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Analysis of a non-local and non-linear Fokker-Planck model for

cell crawling migration

Christèle Etchegaray∗ Nicolas Meunier† Raphael Voituriez. ‡

Abstract

Cell movement has essential functions in development, immunity and cancer. Various
cell migration patterns have been reported and a general rule has recently emerged, the
so-called UCSP (Universal Coupling between cell Speed and cell Persistence), [30]. This
rule says that cell persistence, which quantifies the straightness of trajectories, is robustly
coupled to migration speed. In [30], the advection of polarity cues by a dynamic actin
cytoskeleton undergoing flows at the cellular scale was proposed as a first explanation of
this universal coupling. Here, following ideas proposed in [30], we present and study a
simple model to describe motility initiation in crawling cells. It consists of a non-linear
and non-local Fokker-Planck equation, with a coupling involving the trace value on the
boundary. In the one-dimensional case we characterize the following behaviours: solutions
are global if the mass is below the critical mass, and they can blow-up in finite time above
the critical mass. In addition, we prove a quantitative convergence result using relative
entropy techniques.

1 Introduction

Cell migration is a fundamental biological process involved in morphogenesis, tumor spreading,
and wound healing [38, 23, 18]. One of its most spectacular instance is cell crawling, which is
crucial to immune cells in order to reach an inflammation spot, but is also observed e.g. in tumor
cells during metastasis formation [4]. Identifying key mechanisms involved in cell migration is
then a major issue both for our fundamental understanding and for clinical research.

We focus here on cells crawling on a flat substrate, without any external cue. This type
of movement occurs in several steps: protrusion of the cell at the ”leading edge” (led by actin
polymerisation), adhesion to the substrate, contraction and translocation of the cell body.
However, if the notion of ”leading edge” is clear for cells undergoing persistent motion (as in
the chemotaxis phenomenon), the relation between protrusive activity and directionnality in
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Pierre et Marie Curie, 4 Place Jussieu, 75255 Paris Cedex 05 France (voiturie@lptmc.jussieu.fr)

1



more general cases is still unresolved. Indeed, migrating cells might transiently polarize - a front
and a back appear. If such ability is weak, the resulting motion is close to random. This polarity
is reflected at the molecular level by a restriction of certain molecules to particular regions of
the inner cell membrane. For example, the activated forms of Rac and Cdc42 molecules are
found at the front of the cell, whereas RhoA molecules are found toward the rear (see e.g [29]).
It is known that this asymmetry results from strong feedbacks exerted between these signaling
pathways and mechanical elements [14]. Self-polarisation is then a multiscale phenomenon for
which modeling efforts can bring new insights [32].

Integrated models has been succesfully developped for adressing the issue of motile cell
shape, in particular for the keratocyte [39]. Computational models allow for in silico exper-
iments and direct comparison with experimental measures (see [24, 40], and more generally
[17]). In particular, it has been highlighted in [40] that redundant minimal mechanisms exist
to ensure a motile stable shape for the keratocyte.

Self-polarisation has led to computational models investigating the role of contraction, ad-
hesion and actin polymerisation for keratocytes or epithelial cells, providing useful predictions
and allowing confrontation with experimental data [36, 1, 28]. Other mechanochemical models
were built to perform in silico experiments ([12, 31]), but they remain unable to provide a
minimal framework to explain the persistence issue in cell motion.

Recently, in [30], it was shown experimentally that cell persistence is correlated to the flow
of actin filaments from the front to the back of the motile part of the cell, as protrusions with
faster actin flows are more stable in time. It was also shown that faster actin flows generate
steeper gradients of actin-binding proteins.

In this work, we study a conceptually minimal model for polarity initiation and maintenance
based on an active gel description of the actin cytoskeleton, and its interaction with molecular
signaling pathways. More precisely, we use a rigid version of the model first proposed in [2] that
we enrich, in the spirit of [30], with a feedback loop between actin polymerisation locations and
polarity markers, that are advected by a dynamic actin cytoskeleton undergoing flows at the
cellular scale. This minimal model allows us to obtain qualitative results on cell persistence.

We analyse the long time asymptotics of the model. The principal goal of our analysis is
to identify regimes in which non homogeneous stationary states, that will be interpreted as
polarized states, emerge.

The main ingredients of the model are as follows. We assume that there exists a meso-
scopic length scale, small compared to the cell but large compared to individual molecules at
which the properties of the cytoskeleton and of the solvent, which constitutes the cell, can be
described by continuous fields [20]. Following [21, 22, 2], we describe the actin cytoskeleton as
a 2D Darcy flow, bounded by a membrane with a given shape. We assume that the relevant
dynamics is sufficiently slow to neglect elastic effects. Actin is assumed to polymerize at the
membrane and to depolymerize uniformly at a constant rate in the interior of the cell. More-
over, polymerisation is assumed to depend on the concentration of a marker that is advected
by the actin flow itself. Finally, since we focus here on cell crawling on a flat substrate, the
main external force arising is friction with the substrate.

The markers, whose density is denoted c(t, x), are assumed to diffuse in the cytoplasm and
to be actively transported along the cytoskeleton. Consider a viscous active fluid with pressure
p filling a two-dimensional bounded domain figuring the cell to describe the cytoskeleton. When
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all coefficients are set to 1, the resulting motion is a biased diffusion equation with advection
field in the cell frame u(t, x) = −∇p(t, x):

∂tc(t, x) = div
(
∇p(t, x)c(t, x) +∇c(t, x)

)
, t > 0 , x ∈ Ω , (1)

together with zero-flux boundary condition on ∂Ω in order to conserve the molecular content.
To model the active character of the cytoskeleton the pressure is assumed to satisfy, for all
t > 0: {

−∆p = −1 , on Ω ,

p = 1− c , on ∂Ω .
(2)

Furthermore, considering a global friction coefficient set to 1, the cell velocity v, which arises
from the inside flow rubbing on the substrate, is given by

v(t) = −
∫
∂Ω
c(t, y)n dσ , t > 0 , (3)

where n denotes the outward unit normal and dσ the surface measure on ∂Ω.
In the one-dimensional case, assuming that Ω = (−1, 1) the previously described model

writes as a non-linear and non-local Fokker-Planck equation:

∂tc(t, x) = ∂xxc(t, x) + ∂x

((
x+ c(t,−1)− c(t, 1)

)
c(t, x)

)
, t > 0 , x ∈ Ω , (4)

together with zero-flux boundary conditions at x = −1 and x = 1:{(
c(t,−1)− c(t, 1)− 1

)
c(t,−1) + ∂xc(t,−1) = 0 ,(

c(t,−1)− c(t, 1) + 1
)
c(t, 1) + ∂xc(t, 1) = 0 .

(5)

The main aim of this paper is to provide some results on the long time asymptotics of the
solution to (4) - (5) and to give estimates on the convergence rates in cases of convergence. To
this end, we first look for stationary states. In the case M ≤ 1, there exists a unique stationary
state GM (x) := Mexp(−x2/2)/

∫ 1
−1 exp(−y

2/2) dy towards which the solution converges and
the asymptotic result is obtained through the convergence to zero of a suitable Lyapunov
functional L defined in (29) in the case M < 1, and through the convergence to zero of the
relative entropy H defined in (28) in the case M = 1. Moreover, in both cases, using the
logarithmic Sobolev inequality with a suitable function, we obtain an exponential decay to
equilibrium.

