
HAL Id: hal-01437137
https://hal.science/hal-01437137v1

Submitted on 19 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DSL-based Approach for Elasticity Testing of Cloud
Systems

Michel Albonico, Amine Benelallam, Jean-Marie Mottu, Gerson Sunyé

To cite this version:
Michel Albonico, Amine Benelallam, Jean-Marie Mottu, Gerson Sunyé. A DSL-based Approach
for Elasticity Testing of Cloud Systems. Domain-Specific Model Workshop, Oct 2016, Amsterdam,
Netherlands. �10.1145/3023147.3023149�. �hal-01437137�

https://hal.science/hal-01437137v1
https://hal.archives-ouvertes.fr

A DSL-based Approach for Elasticity Testing of Cloud
Systems

Michel Albonico1,2, Amine Benelallam1, Jean-Marie Mottu1, and Gerson Suny�e1

1AtlanModels team (Inria, Mines Nantes, Lina), France

Email: {amine.benelallam, jean-marie.mottu, gerson.sunye}@inria.fr

2Federal Technological University of Paran�a (UTFPR), Brazil

Email: michelalbonico@utfpr.edu.br

ABSTRACT
Elastic cloud systems automatically respond to workload
changes by (de-)allocating resources according to a con�g-
uration speci�cation. Testing such systems requires e�ort
from the tester. In particular, the tester is brought to spec-
ify the sequence of resource variations he/she is willing to
test the system under, and then, drive the system through
this speci�c sequence of variations while the test is being
executed. In this paper, we propose a Domain Speci�c Lan-
guage (DSL) aiming at reducing the tester's e�ort to write
and execute elasticity testing. Our DSL abstracts test case
speci�cation from the cloud provider's libraries, making our
language portable. The DSL compiles into executable code
that implicitly orchestrates the execution of elasticity test-
ing. In our preliminary results, we show that our approach
reduces the amount of words to specify test cases w.r.t. ded-
icated libraries. It also shows how much this improvement
scales when running a test on multiple cloud providers.

1. INTRODUCTION
One of the core design principles in cloud-based systems

(a.k.a. cloud systems) is resource auto-scaling, also known as
elasticity. It is de�ned as the ability of a cloud infrastructure
to vary its resource con�guration according to demand (in
particular allocating or deallocating resources) [4, 7, 15, 8].
However, due to dynamic resource allocation, a new class
of issues may arise and cause the cloud system to fail [6].
In response to this matter, several work [11, 16, 10, 13, 12,
6] have been proposed to address elasticity testing of cloud
systems.
Gambi et al. [13] propose a conceptual framework for test-

ing elastic cloud systems that helps tester to manage four
activities: test case generation, test execution, data analy-
sis, and test evolution. In this paper, we focus on the �rst
two activities. While, the �rst activity generates test cases
in order to attend tester's speci�cation, the second activity
runs test cases against the cloud system.
These two activities require tester's e�ort to design and

implement test cases, and to deploy and con�gure cloud sys-
tem repeatedly to run each test case. In test cases, tester
speci�es (a) how the system should be set up before run-
ning the test, (b) the test scenario (e.g. which request(s)
is sent to verify a speci�c behavior), (c) how the system is

supposed to behave correctly or not. That speci�cation re-
quires information dedicated to the elasticity. This includes
the elasticity workow, i. e., through which elasticity con�g-
uration the cloud system is led (e. g., sequence of resource
allocation and deallocation). To manage the elasticity work-
ow, workload must be properly generated. The deployment
and (re-)con�guration of the cloud system also includes load
generators setup, setting auto-scaling on cloud provider, (re-
)starting cloud system components, etc.
Considering elasticity in test cases is complicated since

it requires managing many parameters. Cloud providers,
such as Amazon Elastic Compute Cloud (EC2)1 and Google
Cloud Compute Engine (CE)2, usually provide Command-
line Interfaces (CLI). CLIs help the tester to setup elasticity
when testing since they abstract cloud system deployment,
management, including elasticity's parametrization. How-
ever, they admit wide variability of cloud system con�gu-
ration, more than necessary for elasticity testing. Further-
more, each cloud provider has its own CLI, which preclude
portable commands (that execute over any cloud provider).
In this paper, we propose a generic Domain Speci�c Lan-

