be assorted
to a form of sensitivity or identifiability analysis [9, 31]. Other difficulties may be added: the search space
dimension, or number of unknown parameters, quickly increases the computational time required to solve a
problem; a proper parameterisation of the model, though essential for its identifiability, is not always trivial;
etc.

The present work is the hygric characterization of wood fibre insulation boards. Material samples were
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placed in a controlled environment and submitted to stepwise RH variations. Measurements of their weight
and internal humidity were then interpreted by a Markov Chain Monte-Carlo (MCMC) algorithm to estimate
their moisture permeability and sorption isotherm. The results of this parameter estimation phase were then
validated against observations from a second experiment, in an entirely different setup.

It is an attempt at identifying a somewhat higher number of parameters than recent similar studies
[13, 28]. Because of this ambition, some caution should be exercised once the outcome of the inversion
algorithm is available. The reliability of identified parameters relate to their identifiability in the outline of
the problem: model structure and available data. Bayesian inference, implemented by the MCMC algorithm,
was applied for the interpretation of dynamic RH and sample weight measurements, after stepwise RH
variations in a controlled environment. This allowed estimating a set of seven parameters along with their
confidence intervals. Although we do not demonstrate a rigorous identifiability analysis, we wish to provide
some guidelines for a cautious interpretation of the results of HAM characterization. This was done by
analysing posterior correlations between parameters and pairwise likelihood profiles [31] to detect eventual
non-identifiability. As a last step, characterization results were validated on the basis of a second experimental
design, in which samples were submitted to outside weather boundary conditions.

The paper is made of three main sections.
• Sec. 2 describes the scope of the study and provides general considerations on HAM modelling,

characterization, Bayesian inference and identifiability analysis;

• Sec. 3 describes the hygric characterisation of wood fibre: experimental setup, parameterization and
discussion on results;

• Sec. 4 is the validation phase: a separate experimental design is presented and its measurements are
compared to predictions arising from the characterization phase.

2 Background
2.1 HAM modelling
The physical phenomenon under investigation is the one-dimensional water vapour transfer inside a single
material sample. The modelling of heat and moisture transport processes in open porous material was dealt
with in the main theory of [29] and adapted to building components [23]. Assuming that liquid transfer is
overlooked, the mathematical model for moisture transport Eq. 1 and boundary condition Eq. 2 are written
here with the vapour pressure pv as driving coefficient.

∂w

∂t
−∇ · [δp∇pv] = 0 (1)

−δp∇pv = hm (pv,amb − pv) (2)
where w (kg/m3) is the volumetric moisture content and δp (kg/(m.s.Pa)) is the water vapour permeabil-

ity. The boundary condition Eq. 2 involves a surface transfer coefficient hm (kg/(m2.s.Pa)) and the ambient
vapour pressure pv,amb.

Due to the high dependency of moisture transfer to temperature gradients [29], the temperature distribu-
tion within a medium is generally calculated by solving the heat conservation equation along with moisture
conservation equation:

(cpρ+ cp,lw) ∂T
∂t

+ (cp,lT ) ∂w
∂t
−∇ · [λ∇T + Lvδp∇pv] = 0 (3)

where cpρ [J/(m3.K)] its volumetric thermal capacity and λ [W/(m.K)] its thermal conductivity. cp,l and
Lv are the specific heat and latent heat of evaporation of water.

Although the present work only focuses on characterising moisture transport and storage properties, Eq.
1 and 3 will be solved in a fully coupled fashion. The HAM modelling tool used for this purpose is the
Hamopy Python package [32].
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2.2 HAM characterization
The evolution of relative humidity and moisture content within a material is predicted by Eq. 1. This equa-
tion involves transport and storage coefficients, which must be estimated by experimental characterization
methods.

The most common measurement procedure for vapour permeability is the steady-state cup method,
following the standard (ISO 12572, 2013). Its principle is to measure a steady mass variation under a
controlled vapour flow driven by a difference of RH between both sides of a sample. The mass uptake or
decrease profile of the whole cup is then linked to the vapour permeability of the sample. Since the vapour
permeability is moisture dependent, a dry and wet cup experiment can be carried with different RH levels.
This test is standard and widely used, but its ability to characterise highly hygroscopic materials has been
questioned [14]. Because the method does not account for the variation of total pressure within the cup,
advective vapour transfer is overlooked. In the case of a very permeable material, this implies that the
permeability may be underestimated.