Theorem 1. Assume that the initial datum c0 satisfies both c0 ∈ L1(−1, 1) and
∫ 1
−1 c0(x) log c0(x) dx <

+∞. Assume in addition that M ≤ 1, then there exists a global weak solution of (4) - (5) that
satisfies the following estimates for all T > 0,

sup
t∈(0,T )

∫ 1

−1
c(t, x) log c(t, x) dx < +∞ ,∫ T

0

∫ 1

−1
c(t, x) (∂x log c(t, x))2 dx dt < +∞ .

Moreover, the solution strongly converges in L1 towards the unique stationary state GM (x) and
the rate is exponential.
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Figure 1: Numerical simulations of the spatial concentration profile c(x) of the marker. Each
plot corresponds to a different initial profile and mass : a) sub-critical case ; b) critical case
; c), d) super-critical case. Each curve represents the concentration profile at a specific time.
Parameters: T = 4 ; dt = 10−2 ; dx = 2 ∗ 10−3.

Solutions of (4) may become unbounded in finite time (so-called blow-up). This occurs if
the mass M is above the critical mass: M > 1, and for an asymmetric enough initial profile.

Theorem 2. Assume M > 1 and the first moment shifted of 1 is small: J̃(0) < (M − 1)/2.
Assume in addition that c0 satisfies c0(−1) − c0(1) > 1. Then the solution to (4) - (5) with
initial data c(0, x) = c0(x) blows-up in finite time.

In Figure 1, we illustrate Theorems 1 and 2.
Although in the present biological context, blow-up of solutions is interpreted as cell polar-

isation, such a blow-up in finite time might be questionable. Indeed a strong instability drives
the system towards an inhomogeneous state and blow-up corresponds to the case where the
drift becomes infinite. The boundary condition (5) which is responsible for infinite drift turns
out to be unrealistic from a biophysical viewpoint. On the way towards a more realistic model,
we distinguish between cytoplasmic content c(t, x) and the concentration of trapped molecules
on the boundary at x = ±1 : µ±(t). Then the exchange of molecules at the boundary is
described by very simple kinetics.

The plan of this work is as follows. In Section 2, we introduce the model. In Section 3, we
analyse with full details the one-dimensional case. In Section 4, we briefly study a model with
exchange of markers at the boundary in the one-dimensional case.

2 The model

Our purpose in this section is to derive the model given by equations (1) - (2) - (3) which
describes the behaviour of an active viscous fluid featuring the cytoskeleton.
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Figure 2: Interaction between actin flows and a molecular polarity marker [30].

2.1 Main constitutive assumptions

We consider a two-dimensional layer of viscous fluid, representing the cell cytoskeleton, sur-
rounded by a rigid membrane. Following [21, 22, 2], to model actin polymerisation and depoly-
merisation, we add active properties to the viscous fluid. The first active property we consider
is the out-of-equilibrium polymerisation of the fluid. In a cell, actin monomers are added to
actin filaments by the consumption of the biological fuel ATP. Other proteins regulate the
nucleation and polymerisation of actin filaments. It is commonly observed that actin polymeri-
sation activators such as WASP proteins preferentially locate along the cell membrane [37]. For
this reason we suppose that the fluid is polymerised at the membrane. The main novelty of
our work relies on the coupling between actin polymerisation and a biological marker which is
transported by actin flows. Its aggregation in a part of the membrane characterizes the rear of
the cell, hence its polarisation. This marker could be an antagonist to polymerisation-inducing
molecules (Rac1, Cdc42), such as RhoA, Arpin, or even myosin II (see [10, 25]). Further-
more polymerisation is balanced by depolymerisation, which we assume to occur uniformly
at a constant rate in the cell body, to ensure the renewal of ressources for polymerisation.
Polymerisation and depolymerisation induce an inward flow which rubs on the substrate. This
friction is responsible for the cell displacement.

More precisely, we consider an active Darcy flow, which models the actin cytoskeleton,
inside a (moving) domain Ω(t) ⊂ R2, where Ω(0) is a disc of radius R > 0. The domain moves
by translation with a velocity V (t) ∈ R2. We introduce the fluid pressure P̃ (t,X), and Ũ(t,X)
the actin filaments velocity. Finally, we denote C̃(t,X) the concentration of molecular marker.
All these quantities are defined for X ∈ Ω(t) and t > 0. We assume that the fluid density
ρ(t,X) ≡ ρ is constant in time and space. Then, the fluid problem writes{

div (Ũ) = −1
ξ∆P̃ = −kd in Ω(t) ,

P̃ = kp on ∂Ω(t) .
(6)

The boundary condition accounts for polymerisation at the edge of the cell, while kd describes
depolymerisation in the cell body.

Remark 3. Note that equation (6) is similar but different from the model first introduced in
[2]. Indeed in our case the polymerisation is modeled through a pressure term and not a velocity
one.
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In the limit of low Reynolds number, viscous forces dominate over inertial forces and the
Navier-Stokes equation simplifies to the force balance principle:

−div σ = f in Ω(t) , (7)

where σ, the stress tensor, is given by

σ = µ
(
∇Ũ + t∇Ũ

)
− P̃ Id , (8)

with µ being the viscosity. Since the layer is placed on a substrate, we consider a friction force

f = −ξŨ , (9)

where ξ is an effective friction coefficient.
Following [5], we neglect viscosity arising from the polymer-polymer and polymer-solvent

friction forces and consider the limit µ→ 0. This reduces to

∇P̃ = −ξŨ in Ω(t) . (10)

Notice that the pressure, hence the friction force, acts for the integrity of the fluid (no phase
separation).

Remark 4. If we were considering a deformable cell, see [2], it would have been natural to
assume that the pressure P̃ satisfies P̃ = −γκ in ∂Ω(t), where κ is the curvature of ∂Ω(t) and
γ ≥ 0 is the superficial tension of the cell membrane. Here we consider a caricatural situation
since we assume that the cell domain is non-deformable and we do not impose any additional
condition on P̃ on the boundary of Ω(t).

Remark 5. About the polymer density: this model can be derived from a more realistic one,
where polymerisation and depolymerisation locally modify the polymer density. More precisely,
write

∂tρ+ div (ρŨ) = −kdρ , (11)

where Ω(t) = {ρ(t, ·) > 0} denotes the region occupied by the cytoskeleton. To account for
polymerisation that takes place at the edge of the cell and which consists in a local increase in
actin concentration, we impose on the cell membrane a jump on the actin concentration:

ρ = ρ0 + εkp on ∂Ω(t) , (12)

where ε is a small parameter and ρ0 a constant. One can also assume that the polymerisation
rate is a continuous non-zero polar function in an annulus initially defined as Ω(0)\B(0, R−λ),
of width λ > 0, see e.g [26].

As it is classical, see [6], in addition, we assume that P̃ is a function of ρ:

P̃ =
1

ε
(ρ− ρ0) ,
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we then get the following problem:

∂tρ−
1

ξ
div

(
ρ∇
(ρ
ε

))
= −kdρ in Ω ,

ρ = ρ0 + εkp on ∂Ω .