guage (DSL) for elasticity setup when testing cloud systems,
helping to generate and execute test cases. Our approach
alleviates test case generation by centralizing the elasticity
setup in this dedicated language, whereas the other part of
a test case can be implemented as usual (e.g. in JUnit)
This DSL helps tester to set up cloud system and its depen-
dencies, auto-scaling, desired elasticity workow, and test
execution schedule. Then, it is compiled to a code that auto-
matically executes elasticity testing, without further tester's
interaction. In preliminary results, our DSL reduces the
number of words to setup elasticity testing, and requires
lower tester's e�ort to adapt a test case to be executed on
several cloud providers.
The paper is organized as follows. Section 2 introduces

some background. Section 3 describes the DSLs for elastic-
ity testing setup. Section 3 describes how speci�cations are
compiled to executable code. Section 5 discusses about the
preliminary results using our approach. Section 6 reports
the related work, and Section 7 concludes and lists perspec-
tives.

1https://aws.amazon.com/ec2/
2https://cloud.google.com/compute/

2. BACKGROUND
In this section, we describe major aspects of cloud com-

puting elasticity, which help understanding our DSL-based
approach. We also remain Thiery et al. [19] DSL for setting
up deployment of cloud systems.

2.1 Cloud Computing Elasticity
Main cloud infrastructures [1] admit by default threshold-

based auto-scaling (i. e., elasticity). Figure 1 depicts a typi-
cal threshold-based elasticity. In this �gure, we see that re-
source demand (continuous line) varies overtime, such varia-
tion essentially follows workload variation. For explanatory
reasons, we only consider a resource demand that increases
from 0 to 1.5, then decreases to 0.

1.5

Resource Allocation
Resource Demand
Scale-out Threshold

Scale-in Threshold
Scale-out Threshold Breaching
Scale-in Threshold Breaching

Time (s)

R
es

ou
rc

e
(P

ro
ce

ss
or

s)

2

1

0.4

0.8

1.6

scale-out reaction time

scale-out time scale-in reaction time

scale-in time

Legend

Figure 1: Representation of Cloud Computing Elasticity.

When resource demand exceeds the scale-out threshold
and remains higher during the scale-out reaction time, cloud
elasticity controller assigns a new resource. The new re-
source becomes available after a scale-out time, the time
cloud infrastructure spends to allocate it. Once the resource
is available, the threshold values are updated accordingly. It
is similar considering the scale-in, respectively. Except that,
as soon as the scale-in begins, the threshold values are up-
dated and the resource is no longer available. Nonetheless,
the infrastructure needs a scale-in time to release the re-
source.

2.2 Elasticity States
When applications are deployed on a cloud infrastructure,

workload uctuations lead to resource variations (elasticity).
These variations drive the application to new, elasticity-
related, states. Figure 2 depicts the runtime lifecycle of an
application running on a cloud infrastructure.
At the beginning the application is at the ready state

(ry), when the resource con�guration is steady (ry s sub-
state). Then, if the application is exposed for a certain time
(scale-out reaction time, ry sor substate) to a pressure that
breaches the scale-out threshold, the cloud elasticity con-
troller starts adding a new resource. At this point, the ap-
plication moves to the scaling-out state (so) and remains in
this state while the resource is added. After a scaling-out,
the application returns to the ready state. It is similar with
the scaling-in state (si), respectively.

2.3 DSL for Cloud System Deployment
When testing cloud systems considering elasticity, testers

�rst need to deploy the system under test. Thiery et al. [19]
propose a DSL for setting up deployment of cloud systems.

 ready (ry)
scaling

-out (so)
steady
(ry_s)

si reaction
(ry_sir)

scaling
-in (si)

so reaction
(ry_sor)

Figure 2: Elasticity states.