The storage function is traditionally measured by gravimetric methods (ISO 12571, 2013). Material
samples are successively placed in different relative humidity conditions controlled by salt solutions. The
equilibrium mass uptake is then measured at each point. These methods are highly time consuming, as
several points are required to draw a sorption isotherm curve, each of which may only reach equilibrium
after several weeks.

Some recent works have attempted to overcome these long characterization periods, by using dynamic
measurement data instead of steady-state methods. [33] use the Covariance Matrix Adaptation evolutionary
algorithm to solve the optimization problem of fitting a HAM model on dynamic temperature and RH
observations. [28] apply another gradient-free optimization algorithm (Simplex) to minimize the residuals
between RH measurements and predictions, and estimate the moisture diffusivity of spruce wood and fiber
board without reaching mass equilibrium. [13] use the Moisture Buffer Value experimental protocol to
derive more material properties than just the moisture buffering capacity. These papers show that HAM
characterization can be solved as an inverse problem, where the accuracy of the outcome depends on the
available data. The present work pursues the same target and applies the Bayesian inference technique
described below.

2.3 Bayesian inference
2.3.1 Principle

In the Bayesian framework, all quantities are stochastic variables and carry a certain amount of uncertainty.
As opposed to deterministic methods seeking to find only a single solution for an inverse problem, Bayesian
inference describes sought parameters as probability density functions and returns not only point and spread
estimates of the likely solutions, but also a complete description of their uncertainty, conditioned by potential
measurement noise and inaccuracy [34]. Solving inverse heat transfer problems in the Bayesian framework
is fairly recent [21, 38], but already has several interesting examples in the building physics field. These
applications mainly fall within two categories: the calibration of building energy models [40, 20], and the
characterisation of thermal properties of materials and components [7, 6].

The principle of Bayesian inference is to update an initial probability distribution describing a prior
knowledge on the unknown θ into a posterior distribution accounting to knowledge gained by observation.
The basis for it is the Bayes theorem:

p (θ|y) ∝ p (y|θ) p (θ) (4)

• p (θ) are the prior distributions of the parameter vector θ, describing all initial knowledge the expert
may have. The prior is generally a result of subjective information.

• p (y|θ) is the likelihood of observations given model parameters. It gives the relative probability density
of measurement outcomes y with a fixed θ.
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• p (θ|y) is the posterior distribution of θ, i.e. its probability density given observations.

Bayesian inference inherently introduces a bias in the solution of the inverse problem. Indeed, the solution
will always be a compromise between the prior knowledge on θ and the information brought by observations.
The respective weight of these two (sometimes contradictory) sources of information is determined on one
hand by the quantity of available data, and on the other hand by the refinement of the prior distribution.
Whether or not the expert has a strong initial opinion on the supposed value of the parameters, will influence
the solution. In terms of inverse problem theory, the role of the prior is equivalent to a form of regulari-
sation: it helps overcoming the ill-posedness of the problem, and to increase the identifiability of unknown
parameters.

Note that the characteristics of noise are not necessarily known. If they are not, this information can be
captured by incorporating the parameters controlling noise distributions into the problem unknowns [38].
Similarly, the exact position of temperature and humidity sensors may be uncertain: the Bayesian framework
allows stating a prior knowledge on this position as a probability density function instead of a single value.
This uncertainty then propagates towards the confidence intervals of the estimated parameters.

2.3.2 Metropolis-Hastings algorithm

In the generic case where the formulation of the likelihood function is the outcome of a grey-box or black-box
model, the posterior distribution p (θ|y) cannot be expressed analytically. A numerical sampling method is
then required to provide a series of samples which approximate the posterior distribution. The Metropolis-
Hastings (MH) algorithm [19] is one of the Markov Chain Monte Carlo (MCMC) methods and is used here
for this purpose.