Formally the limit ε→ 0 of the previous model leads to the Poisson problem (6). This amounts
to saying that the osmotic pressure P̃ ensures at all time that the polymer density stays constant.
The rigorous justification of this limit is not our purpose here, and will be the object of a future
work.

Finally, we have to prescribe the domain velocity arising from friction forces. Since the gel
layer is at mechanical equilibrium, the cell moves as a consequence of the inside flow rubbing on
the substrate, hence we will consider a moving domain. Friction forces occur at the microscopic
scale, and mesoscopic tension forces also are at play. However, for the sake of simplicity, we
will neglect this heterogeneity to consider a global friction coefficient γ. We write for all t > 0

V (t) = −γ
∫

Ω(t)
Ũ(t,X) dX. (13)

The main novelty of our work is to consider that kp is a function of c, the concentration
of a biological marker. This marker is assumed to diffuse and to be transported by the actin
filaments, modeled by the previously described fluid. At the boundary, we prescribe a zero flux
condition to ensure mass conservation. The corresponding problem writes

∂tC̃(t,X) + div
(
Ũ(t,X)C̃(t,X)−D∇C̃(t,X)

)
= 0 for X ∈ Ω(t), t > 0 ,

with the zero-flux boundary condition(
D∇C̃(t,X)− C̃(t,X)Ũ(t,X)

)
· n = 0 for X ∈ ∂Ω(t), t > 0 ,

where n is the outward unit normal to the boundary. The zero flux boundary condition ensures
that the total mass is preserved: d

dt

∫
Ω(t) C̃(t,X) dX = 0.

Remark 6. The non-deformability of Ω(t) is an important downside of the model, that conceals
fundamental modelisation issues. Indeed, the cell velocity is defined globally, preventing the
description of local effects: experimentally, it is observed that the activity of the cytoskeleton
deforms the membrane, leading to a displacement while exerting a geometric feedback on actin
flows.

Notice that our choice for the friction force amounts to consider friction arising from both
the retrograde flow and the displacement, but their effects on the equations are the same in
1D. Hence, the role of motion in the initiation and maintenance of polarisation cannot be
investigated properly, but this will be studied in future works in 2D and for a free-boundary
model.
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In the spirit of [30], we will assume that polymerisation occurs more likely at the boundary
points where the marker concentration is the lower (the marker we consider is a rear marker).

Recalling what was explained previously, the fluid problem writes
∇P̃ (t,X) = −ξŨ(t,X) for X ∈ Ω(t), t > 0 ,

div Ũ(t,X) = −Kd for X ∈ Ω(t), t > 0 ,

P̃ (t,X) = f
(
C̃(t,X)

)
:= α− βC̃(t,X) for X ∈ ∂Ω(t), t > 0 ,

Remark 7. A more realistic boundary condition on P̃ would have been to impose that

P̃ (t,X) =
(
α− βC̃(t,X)

)
+

for X ∈ ∂Ω(t), t > 0 ,

where (·)+ denotes the positive part. Indeed the case where P̃ takes negative values is not
realistic from the modelling viewpoint.

Remark 8. Another option for the cell velocity would be to choose

V2(t) = −γ
∫

Ω(t)
∇C̃(t,X) dX = −γ

∫
∂Ω(t)

C̃(t,X)n dσ .

Problem formulation on a fixed domain We now define the problem on a fixed domain
Ω0 := Ω(0). In such a case the domain motion appears in the problem formulation. As
(P̃ , Ũ , C̃) are functions on Ω(t), we denote (P,U,C) their analogous on Ω0. Moreover we define
the following map:

L(., t) : Ω0 −→ Ω(t)

x 7→ X = x+
∫ t

0 V (s) ds = L(t, x),

which gives C(t, x) = C̃(t, L(t, x)) (for example for C).
Let us now rewrite the fluid problem on Ω0. To do so we observe that for all x ∈ Ω0 and

for all t > 0:

∂tC(t, x) = ∂tC̃(t, L(t, x)) + ∂tL(t, x)︸ ︷︷ ︸
=V (t)

∇XC̃(t,X) =
DC̃

Dt
,

where D
Dt denotes the total derivative. The convection-diffusion equation rewrites as

D

Dt
C̃(t,X) + div

(
(Ũ(t,X)− V (t))C̃(t,X)−D∇C̃(t,X)

)
= 0 X ∈ Ω(t), t > 0,(

D∇C̃(t,X)− C̃(t,X)(Ũ(t,X)− V (t))
)
· n = 0 X ∈ ∂Ω(t), t > 0.

Moreover, the Jacobian matrix related to L is the identity matrix (as V is space-independent),
leading to ∇XC̃(t,X) = ∇xC(t, x). This, combined with Ũ(t,X) = U(t, x), yields that{

∂tC(t, x) + div [(U(t, x)− V (t))C(t, x)−D∇C(t, x)] = 0 for x ∈ Ω0, t > 0,
(D∇C(t, x)− C(t, x)(U(t, x)− V (t))) · n = 0 for x ∈ ∂Ω0, t > 0.

We can check again mass conservation: d
dt

∫
Ω0
C dx = 0.
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Nondimensionalization Let us introduce the following typical quantities for nondimension-

alization: L = 2R, where R is the radius of Ω0, P = α = F L
2

L
, F = α

L
= α

2R = ξV , V = α
2Rξ ,

T = L
V

= 4R2ξ
α and C = L

−2
.

Remark 9. It has to be noticed that the force we consider is actually a force per unit of area.
This explains the expression used for the typical pressure P , corresponding to a force divided
by a length (in 2D).

Remark 10. The typical pressure corresponds to a maximal incoming pressure of the fluid at
the boundary of the domain.

Now, write (p, u, c, v) the nondimensionalized analogous to (P,U,C, V ). The nondimension-
alized problem writes: 

∇p = −u on Ω0 ,

div u = − ξ4R2

α Kd =: −kd on Ω0 ,

p = 1− δc on ∂Ω0 ,

(14)

where δ := βC
α and the domain velocity is:

v(t) = −γ
∫

Ω0

u dx . (15)

The convection-diffusion problem is{
∂tc+ div ((u− v)c−D′∇c) = 0 on Ω0 ,

(D′∇c− (u− v)c) · n = 0 on ∂Ω0 ,
(16)

where we have introduced D′ = D
LV

= Dξ
α . Moreover, the global mass is prescribed:∫

Ω0

c dx = M . (17)

2.2 The one-dimensional case

The first equation of (14) rewrites

u(t, x) = −∂xp(t, x) , (18)

and using (15), it leads to
v(t) = γ(p(t, b)− p(t, a)) . (19)

Moreover, differentiating (18) and using that ∂xu = −kd, we find ∂xxp(t, x) = kd and we can
write

p(t, x) =
kd
2

(x− a)2 + d(x− a) + p(t, a) , (20)

9



where

d =
p(t, b)− p(t, a)

b− a
− kd

2
(b− a) .

Now, replacing p in the expression of u this gives

u(t, x) = −kd
(
x− a+ b

2

)
− p(t, b)− p(t, a)

b− a
.