Their DSL is divided into two dimensions: deployment bun-
dle, and cloud provider.

2.3.1 Deployment Bundle (DB)
It sets up cloud system components and dependencies.
We can set up multiple instances of software bundle. Each

software bundle may group either cloud system or testing
tool software components. Software component may have
dependencies, such as other software component or external
�les (i. e., con�guration �les or executable scripts).
Listing 13 shows an example of software bundle setup for a

Web application. First of all, we describe software artifacts.
In the example, http is installed by a package installer (e. g.,
apt-get, yum, etc.), while phpapp is an interpreted PHP ap-
plication, remotely transferred from local (src) to remote
(dest) path. After, we describe external �les, also with local
and remote paths. Finally, we describes software bundles.
In the example, we �rst bundles Web application artifacts
(app), then the testing tool ones (testingTool).

Listing 1: Example of software bundle setup written in
Thiery et al. DSL.

software bundles f
so f tware httpd : pkg ' apache2 ' ' 2 ' ;
so f tware phpapp : s r c ' . / app/ ' ,

des t ' / var /www/app/ ' ;
. . . // Other so f tware components .
source apachecfg : s r c ' httpd . conf ' ,

des t ' / e t c /apache/httpd . conf ' ;
. . . // Other sources .
bundle wsrv :

app phpapp , dep (httpd , php , mysq) ,
s r c (apachecfg , createdb , addserver) ,
p rovScr ip t (createdb , addserver) ;

bundle appbench :
t e s t i ngToo l app bench , dep (java) ,
s r c (bench conf , bench) ,
t e s t S c r i p t (bench) ;

. . . // Other bund les . g

2.3.2 Cloud Provider (CP)
It sets up cloud providers' resource used for software bun-

dles deployment.
Software bundles are deployed on deployment instances.

Each deployment instance starts up an Operational Sys-
tem (OS) on a Virtual Machine (VM) that may have dif-
ferent combinations of computational resource (CPU, mem-
ory, etc.). Deployment instances use resource from a cloud
provider's geographic zone. Software bundle may require
some port con�guration, e. g., port 80 for external interac-
tions with Web server.
Listing 2 describes an example of Amazon EC2's resource

setup. In this DSL, we start by setting up an VM image (im-
age), which refers to existing cloud provider's image. In the
example, we set an hypothetical image identi�er (ami-1234),

3Instead of using the syntax of Thiery et al. syntax, we use
the same syntax that the one of our proposal to be coherent.

and describe which Operational System (OS)4 runs in the
image. After, we list available cloud provider's geographical
zones (zone). Finally, we set up deployment instances, refer-
ring a software bundle, VM image, cloud provider's machine
type, port con�guration, and geographic zone.

Listing 2: Example of cloud provider's resource setup writ-
ten in Thiery et al. DSL.

resources EC2 f
image iU704i386 :

imageId ' ami�1234 ' ,
os 'Ubuntu ' ' 7 .04 ' ' i 386 ' ;

zone EUWest :
' eu�west�1a ' , ' eu�west�1b ' ;

in s tance websrv :
image iU704i386 , machineType m3. la rge ,
portConf ig ' 80 ' = ' 0 . 0 . 0 . 0 ' , zone EUWest ,
bundle wsrv ;

. . . // Other in s tance s . g

3. ELASTICITY TESTING DSL
Despite Thiery et al. DSL allows a variety of cloud sys-

tem deployment, it does not address cloud computing elas-
ticity and elasticity testing. In this paper, we propose a
DSL that complements Thiery et al. work, adding sup-
port to set up elasticity and elasticity testing. Our DSL
is three-dimensional: auto-scaling, elasticity workow, and
test method schedule.

3.1 DSL to Set Up Auto-Scaling (AS)
To enable elasticity, we must set up auto-scaling on cloud

provider. Threshold-based auto-scaling is a common strat-
egy among major cloud providers [1]. It basically consists of
varying a cloud resource when a threshold is breached for a
while (see Section 2.1). Figure 3 illustrates the model that
represents threshold-based auto-scaling setup.