A Markov Chain is a sequence of random variables {xn, n = 0, 1, 2, . . . } which satisfy the following
property: p (xn+1|xn, xn−1, . . . , x0) = p (xn+1|xn), i.e. the transition from the state n to the state n + 1
depends solely on the current position, and not on previous ones. MCMC methods, including the MH
algorithm, are designed to generate a sequence that will approximate a specific probability distribution at
n→∞ [17].

The chain starts with an initial guess θ0. Each iteration of the chain from the state n to n+ 1 then runs
the following steps [21]:

1. Propose a new state θ′ from a proposal distribution q (θ′|θn)

2. Calculate the acceptance ratio α of the new candidate:

α (θ′|θn) = min
[
1, p (θ′|y) q (θn|θ′)
p (θn|y) q (θ′|θn)

]
= min

[
1, p (y|θ′) p (θ′) q (θn|θ′)
p (y|θn) p (θn) q (θ′|θn)

]
(5)

This step requires calculating the likelihood p (y|θ′): this counts as one evaluation of the model.

3. Accept the candidate θ′ with probability α (θn+1 = θ′) or reject it with probability 1− α (θn+1 = θn)

This algorithm generates a sequence {θn, n = 0, 1, 2, . . . } which accurately represents the posterior distri-
bution if the chain is long enough. An explanation on the meaning of “long enough” is given below. At
each iteration, α is the probability for a new candidate to be accepted as the new state of the chain. Step 3
means that candidates which offer a likelihood improvement are systematically accepted, while candidates
which imply a likelihood decrease have some chance of being accepted. This allows the posterior space to
be highly explored

The only available lever for the user is the choice of proposal distribution q (θ′|θn). A good choice for
q is crucial in order to improve the performance of a chain (i.e. how fast it will converge to a stationary
distribution). The most common choice is a random walk proposal: θ′ = θn + γ, where γ is a vector
of random variables with a distribution centered around zero, either uniform or Gaussian, with a specific
width. This width will directly influence the acceptance rate of the chain, as is illustrated by [21]: too high,
it results in a high rejection rate of candidates and thus generates a stationary chain; too low, the chain
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Figure 1: Up: trace and autocorrelation function (ACF) of a parameter before burn-in and thinning. The
beginning of the chain must be discarded until the tuning of the adaptive proposal distribution is over.
The chain is also strongly autocorrelated and thus requires thinning. Down: trace and ACF after sufficient
burn-in and thinning. The ACF has decreased sufficiently and the remaining samples can be considered
representative of the posterior distribution.

takes a very long time to explore the state space and generate independent samples. Since a good initial
guess for the proposal distribution q (θ′|θn) is not elementary, we use an adaptive scheme [18]: the width of
the distribution is regularly tuned according to the evolution of the acceptance rate. It is reasonable to aim
for an acceptance ratio between 20% and 50%.

The first convergence diagnostics of an interrupted chain is a visual examination of its trace in each
dimension of the search space. This matter is illustrated on Fig. 1. In the sense of MCMC, convergence
means stationary traces with low auto-correlation. First, all samples during which the chain is exploring the
state space must be discarded since they are not representative of the posterior distributions: this is denoted
as the burn-in period and can typically cover the first half of the chain. Such a period is visible on the 2,000
first samples of the chain shown on the upper left part of Fig. 1. Then, the chain still produces correlated
samples because of the nature of the stepping procedure described above. The number of samples kept after
the burn-in period must then be reduced by a thinning factor of up to 10. The criterion for an appropriate
thinning factor is the autocorrelation function of the trace (see right part of Fig. 1), which must quickly fall
to values below 0.1.

The stopping criterion of the chain is when it correctly represents independent samples from the posterior
distribution. Convergence diagnostics are essential for assessing whether the chain can be stopped or if it
needs further burn-in or thinning. Many methods exist for convergence diagnostics in a less empirical way
[16, 27]. Some trial and error may be necessary until convergence can be judged satisfactory, but should not
be much of a practical issue since a chain can be paused, examined, and resumed if necessary.
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2.4 Parameter identifiability
The notion of identifiability can be defined as the possibility for a parameter to be correctly estimated, given
a specific set of measurements and model structure. A parameter is identifiable if the confidence interval of
its estimate is finite [31]. It relies on the sensitivity of the parameter, i.e. its importance in the model, but
also on the type of available measurements. A typical cause for a low identifiability is either an inconvenient
parametrization of the problem, or insufficient observations.