Finally recalling the boundary conditions in (14), we obtain the following non-linear and
non-local convection-diffusion equation{

∂tc = ∂x ((v − u)c+D′∂xc) on (a, b), for t > 0 ,

0 = (v − u)c+D′∂xc on {a, b}, for t > 0 ,
(21)

with a velocity v − u given by: for all x ∈ (a, b) and for all t > 0

v(t)− u(t, x) = kd

(
x− a+ b

2

)
+

(
δγ +

δ

b− a

)
(c(t, a)− c(t, b)) , (22)

and the domain velocity:
v(t) = γδ (c(t, a)− c(t, b)) ,

with δ = βC
α > 0 and we recall that D′ = Dξ

α ≥ 0.

Remark 11. Note that up to a constant we recover the cell velocity v2, see Remark 8.

From now on, in order to simplify the computations we will assume that a+ b = 0. In such
a case the velocity simply rewrites as

v(t)− u(t, x) = kdx+

(
δγ +

δ

2b

)
(c(t, a)− c(t, b)). (23)

We find a model that presents some similarities with the model studied in [16, 7, 8, 33, 27] to
describe yeast cell polarisation. The main difference here is the presence of an additional drift
towards the cell center.

3 The boundary non-linear Fokker-Planck equation in dimen-
sion 1

In this part we study the non-local and non-linear Fokker-Planck equation (4) - (5) that we
recall now: 

∂tc(t, x) = ∂x

(
∂xc(t, x) + (x+ c(t,−1)− c(t, 1)) c(t, x)

)
,

∂xc(t,−1) + (c(t,−1)− c(t, 1)− 1) c(t,−1) = 0 ,

∂xc(t, 1) + (c(t,−1)− c(t, 1) + 1) c(t, 1) = 0 ,

(24)

and we prove Theorems 1 and 2.
We are looking for a solution to (24). As it is classical we start by giving a proper definition

of weak solutions, adapted to our context:

10



Definition 12. We say that c(t, x) is a weak solution of (24) on (0, T ) if it satisfies:

c ∈ L∞
(
0, T ;L1

+(−1, 1)
)
, ∂xc ∈ L1 ((0, T )× (−1, 1)) , (25)

and c(t, x) is a solution of (24) in the sense of distribution in D′(−1, 1).

Since the flux ∂xc(t, x) + (c(t,−1)− c(t, 1) + x) c(t, x) belongs to L1 ((0, T )× (−1, 1)), the
solution is well-defined in the distributional sense under assumption (25). In fact we can write∫ T

0
(c(t,−1)− c(t, 1)) dt = −

∫ T

0

∫ 1

−1
∂xc(t, x) dx dt .

Let us now observe that the non-negativity of a solution is preserved. Indeed if c is solution
in L1

x, since sgn(c)∂2
xxc ≤ ∂2

xx|c|, then

d

dt

∫ 1

−1
(|c| − c) dx ≤ 0.

This proves that if |c0| = c0 almost everywhere (initial data non-negative) then |c| = c almost
everywhere for later times.

Moreover, weak solutions in the sense of Definition 12 are mass-preserving: M =
∫ 1
−1 c0(x) dx =∫ 1

−1 c(t, x) dx. A simple computation on the first momentum defined by J(t) =
∫ 1
−1 xc(t, x) dx,

leads to
d

dt
J(t) = (1−M) (c(t,−1)− c(t, 1))− J(t) . (26)

Note that J(t) ≥ −M since
∫ 1
−1(x + 1)c(t, x) dx ≥ 0. Here, similarly to [7, 8], we will prove

that the following dichotomy occurs:

• when M ≤ 1, the linear Fokker-Planck part drives the equation and the solution converges
toward the unique stationary state, see sections 3.1 and 3.2,

• when M > 1, the equation admits three stationary states, two of them being non-
homogeneous. Moreover, for an asymmetric enough initial condition, the solution blows
up in finite time, see section 3.3.

3.1 Global existence and asymptotic analysis for sub-critical mass M < 1

In this section we prove Theorem 1 in the case M < 1. The proof is decomposed in three
steps. First we compute the stationary state of (24), then we build a Lyapunov functional, this
allows establishing a-priori estimates. Finally we investigate long-time behaviour of solutions
in the case M < 1 using entropy methods. We stress out that the method for proving global
existence in this case strongly relies on the existence of a Lyapunov functional, Lemma 14.
This is why we analyse the global existence and the long time behaviour all in all. Note that
the proof is very close to the one given in [8] and in [27]. The differences concern the expression
of the stationary state and the domain geometry. In [8, 27], the stationary state is the family
{α exp

(
−αx− x2/2

)
}α, and the domain is the half-line.

Let us start with the existence of a unique stationary state.

11



Lemma 13. If M < 1 equation (24) admits a unique stationary state given by GM =
M exp(−x2/2)/

∫ 1
−1 exp(−y2/2) dy.

Proof. An easy computation shows that any stationary state for (24) is either GM (which is
symmetric) or of the form Gα for α = Gα(−1)−Gα(1) 6= 0 to be found. For α > 0, it writes

Gα(x) =
α

1− exp(−2α)
exp

(
− α(x+ 1)− x2 − 1

2

)
. (27)

It remains to find α such that the mass constraint
∫ 1
−1Gα(x) dx = M is satisfied. This

rewrites P (α) = M , P being the function defined by:

P (α) =

∫ 2α

0

1

1− exp(−2α)
exp

(
−y − 1

2

(( y
α
− 1
)2 − 1

))
dy .

We observe that P (α) >
∫ 2α

0
1

1−exp(−2α) exp(−y) dy = 1, hence there is no stationary state of
the form Gα with α > 0.

The case α < 0 is done similarly.

Lyapunov functional As it is classical we note the relative entropy

H(u|v) =

∫ 1

−1
u(x) log

(
u(x)

v(x)

)
dx, (28)

and the Fisher information

I(u|v) =

∫ 1

−1
u(x)

(
∂x

(
log

u(x)

v(x)

))2

dx.

Note that H(c|GM ) ≥M logM for all t > 0 by Jensen’s inequality. We introduce a Lyapunov
functional for equation (24):

L(t) = H(c|GM ) +
J(t)2

2(1−M)
. (29)

Let Γc be defined by

Γc(x) = Ac exp

(
− (c(t,−1)− c(t, 1)) x− x2

2

)
, (30)

with

Ac =
M∫ 1

−1 exp
(
− (c(t,−1)− c(t, 1)) y − y2

2

)
dy

. (31)

Lemma 14. If M < 1, then the Lyapunov functional L is non-increasing:

d

dt
L(t) = −D(t) ≤ 0 , (32)

where the dissipation is

D(t) = I(c|Γc) +
1

(1−M)

(
(c(t,−1)− c(t, 1))(1−M)− J(t)

)2
. (33)

12



Proof. We compute the evolution of the entropy:

d

dt
H(c|GM )(t) =

∫ 1

−1
∂tc(t, x)

log(c(t, x)) +
x2

2
+ 1− log

 M∫ 1
−1 e

− y2

2 dy

 dx ,

where
∫ 1
−1 ∂tc(t, x)(1− log(M/

∫ 1
−1 e

− y2

2 dy)) dx = 0 by mass conservation. Hence,

d

dt
H(c|GM )(t) = −

∫ 1

−1

(
∂xc(t, x) +

(
x+ c(t,−1)− c(t, 1)