ResourcePool

minSize : Integer
maxSize : Integer
cloudResource : Instance

Police

coolDown : Long
reactionTime : Long
scalingAdjustment : Integer
adjustmentType : Adjustment-
Type

Alarm

threshold : Real
comparatorOperator : String
resourceType : ResourceType
statistics : Statistics

<< enum >>
ResourceType

LoadBalancing
Queue
CPU
Network
Disk

<< enum >>
Statistics

Average
Maximum
Minimum
Sum
Count
Growth

<< enum >>
AdjustmentType

Add
Remove

*

*

Figure 3: Model of threshold-based auto-scaling setup DSL.

ResourcePool describes the cloud resource (cloudResource)
that is varied, and restricts its amount (between minSize
4This is because we cannot straightforwardly get OS infor-
mation from cloud provider.

and maxSize). Resource variation is regulated according
to the Police properties. Police properties state time con-
straints (i. e., cool down5 and reaction time periods), and
resource variations (e. g., add one resource) performed when
the time constraints are satis�ed. Police is checked ev-
ery time an alarm (Alarm) is triggered, i. e., threshold is
breached. Alarm describes a threshold and resource usage
that breaches the threshold.
Listing 3 describes an example of threshold-based auto-

scaling. The resource pool wsrv pool is associated to the
websrv deployment instance (see Listing 2), and may have
from 1 to 10 instances. As police, we set a cool down pe-
riod of 60; 000 ms, and a reaction time with same duration,
adding one new resource from wsrv pool resource pool. We
set the alarm highCPU assuming threshold is breached when
the maximum (statistics=Maximum) CPU usage (resource-
Type=CPU) is higher than (comparatorOperator=>) 60%
(threshold=60).

Listing 3: Example of threshold-based auto-scaling setup
written in our DSL.

e last ic i ty f
poo l wsrv pool : c loudResource websrv ,
minSize 1 , maxSize 10 ;
. . . // Other poo l s .
p o l i c e wsrv po l i c e : r e sourcePoo l s l ave s ,
coolDown 60000 , react ionTime 60000 ,
sca l ingAdjustment 1 , adjustmentType Add ;
. . . // Other p o l i c e s .
alarm highCPU : resourceType CPU,
s t a t i s t i c s Maximum, comparison '> ' ,
t h r e sho ld 60 , p o l i c e ws rv po l i c e ;
. . . // Other alarms . g

3.2 DSL to Set Up Elasticity Driving (ED)
For some tests, such as regression testing and bug repro-

duction, it may be necessary to have a deterministic elas-
ticity, reaching or repeating a strict behavior. In a previ-
ous work [5], we address deterministic elasticity generating
proper workload that drives cloud system through required
elasticity behavior, i. e., sequence of elasticity states. De-
spite our previous work successfully drives cloud applica-
tions through the given sequence of elasticity states, it re-
quires much tester's e�ort. Tester has to write substantial
amount of code to set up elasticity driving.
Another contribution of our DSL is to abstract elastic-

ity driving setup. Figure 4 illustrates the DSL model. In
the model, we have a resource pool (pool), which refers
to cloud resource that is driven. It also admits a work-
load type (workType), and either to generate a sequence of
elasticity states (GeneratedFlow) or to preset one (Preset-
Flow). To generate a sequence, we have to set the number
of scaling-out (scalingOuts) and scaling-in (scalingIns) a se-
quence must have. Then, elasticity states are distributed in
a way all scaling-in and scaling-out happen, respecting Re-
sourcePool 's properties. For a preset sequence, we set the
elasticity states in the order we want them to occur.
Listing 4 shows an example of elasticity driving setup.

In the example, we set up elasticity driving to drive cloud
resource in wsrv pool pool using Read workload type. We
preset the following sequence of elasticity states: scaling-out,

5Period within previous scaling activity takes e�ect, so new
variation is not allowed.