Sensitivity is not a sufficient condition for identifiability: a parameter may have a strong influence on a
model output without being easily identifiable. This is typically the case when two or more parameters are
strongly coupled by the way the problem is parameterized. A model calibration problem may be unsolvable
as two parameters are pairwise dependent and exhibit any number of combinations as possible solutions. In
the case of inverse heat transfer problems, a good example for this is when attempting to estimate both the
thermal conductivity λ and capacity cp from a single series of temperature measurements: only their ratio
(thermal diffusivity) may be identified, leading to an infinite number of solutions for λ and cp. The matter of
identifiability becomes a crucial issue when large models are involved [9], impaired by an overparametrization
with respect to the available observations, or when these observations are partial [31].

Structural identifiability, or theoretical identifiability [3], is satisfied if the following condition is met [37]:

M (θ, u) =M (θ∗, u) =⇒ θi = θ∗i (6)

In other words, an identifiable model structure yields distinct outcomes with distinct parameters: structural
identifiability relates the identification accuracy to the parameterisation of the problem. In [36], a quanti-
tative measure of this identifiability is given by the formulation of a data-independent information matrix,
assuming a linear model structure. This allows the authors to reduce the parameterization dimensionality
towards the best parameter identifiability.

Practical identifiability [9] relates the parameter estimation to the experimental design (type and amount
of measurements), independently from the model structure. To test for data-dependent identifiability, [1, 12]
consider the Fisher information matrix which bounds the covariance of the parameter estimation error. [12]
calculate this matrix based on a pre-estimation data set in order to filter out non-influencial parameters.

In the present work, the model structure is not linear and there is no explicit formulation of the sensitivity
matrix. Nonidentifiability of parameters will therefore be detected a posteriori in the form of a strong
correlation in the posterior density [30], and related to the size of likelihood-based confidence intervals [31].
Adding a rough identifiability analysis to a HAM characterization problem is one of the novelties of the
present work.

3 Identification
A first experimental setup is used for the identification of moisture transport and storage properties of wood
fibre insulation boards. Validation of these results will then follow in Sec. 4.

3.1 Experimental setup
The test facility, called RH-Box and shown on Fig. 2(a), is made of two connected climatic chambers. The
temperature is controlled with a thermostatically-controlled water bath allowing water to circulate in a heat
exchanger inside the chamber. In each chamber, RH is independently controlled by saline solutions. Two
locks, at each side, allow the operator to insert or remove samples while minimizing system disturbances. An
airlock links the two chambers and facilitates an instantaneous change in humidity for samples while passing
from one box to another. Two fans, operating continuously, allow to homogenize air inside box when saline
solutions are renewed. A more thorough description of the experiment was given by [10].

The sensors for measuring the RH and the temperature inside the samples and RH-Box are HygroPuce
from Waranet, with an accuracy of ± 2% RH and ± 0.5◦C. These are wireless sensors, 0.6 cm thick and 1.6
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(a) (b)

Figure 2: (a) RH-Box: double climatic chamber regulated in temperature and relative humidity (b) Setup
of material samples and sensors inside the box
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Figure 3: Stepwise imposed RH within the box, and records of sample weight and internal RH: (a) Increasing
RH, (b) Decreasing RH

cm in diameter. The sample weight evolution is recorded by a precision scale (± 0.2 mg) placed outside the
chamber, linked to a suspended plate within the box and connected to an automatic recording system.

The material investigated here is wood fibre insulation, the same that was used in the French collaborative
project Hygrobat [39]. Samples are cylindrical, with a 10 cm diameter and 8 cm thickness. Their setup is
schematically shown on Fig. 2(b): to ensure one-dimensional moisture transfer, the side and bottom surfaces
of samples were covered with aluminium tape, glued on a white acrylic seal. In addition to weight monitoring,
RH sensors were inserted within the samples: either one, two or three sensors. The present study only focuses
on one sample, in which a single RH sensor was placed at the bottom (see Figure 2(b)).