)
c(t, x)

)(
∂xc(t, x)

c(t, x)
+ x

)
dx

= −
∫ 1

−1
c(t, x)

(
∂x log c(t, x) + x

)2
dx+ (c(t,−1)− c(t, 1))2 − (c(t,−1)− c(t, 1)) J(t)

= −
∫ 1

−1
c(t, x)

(
∂x log c(t, x) + x+ c(t,−1)− c(t, 1)

)2

dx

+(M − 1) (c(t,−1)− c(t, 1))2 + (c(t,−1)− c(t, 1)) J(t) . (34)

We can eliminate c(t,−1)− c(t, 1) from (34) in the two following steps:

(c(t,−1)− c(t, 1)) J(t) =
J(t)

(1−M)

d

dt
J(t) +

J(t)2

(1−M)

= − d

dt

J(t)2

2(1−M)
+

2J(t)

(1−M)

d

dt
J(t) +

J(t)2

(1−M)
, (35)

leading to

− 1

(1−M)

(
d

dt
J(t)

)2

= (M − 1) (c(t,−1)− c(t, 1))2 +
2J(t)

(1−M)

d

dt
J(t) +

J(t)2

(1−M)
. (36)

Combining (34) – (35) – (36), we obtain

D(t) =

∫ 1

−1
c(t, x)

(
∂x log c(t, x) + x+ c(t,−1)− c(t, 1)

)2
dx+

1

(1−M)

(
d

dt
J(t)

)2

,

and the proof of Lemma 14 is complete.

A priori estimates We now derive a priori bounds for solutions to (24) in the classical sense.

Proposition 15 (Main a priori estimate). Assume that
∫ 1
−1 c0 log c0 dx < +∞. Let c be a

classical solution to (24). If M < 1, then the following global estimates hold true for all T > 0:

sup
t∈(0,T )

∫ 1

−1
c(t, x) log c(t, x) dx < +∞ ,∫ T

0

∫ 1

−1
c(s, x)(∂x log c(s, x))2 dx ds < +∞ .

13



Proof. The proof follows from Lemma 14. Indeed, integrating (32) in time, it yields that

H(c|GM )(t) +
J(t)2

2(1−M)
+

∫ t

0

∫ 1

−1
c(s, x)

(
∂x log c(s, x) + x+ c(s,−1)− c(s, 1)

)2

dx ds

+
1

(1−M)

∫ t

0

(
d

dt
J(s)

)2

ds = H(c|GM )(0) +
J(0)2

2(1−M)
. (37)

Since H(c|GM ) ≥ M logM , it remains to prove that c(t,−1)− c(t, 1) belongs to L2 locally in
time. We first derive the following trace-type inequality:

(c(t,−1)− c(t, 1))2 =

(∫ 1

−1
∂xc(t, x) dx

)2

≤
(∫ 1

−1
c(t, x) dx

)(∫ 1

−1
c(t, x) (∂x log c(t, x))2 dx

)
. (38)

Furthermore, recalling that

2(1−M) (c(t,−1)− c(t, 1)) J(t) =
d

dt
J(t)2 + 2J(t)2 ,

and
d

dt
J(t)2 + J(t)2 +

(
d

dt
J(t)

)2

= (1−M)2 (c(t,−1)− c(t, 1))2 ≥ 0 ,

we deduce that

2 (c(t,−1)− c(t, 1)) J(t) +
1

(1−M)

(
d

dt
J(t)

)2

= (1−M) (c(t,−1)− c(t, 1))2 ≥ 0 . (39)

which together with inequality (38) yields that∫ 1

−1
c(t, x)

(
∂x log c(t, x) + x+ c(t,−1)− c(t, 1)

)2
dx+

1

(1−M)

(
d

dt
J(t)

)2

=

∫ 1

−1
c(t, x) (∂x log c(t, x))2 dx+ (M − 2) (c(t,−1)− c(t, 1))2 + 2 (c(t,−1)− c(t, 1)) J(t)

+

∫ 1

−1
x2c(t, x) dx− 2M + 2 (c(t,−1) + c(t, 1)) +

1

(1−M)

(
d

dt
J(t)

)2

≥
(
M +

1

M
− 2

)
(c(t,−1)− c(t, 1))2 − 2M . (40)

The quantity M + M−1 − 2 is positive since M < 1. Hence, using (37) and (40) we can
prove that c(t,−1)− c(t, 1) belongs to L2 locally in time. Next, using again (40) togther with
(39), we see that∫ 1

−1
c(t, x)

(
∂x log c(t, x) + x+ c(t,−1)− c(t, 1)

)2
dx+

1

(1−M)

(
d

dt
J(t)

)2

≥
∫ 1

−1
c(t, x) (∂x log c(t, x))2 dx+ (M − 2) (c(t,−1)− c(t, 1))2 − 2M . (41)
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Hence,
∫ 1
−1 c(t, x) (∂x log c(t, x))2 dx belongs to L1 locally in time.

To prove existence of weak solutions in the sense of Definition 12 one should perform a
regularization procedure. In this work we focus on long-time dynamics and we will not detail
this regularization procedure. Such a regularization procedure is classical and we refer to [8]
for more details.

Long-time behaviour To prove convergence of c(t, ·) towards GM we develop the following
strategy. We use the previous a priori estimates which enable to pass to the limit after extrac-
tion. The main argument (apart from passing to the limit) consists in identifying the possible
configurations c∞ for which the dissipation D vanishes. This occurs if and only if both positive
terms in (33) are zero. Thanks to (26), this means that J∞ = (1 −M) (c∞(−1)− c∞(1)) on
the one hand, and on the other hand,

∂x log c∞(x) + x+ c∞(−1)− c∞(1) = 0 ,

which yields that c∞ ≡ GM .

Rate of convergence As it is classical when the equilibrium state is a gaussian function,
the natural tool is a logarithmic Sobolev inequality established by Gross in [15] that we first
recall. Although we are dealing here with a non linear problem this method will be fruitful.

Lemma 16 (Logarithmic Sobolev inequality). Let ν(x)dx = exp(−V (x))dx be a measure with
smooth density on [−1, 1]. Assume that V ′′(x) ≥ 1 then, for u ≥ 0 satisfying

∫ 1
−1 u(x) dx =∫ 1

−1 ν(x) dx, we have∫ 1

−1
u(x) log

(
u(x)

ν(x)

)
dx ≤ 1

2

∫ 1

−1
u(x)

(
∂x

(
log

u(x)

ν(x)

))2

dx .

First, recalling (32) and (33), we deduce that

d

dt
L(t) = −D(t) = −I(c|Γc)−

1

(1−M)

((
c(t,−1)− c(t, 1)

)
(1−M)− J(t)

)2

.