ElasticityStateDriving

pool : ResourcePool
workType : WorkloadType

PresetFlow

elasticityStates : ElasticityState [] forderedg

GeneratedFlow

scaling-ins : Integer
scaling-outs : Integer

<< enum >>
ElasticityState

Ready
Scaling-out
Scaling-in

<< enum >>
WorkloadType

Read
Write
Read and Write

Figure 4: Model of elasticity driving setup DSL.

ready, scaling-in, ready, scaling-out.

Listing 4: Example of elasticity driving setup written in our
DSL.

driving f
dr i v e wsrv dr ive :

pool wsrv pool , workType Read ,
s t a t e s s e t (s c a l i ng�out , ready ,

s c a l i ng�in , s c a l i ng�out , ready) ;
g

3.3 DSL to Set Up Test Methods Schedule
(TS)

Here, we follow a principle of our previous paper [6], where
some of cloud system's tasks only occur during certain elas-
ticity states. For instance, massive data replication only
occurs when new nodes are already added (ready state).
Therefore, it is not necessary to test it beforehand, i. e., while
resource is being added (scaling-out state).
Our DSL allows tester to set up the execution of test meth-

ods during either speci�c states or all elasticity states. Fig-
ure 5 illustrates the model of setup of test method schedule.
The model allows to associate test methods (TestMethod) to
test suites (TestSuite). Test suites are associated to elastic-
ity states (ElasticityState), elasticity states driving, and ex-
ecution strategy (Strategy), i. e., in parallel, or in sequence.

TestSuite

elasticityStates: ElasticityState [1..3]
driving : ElasticityStateDriving
strategy : Strategy

TestMethod

testScript : String

<< enum >>
Strategy

parallel
sequence

*

Figure 5: Model of test executions setup DSL.

Test methods have test script (testScript) as attribute. A
test script can be any executable command, such as a java
class (e.g. JUnit) or a shell script. In this way, tester can
write generic test methods. Then, he/she associates test
methods to elasticity states they must execute along.
Listing 5 shows an example of setup of test method sched-

ule. In the example, we set two test methods (test.test1 and
test.test2) from a Java Archive (JAR) �le (test.jar). Then,
they are associated to scaling-out state of elasticity driving
wsrv drive, and set to execute in parallel.

Listing 5: Example of setup of test method schedule.

tests f
t e s t t1 :
s c r i p t ' java � j a r . / t e s t . j a r t e s t . t e s t 1 ' ;
t e s t t2 :
s c r i p t ' java � j a r . / t e s t . j a r t e s t . t e s t 2 ' ;

s u i t e s1 : s t a t e s s ca l i ng�out ,
d r i v i ng wsrv dr ive ,
test method (t1 , t2) , in p a r a l l e l ;

g

4. COMPILING SPECIFICATION INTO EX-
ECUTABLE CODE

In this section, we explain the compilation of elasticity
testing setup written in our DSL into executable code. Fig-
ure 6 depicts the workow of this compilation.

TESetup.es

Compiler

Cloud
Infrastructure

DSL to
CLI

Mapping

DB CP AS ED TS Setups in
DSL
Incoming
Files

Incoming

Cloud
Interaction

Legend

Executable
Code in CLI

Compiled
File

Outcoming

Compilation

Figure 6: Workow of compilation of elasticity testing spec-
i�cation into executable code.

First, tester writes test case setup (TESetup.es) using our
DSL and Thiery et al. one (in the �gure, divided by special-
ization). Then, tester selects a cloud provider's mapping �le
(DSL to CLI Mapping), which maps elements of our DSL to
arguments of cloud provider's CLI. Finally, we compile test
case setup into an executable code in cloud provider's CLI.
Listing 6 shows a partial Amazon EC2's mapping �le,

which describes the EC2's command to deploy instances
and one of its arguments: image identi�er ({image-id).
This argument value is mapped from imageId, set in cloud
provider's resource setup (see Listing 2). The compila-
tion of this command would result in a code such as:
aws ec2 run� instances ��image� id iU704i386 [:::].