The experimental protocol is based on the study reported by [28], where mass diffusion coefficients were
determined by inverse methods as well. The experiment consists in submitting one face of the samples to
variations of RH, while measuring RH on its back face. In our case, weight monitoring is an addition to the
initial protocol of [28].

The samples were first pre-conditioned and dried in an oven at 70◦C and 10% RH. They were then
placed in the RH-Box and submitted to three successive steps: 33% with a MgCl2 solution, 75% with a
NaCl solution, and 33% again. Measurements obtained from this protocol are displayed on Fig. 3, where
increasing and decreasing RH phases are separated.

3.2 Parameterization
For the purpose of parameter identification, all unknown properties of the mathematical problem (Eq. 1 and
2) must be summarised into a finite parameter vector. A proper choice of parameterisation is the key to a
successful and informative characterisation procedure, as previously explained in Sec. 2.4.
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• The vapour permeability δp is a function of the relative humidity. It is modelled by a piecewise linear
interpolation of log(δp) between three unknown values δp,25%, δp,50% and δp,75%.

• The surface transfer coefficient hm is considered unknown.

• The sorption isotherm is modelled by a third-degree polynomial. This assumption is generally correct
within the hygroscopic range, if the moisture content does not exceed the capillary threshold. The
moisture retention curve is represented by three unknown scalar values ξ25%, ξ50% and ξ75%, which are
the values of the moisture capacity ξ at RH = 25%, 50% and 75% respectively:

ξ = ∂w

∂RH (7)

These choices for the formulation of material properties result in an unknown parameter vector θ of dimension
n = 7:

θ =
{
hm, δp,25%, δp,50%, δp,75%, ξ25%, ξ50%, ξ75%

}
(8)

Since the heat conservation equation 3 is being solved, the modelling relies on the values of thermal properties.
These properties have been measured separately: λ = 0.038 W/m.K; ρ = 146 kg/m3; cp = 1103 J/kg.K.

This parameterization is purposely more descriptive than recent similar studies [13, 28]. The reason is that
we wish to investigate whether the available data is sufficient to learn generic shapes of the sorption isotherm
and permeability profiles, and to demonstrate identifiability issues arising from parameter interactions.

Measurements gathered in the increasing and decreasing RH phases were used separately in two runs
of the MCMC algorithm, in order to obtain two sets of values for θ. The target is to identify the sorption
and desorption curves separately, and to ensure that the permeability has roughly the same value in both
directions.

3.3 Results
Two runs of the MCMC algorithm were performed, labelled Sorption and Desorption below, according to
the data set used as observations (Fig. 3(a) and 3(b), respectively).

3.3.1 Fitting and residuals

In the following, W denotes the mass variation of a sample since the beginning of a measurement period,
i.e. the total water content uptake or loss over its volume V at time t:

W (t) =
∫
V

(wt − wt=0) dV (9)

Results of the MCMC search are first displayed in terms of fitting between observations yD and predictions
y. Fig. 4(a) and 4(b) respectively show the fitting of RH and W in the increasing and decreasing RH phases,
respectively. The set of parameters used for this prediction is the mean of the posterior distribution in each
of its dimensions θ̄. Fig. 4(c) and 4(d) respectively show the mean residuals r(θ̄) = y(θ̄)− yD.

An accurate estimation of the real material properties should yield uncorrelated residuals [25]. The graph
of r(θ̄) should resemble a profile of white noise, for the model structure to accurately recreate the physical
phenomenon and the estimator θ to be correct.

In the present results, the mean residuals r(θ̄) are not entirely uncorrelated: in addition to noise, average
variations of roughly ±2% RH and ±0.2 g can be seen on 4(c) and 4(d). In addition, the RH residuals of
the sorption phase occasionnally show higher deviations of up to 7 % RH. This suggests two possible, non
mutually exclusive explanations:
• An inadequacy of the model due to some simplification in its formulation;

• RH or W measurement error that varies in time, possibly caused by an uncontrolled part of the
experimental setup.