Our aim is to apply a logarithmic Sobolev inequality to H(c|Γc). We first observe that

d

dt
L(t) + 2L(t) = −I(c|Γc)− (1−M) (c(t,−1)− c(t, 1))2 + 2H(c|GM )

+2 (c(t,−1)− c(t, 1)) J(t) ,

and we decompose the relative entropy as follows

H(c|GM ) =

∫ 1

−1
c(t, x) log

(
c(t, x)

GM (x)

)
dx

=

∫ 1

−1
c(t, x) log

(
c(t, x)

Γc(x)

)
dx+

∫ 1

−1
c(t, x) log

(
Γc(x)

GM (x)

)
dx .
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Recalling the definition (30) of Γc we deduce that∫ 1

−1
c(t, x) log

(
Γc(x)

GM (x)

)
dx =

∫ 1

−1
c(t, x) log

(∫ 1
−1 exp

(
−y2/2

)
dy

M

)
dx

+

∫ 1

−1
c(t, x) log

(
Ac exp

(
− (c(t,−1)− c(t, 1)) x

))
dx

= M log

 ∫ 1
−1 exp

(
−y2/2

)
dy∫ 1

−1 exp
(
− (c(t,−1)− c(t, 1)) y − y2

2

)
dy

− (c(t,−1)− c(t, 1)) J(t) ,

thanks to the definition (31) of Ac. Therefore,

2H(c|GM ) = 2H(c|Γc) + 2M log

 ∫ 1
−1 exp

(
−x2/2

)
dx∫ 1

−1 exp
(
− (c(t,−1)− c(t, 1))x− x2

2

)
dx


−2 (c(t,−1)− c(t, 1)) J(t) . (42)

Finally, applying a logarithmic Sobolev inequality (Lemma 16) to the measure Γc(x) dx and
using that −(1−M) (c(t,−1)− c(t, 1))2 ≤ 0, we obtain

d

dt
L(t) + 2L(t) = −I(c|Γc)− (1−M) (c(t,−1)− c(t, 1))2 + 2H(c|Γc)

+2M log

 ∫ 1
−1 exp

(
−x2/2

)
dx∫ 1

−1 exp
(
− (c(t,−1)− c(t, 1))x− x2

2

)
dx


≤ 2M log

 ∫ 1
−1 exp

(
−x2/2

)
dx∫ 1

−1 exp
(
− (c(t,−1)− c(t, 1))x− x2

2

)
dx


= −2M log

(∫ 1

−1
exp (− (c(t,−1)− c(t, 1))x)

GM (x)

M
dx

)
≤ 0 ,

thanks to Jensen’s inequality. Hence

d

dt
L(t) + 2L(t) ≤ 0 ,

leading to
H(c|GM ) ≤ L(0) exp(−2t) .

A rate of convergence for the L1 norm is obtained by using the Csiszár-Kullback inequality,
[9], that we recall now.

Proposition 17 (Csiszár-Kullback inequality). For any non-negative functions f, g ∈ L1(−1, 1)
such that

∫ 1
−1 f(x) dx =

∫ 1
1 g(x) dx = M , we have that

‖f − g‖21 ≤ 2M

∫ 1

−1
f(x) log

(
f(x)

g(x)

)
dx . (43)
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Hence, the following decay estimate holds:

‖c(t, x)−GM (x)‖L1 ≤
√

2ML(0) exp(−t) .

3.2 Critical case M = 1

Similarly, we can prove the existence of a stationary solution.

Lemma 18. For M = 1, equation (24) admits a unique stationary solution given by G1.

Proof. The proof is similar to the one of lemma 13.

In this part we cannot follow the strategy developped in Section 3.1 since we crucially used
M < 1. In the case M = 1, from (34) it follows that

d

dt
H(c|G1) = −I(c|Γc) + (c(t,−1)− c(t, 1)) J(t) , (44)

and

H(c|G1) = H(c|Γc) + log

 ∫ 1
−1 exp

(
−x2/2

)
dx∫ 1

−1 exp
(
− (c(t,−1)− c(t, 1))x− x2

2

)
dx


− (c(t,−1)− c(t, 1)) J(t) .

Then, together with the logarithmic Sobolev inequality 2H(c|Γc) ≤ I(c|Γc), we deduce that

d

dt
H(c|G1) ≤ −H(c|Γc)−H(c|G1) + log

 ∫ 1
−1 exp

(
−x2/2

)
dx∫ 1

−1 exp
(
− (c(t,−1)− c(t, 1))x− x2

2

)
dx

 .

Consequently, using again Jensen’s inequality, it follows that

d

dt
H(c|G1) ≤ −H(c|G1) ≤ 0 . (45)

Consequently we deduce that 0 ≤ H(c|G1)(t) ≤ H(c|G1)(0), hence∫ 1

−1
c(t, x) log c(t, x) dx ≤ C0 , a.e. t ∈ (0,+∞) .

A priori bound To obtain a control on the dissipation of entropy, we follow the strategy
developped in [8]. Consider the even function Λ : R → R+ such that Λ(0) = 0, and Λ′(u) =

(log(u))
1/2
+ for u > 0. Then, it is non-increasing on (−∞, 0), non-decreasing on (0,+∞), convex

and superlinear, and for all D, there exists A ∈ R+ such that for any u ∈ (−∞,−A)∪(A,+∞),
Λ(u)2 ≥ (1 +D)C0u

2. Using again a trace-type inequality, we get
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Λ (c(t,−1)− c(t, 1))2 =

(
−
∫ 1

−1
∂xΛ(c(t, x)− c(t, 1)) dx

)2

,

=

(
−
∫ 1

−1
Λ′(c(t, x)− c(t, 1))c(t, x)∂x log(c(t, x)) dx

)2

,

≤
(∫ 1

−1
c(t, x)

∣∣Λ′(c(t, x)− c(t, 1))
∣∣2 dx

)(∫ 1

−1
c(t, x)(∂x log(c(t, x)))2 dx

)
≤

(∫ 1

−1
c(t, x) log(c(t, x))+ dx

)(∫ 1

−1
c(t, x)(∂x log(c(t, x)))2 dx

)
≤ C0

(∫ 1

−1
c(t, x)(∂x log(c(t, x)))2 dx

)
. (46)

Moreover, recall that we have

dH(c|G1)(t)

dt
= α(t)J(t)−

∫ 1

−1
c(t, x) (∂x log(c(t, x)) + α(t) + x)2 dx , (47)

= α(t)2 − α(t)J(t) + 2(1− c(t, 1)− c(t,−1))−K(t)−
∫ 1

−1
c(t, x) (∂x log(c(t, x)))2 dx ,

≤ α(t)2 − α(t)J(t) + 2−
∫ 1

−1
c(t, x) (∂x log(c(t, x)))2 dx ,

with K(t) =
∫ 1
−1 x

2c(t, x) dx ≥ 0. Combining (45) and (46), it leads to

dH(c|G1)(t)

dt
≤

{
0 if |α(t)| ≤ A
−Λ(α(t))2

C0
+ α(t)2 + 2− α(t)J(t) ≤ −Dα(t)2 + 2− α(t)J(t) if |α(t)| > A .

We can assume A >
√

2, so that α(t)2 > 2. In the case |α(t)| > A, as J(t) = J(0)e−t, we
have −α(t)J(t) ≤ α(t)2|J(0)|, and

−Dα(t)2 + 2− α(t)J(t) ≤ −(D − 1− |J(0)|)α(t)2 .