Listing 6: Example of command �le for Amazon EC2.

provider AWS f
instanceCommand ' aws ec2 run�i n s t an c e s ' :
'��image�id ' imageId , . . . ; g

Theoretically, using mapping �le makes our approach
portable to any cloud provider that allows command line.
We provide mapping �les for Amazon EC2, Google CE, and
Openstack. Furthermore, we could write mapping �les to
further cloud providers, which is not a tester's task. A spe-
cialist, such as a network manager, writes this �le once for
all, then tester uses it.

5. PRELIMINARY RESULTS
In this section, we measure the impact of using our DSL

on writing elasticity testing setup. We consider two case

studies, already used in previous papers, where we test dis-
tinct cloud applications through elasticity: 1) a MongoDB
replica set [6], and 2) a distributed web application [5].
The main objective of this work is to alleviate tester's ef-

fort considering elasticity when generating test cases. There-
fore, we so far provide a way to write elasticity part of test
cases, then compile it to executable code. The current study
do not go further on elasticity testing execution. However,
we plan to do it as part of a future work.

5.1 First Case Study (CS1): Testing a Mon-
goDB Replicat Set

The �rst case study tests MongoDB deployed as a replica
set6. In this experiment, we drive MongoDB through
the following sequence of elasticity states: ready, scaling-
out, ready, scaling-out, ready, scaling-in, ready, scaling-out,
ready, scaling-in, ready, scaling-in, ready, scaling-in, ready.
Here, we consider a test method that tests performance of
MongoDB through all elasticity states. The current experi-
ment considers only the elasticity setup of a test case, since
testers do not use our DSL to write the rest of the test case
(i.e. the test methods referred in TS part of our DSL).

5.2 Second Case Study (CS2): Testing a Dis-
tributed Web Application

The second case study tests a distributed web application.
Its architecture is made by a centralized database server, a
load balancer, and n web servers. We drive the web ap-
plication through 10 scale-out and 10 scale-in in sequence.
In our previous paper, we do not test the web application.
Here, we consider an hypothetically test case is associated to
scaling-out and scaling-in elasticity states. We choose this
test method schedule to be di�erent than �rst case study.

5.3 Results
For each case study, we write the elasticity testing setup

in our DSL. These setups are compiled to CLI for three
di�erent cloud providers: Amazon EC2, Google CP, and
OpenStack. Then, we compare tester's e�ort on writing
elasticity testing in both, our DSL and CLIs. We measure
tester's e�ort in amount of words: total amount of words,
and cumulative amount of new words.

5.3.1 Total Amount of Words
Total amount of words refers to the amount of words in

an elasticity testing setup.
Table 1 describes the amount of words of elasticity testing

setups for the elasticity testing case studies. Setups writ-
ten in our DSL contain almost the same amount of words
for all cloud providers (only 6 words changed as explained
next subsection), while setups written with CLIs di�er in
amount of words according to cloud provider. Furthermore,
setups written in our DSL result in fewer words for all cloud
providers and case studies. Considering the amount of words
as an e�ort, our DSL reduces considerably the tester's ef-
fort: Amazon EC2 (CS1 � �24%, CS2 � �22%), Google
CP (CS1 � �38%, and CS2 � �36%), and OpenStack
(CS1 � �43%, and CS2 � �39%).
Figure 7 depicts the e�ort in amount of words to write se-

tups for the case studies. In the �gure, the dashed line con-
nects CS1 e�orts, while the solid line connects CS2 e�orts.
6https://docs.mongodb.com/manual/tutorial/deploy-
replica-set/

Cloud Provider CS1 CS2

Our DSL
All Cloud Providers 246 273

CLIs
Amazon EC2 326 364
Google CP 392 433
OpenStack 430 476

Table 1: Total amount of words of elasticity testing setups.

Furthermore, we see that such lines never cross each other,
and the distance between them is almost homogeneous. This
is because from CS1 to CS2, the e�ort varies proportionally
(with an approximation between 1:09% and 1:1%) for ev-
ery setup. This mean the di�erence among setups should
be constant for other case studies. An encouraging result,
which would result in less e�ort even when writing future
elasticity testing setups in our DSL.