This uncorrelated error should however be put in perspective as its order of magnitude is low.
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Figure 4: Average fitting of RH and mass observations: (a) increasing and (b) decreasing steps. Below:
residuals between observations and maximum likelihood estimator

3.3.2 Parameter values

Prior to the present study, the wood fibre boards under investigation have had their hygrothermal properties
characterized within the Hygrobat project [39]. Specifically, its water vapour resistivity has been measured by
the standard wet cup and dry cup technique (ISO 12572, 2013), while its sorption and desorption isotherm
were measured by gravimetric techniques (ISO 12571, 2013). A reference value for these parameters is
therefore available for comparison.

The first identified parameter is the surface transfer coefficient hm influencing the boundary condition
Eq. 2. As already mentioned, it has been identified twice: using sorption and desorption separately (Fig.
3(a) and 3(b), respectively). Fig. 5 displays its posterior distributions in both cases.

The first observation concerning this result is how broad the posterior distribution of hm is in the
desorption experiment, compared to the sorption one. A trivial explanation would be because the desorption
experiment is shorter and only consists in one relative humidity step, whereas the sorption experiment has
two. More observations imply more information and more knowledge gained on the parameter. The second
observation is that both distributions hardly overlap, although this parameter should roughly yield the same
value in both cases, because of a similar experimental design. However, according to [28], this parameter
only has a mild influence on the solution of the forward problem. This could explain some difficulty in its
identification.

The apparent moisture permeability profiles are then shown on Fig. 6, for both the sorption and the
desorption experiment. For each of them, the coloured area is the 95% confidence interval, i.e. the area
delimited by the limits of the 95% confidence intervals on the posterior distributions of δp,25%, δp,50% and
δp,75%. The uncertainty arising from the desorption experiment is again much higher than from the sorption
one, as was seen on the posterior distributions of hm.

Another important observation is how high the identified values of moisture permeability are. In order for
model predictions to fit with measurements, the search algorithm returns values for δp which are up to ten
times higher than from the wet cup and dry cup experiments. This result correlates previous observations
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Figure 7: Sorption and desorption isotherms with 95% confidence intervals, compared to reference measure-
ments

from validation studies [39]. If this were only explained by purely diffusive water vapour transfer, this
would amount to resistance factors lower than 1, i.e. vapour diffusion is faster than in air. In this highly
hygroscopic and permeable material, a possible explanation is that this apparent permeability includes effects
which are not explicitely formulated in Eq. 1: a significant air permeability of the material driving moisture
by convection.

The identified sorption and desorption isotherm profiles are displayed on Fig. 7. of ξ25%, ξ50% and ξ75%,
with 95% confidence intervals. The curves are only displayed up to RH 80%, which is the highest humidity
reached by the experiment.

The sorption isotherm can be seen to fit very well with the reference measurements from the original
material characterization. Its confidence intervals are very narrow, suggesting that the measurement period
(four weeks, see Fig. 3(a)) can be shortened without compromising the identification uncertainty. This can
be seen as a very satisfactory improvement from the traditional method. The desorption curve however has
broader confidence intervals, since only one stepwise change, from 75% to 33% RH, was imposed on the
samples for this phase of characterization. Its position with respect to the sorption curve is coherent, but
does not extrapolate well outside of the RH range of the experiment. Around 75% RH, the curvature of
both the sorption and the desorption curve are underestimated as a result of the lack of observations above
this humidity range.

3.3.3 Identifiability

A posterior distribution may be well refined yet inaccurate: this may happen in case of an inappropriate
model structure, or if the measurement error is not an independent and identically distributed (iid) random
variable [25]. We therefore need a measure for the quality of identification results besides posterior refinement.

As previously mentioned, non-identifiability of parameters can be highlighted as a strong correlation
among parameters in the posterior density [30]. This can be a direct consequence of an overparameterized
model, or of non-informative data. For explicit models structures, the origin of non-identifiability may be
distinguished a priori by calculating structural information and Fisher information matrices [1]. [30] however
points out that it may be impossible for complex models to recognize overparameterization a priori.