Take D = 2 + |J(0)|. Then,

dH(c|G1)(t)

dt
≤
{

0 if |α(t)| ≤ A
−α(t)2 if |α(t)| > A .

Now, on the set E = {t : |α(t)| > A}, we have∫
E
α(t)2 dt ≤ H(c|G1)(0) , (48)

giving a L2 control on α(t).
Finally, using (47) and (48), we prove that

∫ t
0

∫ 1
−1 c(s, x) (∂x log(c(s, x)))2 dx dt is bounded

for all t ∈ (0, T ). Then, proposition 15 is still verified, and we can similarly prove the global
existence of weak solutions in the critical case.
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Long-time behaviour The convergence of c(t, ·) towards GM is proved as in the subcritical
case.

Rate of convergence By (45), we know that

H(c|G1)(t) ≤ H(c|G1)(0)e−t .

Hence, the Csiszár-Kullback inequality leads to the following estimation:

‖c(t, x)−GM (x)‖L1 ≤
√

2MH(c|G1)(0) exp(−t/2) .

3.3 The Super-critical case M > 1

We prove now that depending on the mass, the problem (24) admits one or three stationary
solutions. Then, we prove that if the initial condition is asymmetric enough, a blow-up occurs
in finite time, and we are able to give a quantitative criterion for its apparition. The proof is
based on the blow-up analysis for a modified problem, followed by the use of a concentration-
comparison principle to deduce the blow-up in our case. Numerical simulations displayed in
figure 1 show the apparition of a blow-up.

3.3.1 Stationary solutions

We establish now the following lemma.

Lemma 19. Denote M0 = 1
2

∫ 1
−1 exp

(
−x2−1

2

)
dx > 1. Then,

• for M ∈ (1,M0), equation (24) admits exactly three stationary states: the symmetric
solution GM , and two asymmetric solutions G±α, with

Gα(x) =
α

1− exp(−2α)
exp

(
− α(x+ 1)− x2 − 1

2

)
,

for some α > 0 defined by the mass constraint
∫ 1
−1Gα(x) dx = M .

• for M ≥M0, GM is the only stationary solution.

Proof. We have seen in the proof of lemma 13 that the only possible stationary solutions are of
the form GM and Gα. It is straightforward that for all M > 1, GM is solution and satisfies the
mass constraint. For Gα, let us denote Mα =

∫ 1
−1Gα(x) dx. We know that Mα > 1. It remains

to characterize the set I = {Mα, α > 0} of attainable mass values. As we were not able to
characterize I explicitly, we performed a numerical simulation of Mα as a function of α (see
figure 4, a)). Notice that M0 is defined such that limα→0Gα = GM0 , leading to the result.
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3.3.2 Blow-up for a modified equation

In this section we consider the following modified equation of (24):

∂tc(t, x) = ∂x

(
∂xc(t, x) + (−1 + c(t,−1)− c(t, 1)) c(t, x)

)
, (49)

where c(t, x) is defined for t > 0 and x ∈ (−1, 1), together with zero-flux boundary conditions:{
∂xc(t,−1) + (c(t,−1)− c(t, 1)− 1) c(t,−1) = 0 ,

∂xc(t, 1) + (c(t,−1)− c(t, 1)− 1) c(t, 1) = 0 ,
(50)

and an initial condition: c(t = 0, x) = c0(x). The total mass will also be denoted by M , i.e.
M =

∫ 1
−1 c(t, x) dx.

In this part we will prove that solutions to (49) - (50) blow-up in finite time when mass
is super-critical M > 1 and c0 is decreasing and satisfies c0(−1) − c0(1) > 1. To do so we
prove that the first momentum shifted in x = −1 of c, J̃(t) =

∫ 1
−1(x + 1)c(t, x) dx cannot

remain positive for all time. This technique was first used by Nagai [34], then by many authors
in various contexts. In a first step, in Lemma 20, we establish that the assumption that c0

is a decreasing function such that c0(−1) − c0(1) > 1 and that the J̃(0) is sufficiently small
guarantee that c(t, ) is also decreasing and satisfies c(t,−1)− c(t, 1) > 1 for any existence time
t > 0. In a second step, in Proposition 21, we prove the blow-up character.

Lemma 20. Assume that M > 1. Assume in addition that the initial condition c0 of (49) is
decreasing, satisfies c0(−1)−c0(1) > 1 and

∫ 1
−1(x+1)c0(x) dx < (M−1)/2. Then any solution

c to (49), if it exists, is non-increasing and satisfies c(t,−1)− c(t, 1) > 1.

Proof. Since we supposed that c0(−1) − c0(1) > 1, it remains true at least until a time t0 ∈
(0, T ), where T is the existence time. We choose the maximal t0 possible. For all t ∈ [0, t0],
c(t, ·) is decreasing. In fact the derivative u(t, x) = ∂xc(t, x), satisfies the following parabolic
type equation without any source term:

∂tu(t, x) = ∂xxu(t, x) + ∂x

(
(−1 + c(t,−1)− c(t, 1))u(t, x)

)
. (51)

The solution is initially non-positive, and also initially non-positive on the boundary due to
(50) - (50) and the assumption c0(−1)− c0(1) > 1. From classical strong maximum principle,
we deduce that c(t, ·) is decreasing for all t ∈ [0, t0].

Therefore, for all t ∈ [0, t0], −∂xc(t, x)/ (c(t,−1)− c(t, 1)) is a probability density. From
Jensen’s inequality, we deduce the following interpolation estimate:(∫ 1

−1
(x+ 1)

−∂xc(t, x)

c(t,−1)− c(t, 1)
dx

)2

≤
∫ 1

−1
(x+ 1)2 −∂xc(t, x)

c(t,−1)− c(t, 1)
dx ,

hence, using that c(t,−1) > c(t, 1) for any time t ∈ [0, t0], it follows that

(M − 2c(t, 1))2 ≤ (c(t,−1)− c(t, 1))

(
2

∫ 1

−1
(x+ 1)c(t, x) dx− 4c(t, 1)

)
. (52)
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Consequently, for all t in [0, t0], the first momentum shifted in x = −1, J̃(t) =
∫ 1
−1(x +

1)c(t, x) dx, which is non-negative and such that 2J̃(t) ≥ 4c(t, 1), for all t in [0, t0], thanks to
(52), satisfies:

d

dt
J̃(t) ≤ M + (1−M) (c(t,−1)− c(t, 1)) ≤ (1−M)

(M − 2c(t, 1))2

2J̃(t)− 4c(t, 1)
+M

≤ (1−M)
M2 − 4Mc(t, 1)

2J̃(t)
+M , (53)

as M > 1. Using again that 2J̃(t) ≥ 4c(t, 1), we deduce that

d

dt
J̃(t) ≤ M(1−M)

2J̃(t)

(
M − 2J̃(t)

)
+M ≤ M2(1−M)

2J̃(t)

(
1− 2J̃(t)

M − 1

)
.