Our DSL
on all the cloud
provider

Google CP (no DSL)

Figure 7: E�ort on writing elasticity testing setups.

5.3.2 Cumulative Amount of New Words
Total amount of new words refers to the cumulative

amount of words necessary to re-write an existing elastic-
ity testing setup, making it suitable to other cloud provider.
For instance, a tester may execute the same elasticity test-
ing over di�erent cloud providers, (re-)writing setups for
all of them. We use the following formula to represent:
Ci = Ci�1 + (Si � Si�1), where i denotes the sequence the
setup is written, and Si � Si�1 denotes the amount of new
words from previous to current setup (S).
Graph of Figure 8 illustrates the cumulative amount of

new words as case studies setup is (re-)written for a given
sequence of cloud providers: Amazon EC2, Google CE, and
OpenStack. In the �gure, continuous lines illustrate the cu-
mulative amount of new words for setups written in our DSL,
while dashed lines illustrate the cumulative amount of new
words for setups written with cloud providers' CLIs.
In the graph, we cannot see the variation for setups writ-

ten in our DSL. This is because using our DSL the variation
is slight, only 6 words change from one setup to another.
These words refer to cloud provider's resource, such as im-
age identi�er and zone name, named distinctly among cloud
providers. On the other hand, the variation for setups writ-
ten in cloud providers' CLIs is visible, it more than double
from �rst to last setup (� �2:1 for both case studies).

6. RELATED WORK
In literature, there are some model/DSL-based approaches

Figure 8: Total amount of new words of elasticity testing
setups.

for the deployment and provisioning of cloud systems. How-
ever, most of them do not cover elasticity setup. Thiery
et al. [19] propose a model-based approach to automate
the deployment of cloud systems. Likewise, Kirschnick et
al. [17] propose a DSL that is limited to the provision-
ing and deployment. Other work propose DSLs to de-
ploy Software-as-a-Service (SaaS) [18] and Plataform-as-
a-Service (PaaS) [9]. None of these approaches address
Infrastructure-as-a-Service (IaaS). Goncalves et al. [14] pro-
pose Cloud Modeling Language (CloudML), which mod-
els services, resource pro�les, and developer's requirements.
However, their work requires the cloud provider to describe
services and resources in CloudML, which is unusual. Fi-
nally, there are commercial DSL-based orchestration tools,
such as Chef [2] and Puppet [3]. These tools allow not only
the deployment and provisioning of cloud systems, but also
the elasticity setup. However, these tools are not suitable
for elastic testing as they don't support features such as
elasticity states and test method schedule speci�cations.

7. CONCLUSION
In this paper, we propose a DSL-based approach to set

up elasticity testing. Its major contributions are portabil-
ity and reduction of tester's e�ort to write elasticity testing
speci�cations. With a few changes in the setup, elastic-
ity testing is executed over multiple cloud providers. With
cloud providers' mapping �les, we can easily adapt our ap-
proach to execute elasticity testing on any cloud provider.
Our approach reduces considerable the amount of words on
writing elasticity testing speci�cations. In future work we
will focus on automatic resource discovering. For instance,
�nding the cheapest resource that �ts testing requirements.
This makes speci�cation in our DSL completely portable: a
single speci�cation executed over multiple cloud providers
without any change. We also think in new features related
to our elasticity testing research that is going on: test case
generation, and elasticity controller.

8. REFERENCES
[1] Cloud Computing Trends: 2016 State of the Cloud

Survey.

[2] Chef Website, Aug. 2016.

[3] Puppet Website, Aug. 2016.

[4] D. Agrawal, A. El Abbadi, S. Das, and A. J. Elmore.
Database scalability, elasticity, and autonomy in the
cloud. DASFAA'11, pages 2{15, Apr. 2011.

[5] M. Albonico, J.-M. Mottu, and G. Suny�e. Controlling
the Elasticity of Web Applications on Cloud
Computing. In Proceedings of the 31st SAC. ACM,
2016.