Our focus lies on a posteriori detection of parameter correlations on the basis of two-dimensional likelihood
regions. The weighted sum of squared residuals measures the agreement of experimental data with model
predictions, given a parameter set θ:

r2 (θ) =
m∑
k=1

d∑
l=1

(
yDkl − yk(θ, tl)

σDkl

)2

(10)

where yDkl denotes d data points for each observable k (relative humidity and weight), measured at time-points
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tl (we followed symbols chosen by [31]). σDkl are the corresponding measurement errors. The r2 indicator is
related to the likelihood L by:

L(θ) ∝ exp
[
−1

2r
2(θ)

]
(11)

Therefore, the maximum likelihood estimate (MLE) θ̂ minimizes r2 over the search space, under the assump-
tion of iid measurement noise of standard deviation σD. Following the definition of [26], [31] translate the
r indicator into two-dimensional likelihood-based confidence regions using a threshold in the likelihood. An
approximate 100(1− α)% likelihood-based confidence region for θ is the set of all values such that

−2 log
[
L(θ)
L(θ̂)

]
= r2(θ)− r2(θ̂) < χ2

1−α,k (12)

where χ2
1−α,k is the 1 − α quantile of the chi-square distribution with k degrees of freedom, k being the

number of parameters [26]. As a consequence, there is a direct link between the value of r2 of each sample
of the posterior distribution, and confidence intervals.
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(a) (b)

Figure 9: Experimental setup for the validation exercise: (a) PASSYS test cell and (b) sensor locations
within the wall

Fig. 8 is the matrix of pairwise posterior distributions between each of the 7 parameters obtained from
the sorption experiment. Each pairwise scatter plot accounts for a visual representation of the correlation
between two parameters, with an additional information: the color scale indicates the value of r2(θ) −
r2(θ̂), i.e. log-likelihood of each sample relatively to the MLE. The first observation from Fig. 8 is the
presence of two groups of correlated parameters: first, hm is negatively correlated with each component
of the permeability δp,25%, δp,50% and δp,75%, which are positively correlated to each other; then, a strong
correlation between each component of the moisture capacity ξ25%, ξ50% and ξ75% can be seen as well.

Our interpretation of these results is the following:

• Although hm interacts with the parameters of moisture permeability, it is most likely not an important
constraint on the identification procedure. Some authors [28] found that the external mass transfer
coefficient has a negligible effect on the identified value of moisture diffusivity. Moreover, likelihood-
based confidence intervals between hm and δp seem finite.

• The apparent moisture permeability δp seems overparameterized, or the available data does not seem
sufficient to estimate a profile of permeability described by three variables. The results shown on Fig.
6 should therefore be seen with caution.

• The interaction between parameters of the moisture capacity ξ is not problematic, because of how well
the sorption isotherm fits reference data (see Fig. 7)

4 Validation
A choice of material description was made in Eq. 8 and these parameters have been identified from the
experiments and the MCMC algorithm, along with their confidence intervals. We now wish to validate these
results with a second experimental setup, accounting for parameter value uncertainty.

4.1 Experimental setup
The experimental validation of the identification procedure is attempted on the basis of measurements
previously gathered in the frame of the HYGROBAT project [39]. This project aimed at establishing tools
to precisely quantify the impact of mass transfer on heat transfer in highly hygroscopic materials. One of
the implemented experimental facilities were PASSYS test cells shown on Fig. 9(a).

An instrumented wall is exposed on one side to controlled boundary conditions, and to the exterior
weather on the other side. The wall is made of a 16 cm layer of wood fibre board, which is protected
from solar radiation and wind-driven rain by a permeable coating. Temperature and RH sensors were evenly
distributed within the wood fibre layer, every 4 cm (Fig. 9(b)). These sensors provide observation data which
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Figure 10: Validation results: (a) x = 4cm, (b) x = 8cm, (c) x = 12cm

will be used for comparison with model outputs. More details on the experimental design are available in
[33]. The conditions on each side of the instrumented layer are recorded by sensors placed at the material
surface: the boundary conditions of the simulation are prescribed temperature and vapour pressure. Eq. 2
is thus replaced by a Dirichlet condition in the following simulations.

A measurement sequence of 7 days is used in this validation phase. The interior temperature is constant
at 20◦C and the relative humidity follows a 50%-75% step after two days of equilibrium. The exterior
boundary conditions used in the simulations are given by the temperature and relative humidity measured
at the interface between the wood fibre board and the external coating. Only the wood fibre layer is
simulated.

4.2 Results
Simulations are a FEM implementation of Eq. 1 and Eq. 3, where coupling effects of heat and moisture
transfer are significant. The material is described by the identified set of parameters and their uncertainty:
instead of a single simulation, it is repeated 100 times by drawing parameter samples from the posterior
distribution. The deviation between each simulation defines a range of uncertainty for the relative humidity
predictions at the locations of the sensors within the wall: x = 4cm, x = 8cm and x = 12cm. Parameter
values and uncertainties were averaged between the outcome of the sorption and desorption identification
experiments. This does not account for a real hysteresis model for the sorption isotherm, but was considered
adequate in the present case. Results are shown on Fig. 10

The grey area around RH observations depicts a measurement uncertainty of 2%RH, and the area around
the mean prediction profiles are the 95% confidence intervals for RH calculations. The agreement between
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measurements and predictions can be seen to be very satisfactory. It is noteworthy that this validation
exercise has a radically different setup from the first experiment used for parameter characterization. A
better agreement could likely still be reached by including a sorption isotherm hysteresis model, which
would better capture desorption phases.

5 Conclusion
The present work showed the hygric characterization of wood fibre insulation boards. Material samples
were placed in a controlled environment and submitted to stepwise RH variations. Dynamic easurements of
their weight and internal humidity were then interpreted by a MCMC algorithm to estimate their moisture
permeability and sorption isotherm. The reliability of identification results was then evaluated by a posteriori
parameter correlations, which may indicate the relevance of the chosen parameterization. The results of
this parameter estimation phase were then validated against observations from a second experiment, in an
entirely different setup. This validation phase confirmed that characterization results could be successfully
extrapolated to another experiment.

• It is not necessary for the model structure to have a differentiable analytical formulation. The MCMC
algorithm is derivative-free and returns a description of the unknown parameters in the form of posterior
probability distributions.

• It is not necessary for material samples to reach mass equilibrium between each RH step of the exper-
imental process. A dynamic set of boundary conditions with relatively fast fluctuations holds enough
information for the inference of the sorption isotherm, if both sample weight and internal RH are
recorded dynamically. This allows for a significant time reduction of the experiments compared to
standard steady-state methods.

• A single RH step is not informative enough for a precise inference of moisture-dependent properties
such as vapour permeability and moisture capacity: the two-step sorption experiment yields results
with a noticeably lower uncertainty than the one-step desorption experiment.

• The examination of interactions between parameters can easily be done a posteriori, in order to quali-
tatively estimate the reliability of identification results. This is an important step if the model is likely
to be overparameterized.

The first possible application of these results is the development of a new protocol for fast and exhaus-
tive numerically assisted characterisation, improving traditional methods at the laboratory scale. In this
particular case, the experimental observation period could be reduced to a month for a joint identification of
moisture permeability and sorption isotherm. This time can most likely be reduced further, either by only
harnessing the beginning of each observation step, or by designing the experiment (RH values and duration)
to maximize the information gained by inference: this is the purpose of Optimal Experiment Design, which
aims at improving identification accuracy within a shortened time frame.

The second possible application is at the building scale: a local estimation of the hygrothermal features
of a building envelope may allow a better diagnosis in the prospects of building retrofitting. An example
of this was done by [6] in a problem of one-dimensional heat transfer. However, a necessary condition for a
successful parameter estimation is that the model used for inference accurately represents the complexity of
the physical system, and sensor information is sufficient to capture it. The in-situ characterisation of real
building components featuring thermal bridges and effects of 2D or 3D transfer is therefore a challenge.
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[39] Monika Woloszyn. Vers une méthode de conception HYGRO-thermique des BATiments performants:
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