[6] M. Albonico, J.-M. Mottu, and G. Suny�e.
Monitoring-based testing of elastic cloud computing
applications. In Companion of ACM/SPEC ICPE,
pages 3{6, New York, NY, USA, 2016. ACM.

[7] L. Badger, T. Grance, R. Patt-Comer, and J. Voas.
Draft Cloud Computing Synopsis and Recommend-
ations. Nist Special Publication 800-146, 2011.

[8] M. M. Bersani, D. Bianculli, S. Dustdar, A. Gambi,
C. Ghezzi, and S. Krsti�c. Towards the Formalization
of Properties of Cloud-based Elastic Systems. In
Proceedings of the PESOS 2014. ACM, 2014.

[9] R. Boujbel, S. Rottenberg, S. Leriche, C. Taconet,
J. P. Arcangeli, and C. Lecocq. MuScADeL: A
Deployment DSL Based on a Multiscale
Characterization Framework. In COMPSACW, 2014
IEEE 38th International, pages 708{715, July 2014.

[10] A. Gambi, A. Filieri, and S. Dustdar. Iterative test
suites re�nement for elastic computing systems. In
Proceedings of the 9th ESEC/FSE 2013, page 635,
New York, New York, USA, Aug. 2013. ACM Press.

[11] A. Gambi, W. Hummer, and S. Dustdar. Automated
testing of cloud-based elastic systems with
AUToCLES. In Proceedings of the ASE, pages
714{717. IEEE, Nov. 2013.

[12] A. Gambi, W. Hummer, and S. Dustdar. Testing
elastic systems with surrogate models. In Proceedings
of the 1st CMSBSE, pages 8{11. IEEE, May 2013.

[13] A. Gambi, W. Hummer, H.-L. Truong, and
S. Dustdar. Testing Elastic Computing Systems. IEEE
Internet Computing, 17(6):76{82, Nov. 2013.

[14] G. Goncalves, P. Endo, M. Santos, D. Sadok,
J. Kelner, B. Melander, and J. E. Mangs. CloudML:
An Integrated Language for Resource, Service and
Request Description for D-Clouds. In 2011 IEEE 3rd
CloudCom, pages 399{406, Nov. 2011.

[15] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity
in Cloud Computing: What It Is, and What It Is Not.
Proceedings of the ICAC, 2013.

[16] S. Islam, K. Lee, A. Fekete, and A. Liu. How a
Consumer Can Measure Elasticity for Cloud
Platforms. In 3rd ACM/SPEC ICPE, Proceedings of
the ICPE '12, pages 85{96, New York, NY, USA,
2012. ACM.

[17] J. Kirschnick, J. Alcaraz Calero, L. Wilcock, and
N. Edwards. Toward an architecture for the automated
provisioning of cloud services. IEEE Communications
Magazine, 48(12):124{131, Dec. 2010.

[18] K. Sledziewski, B. Bordbar, and R. Anane. A
DSL-Based Approach to Software Development and
Deployment on Cloud. In Proceedings of the 24th
IEEE AINA, pages 414{421, Apr. 2010.

[19] A. Thiery, T. Cerqueus, C. Thorpe, G. Sunye, and
J. Murphy. A DSL for Deployment and Testing in the
Cloud. In Proceedings of the IEEE ICSTW 2014,
pages 376{382, Mar. 2014.

	Introduction
	Background
	Cloud Computing Elasticity
	Elasticity States
	DSL for Cloud System Deployment
	Deployment Bundle (DB)
	Cloud Provider (CP)

	Elasticity Testing DSL
	DSL to Set Up Auto-Scaling (AS)
	DSL to Set Up Elasticity Driving (ED)
	DSL to Set Up Test Methods Schedule (TS)

	Compiling Specification into Executable Code
	Preliminary Results
	First Case Study (CS1): Testing a MongoDB Replicat Set
	Second Case Study (CS2): Testing a Distributed Web Application
	Results
	Total Amount of Words
	Cumulative Amount of New Words

	Related Work
	Conclusion
	References