Since J̃(0) < (M − 1)/2 and J̃(t) ≥ 0 we deduce that for all t ∈ [0, t0]: d
dt J̃(t) ≤ 0, hence

J̃(t) ≤ J̃(0) < M−1
2 . Consequently, using (52), it follows that for all t in [0, t0],

c(t− 1)− c(t, 1) ≥
M
(
M − 2J̃(0)

)
2J̃(0)

≥ M

M − 1
> 1 ,

hence t0 = T is the existence time of c.

We can now prove a blow-up result on (49) - (50).

Proposition 21. Assume M > 1 and that the first moment shifted in 1 is initially small:
J̃(0) < (M − 1)/2. Assume in addition that c0 is decreasing and satisfies c0(−1) − c0(1) > 1.
Then the solution to (49) - (50) with initial data c(0, x) = c0(x) blows-up in finite time.

Proof. From Lemma (20) it follows that

d

dt
J̃(t) ≤ M2(1−M)

2J̃(t)

(
1− 2J̃(t)

M − 1

)
≤ M2(1−M)

2J̃(t)

(
1− 2J̃(0)

M − 1

)
. (54)

Hence, since J̃(0) < (M − 1)/2, we deduce the inequality

J̃(t) ≤ J̃(0) +
(1−M)M2

2

(
1− 2J̃0)

M − 1

)∫ t

0

1

J̃(s)
ds . (55)

We introduce the auxiliary function K(t) = J̃(0) + (1−M)M2

2

(
1− 2J̃(0)

M−1

) ∫ t
0 J̃(s)−1 ds. It is

positive, it satisfies K(t) ≥ J̃(t) together with the following differential inequality:

d

dt
K(t) =

(1−M)M2

2J̃(t)

(
1− 2J̃(0)

M − 1

)
≤ (1−M)M2

2K(t)

(
1− 2J̃(0)

M − 1

)
,
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hence,

d

dt
K(t)2 ≤ (1−M)M2

(
1− 2J̃(0)

M − 1

)
< 0 .

We obtain a contradiction: the maximal time of existence T ∗ is necessarily finite when M > 1.
On the other hand, following [19], it can be proved that the modulus of integrability has to
become singular at T ∗:

lim
K→+∞

(
sup

t∈(0,T ∗)

∫ 1

−1
(c(t, x)−K)+ dx

)
> 0 .

Otherwise a truncation method enables to prove local existence by replacing c with (c −K)+

for K sufficiently large.

3.3.3 Blow-up in the Super-critical case

In this part, we prove Theorem 2. To do so, following [27], we state a so-called concentration-
comparison principle on the equation obtained from (24) after space integration. This principle
together with the use of a subsolution that blows-up allow proving the blow-up character of
solutions to (24) above the critical mass.

Lemma 22. Let C, C̄, C be non-decreasing (in space) functions in C1(0, T ;C2([−1, 1])) satis-
fying 

∂tC(t, x)− ∂xxC(t, x)−
(
x+ ∂xC(t,−1)− ∂xC(t, 1)

)
∂xC(t, x) = 0 ,

∂tC̄(t, x)− ∂xxC̄(t, x)−
(
x+ ∂xC̄(t,−1)− ∂xC̄(t, 1)

)
∂xC̄(t, x) ≥ 0 ,

∂tC(t, x)− ∂xxC(t, x)−
(
x+ ∂xC(t,−1)− ∂xC(t, 1)

)
∂xC(t, x) ≤ 0 ,

C(t,−1) = C̄(t,−1) = C(t,−1) = 0 .

(56)

Assume that C(0, ·) ≤ C(0, ·) ≤ C̄(0, ·) and that ∂xC̄(0,−1) − ∂xC̄(0, 1) > ∂xC(0,−1) −
∂xC(0, 1), then the following inequality holds true for all 0 < t ≤ T :

C(t, .) < C̄(t, .).

Proof. From (56), we deduce that δC = C̄ − C satisfies the parabolic inequation

∂tδC(t, x)− ∂xxδC(t, x)−
(
x+ ∂xC̄(t,−1)− ∂xC̄(t, 1)

)
∂xδC(t, x)

≥
((

∂xC̄(t,−1)− ∂xC̄(t, 1)
)
−
(
∂xC(t,−1)− ∂xC(t, 1)

))
∂xC(t, x) ,

with C̄(t,−1) = C(t,−1) = 0. Since we supposed that ∂xC̄(0,−1)− ∂xC̄(0, 1) > ∂xC(0,−1)−
∂xC(0, 1), it remains true at least until a time T ′ ∈ (0, T ), and we choose the maximal T ′

possible. Since ∂xC ≥ 0, on the time interval [0, T ′], we have{
∂tδC(t, x)− ∂xxδC(t, x)−

(
∂xC̄(t,−1)− ∂xC̄(t, 1)

)
∂xδC(t, x)− x∂xδC(t, x) ≥ 0 ,

C̄(t,−1) = C(t,−1) = 0 .
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Hence, by strong maximum principle [13], C̄ > C on (0, T ′) × (−1, 1). Furthermore, by Hopf
Lemma (see [13]), we also have{

∂xδC(T ′,−1) = ∂xC̄(T ′,−1)− ∂xC(T ′,−1) > 0 ,

∂xδC(T ′, 1) = ∂xC̄(T ′, 1)− ∂xC(T ′, 1) < 0 .

As T ′ is maximal we immediately conclude that T ′ = T .

Proof. Proof of Theorem 2. Let c0 be a decreasing function such that c0(x) ≤ c0(x) for all
x ∈ [−1, 1] and which satisfies

∫ 1
−1 c0(x) dx > 1. Assume in addition that c0(−1) − c0(1) >

c0(−1)− c0(1) > 1. Finally assume that
∫ 1
−1(x+ 1)c0(x) dx < (M − 1)/2, where we recall that

M =
∫ 1
−1 c(t, x) dx > 1. First according to Proposition 21, we know that the solution c to (49)

- (50) with initial data c(0, x) = c0(x) blows-up in finite time.
We will now prove that the distribution function C(t, x) =

∫ x
−1 c(t, y) dy satisfies

∂tC(t, x)− ∂xxC(t, x)−
(
x+ ∂xC(t,−1)− ∂xC(t, 1)

)
∂xC(t, x) ≤ 0 .

Indeed integrating (49) - (50) in space, one obtains

∂tC(t, x)− ∂xxC(t, x)−
(
− 1 + ∂xC(t,−1)− ∂xC(t, 1)

)
∂xC(t, x) = 0 .

Hence,

∂tC(t, x)− ∂xxC(t, x)−
(
x+ ∂xC(t,−1)− ∂xC(t, 1)

)
∂xC(t, x) = −(x+ 1)∂xC(t, x) ≤ 0 ,

where the last inequality follows from the non-decreasing character of C(t, ·) together with
x ≥ −1. Hence, from Lemma 22, it follows that C(t, .) < C̄(t, .) for all time below the existence
time T , where C̄(t, .) is any function defined in (56). In particular, for c solution to (24)
with initial data c(0, x) = c0(x), we can set C̄(t, x) =

∫ x
−1 c(t, y) dy, which yields the blow-up

character of c.

4 The model with with dynamical exchange of markers at the
boundary: prevention of blow-up and asymptotic behaviour

In Section 3.3, we proved that finite time blow-up occurs in the basic model (24) when mass
is super-critical M > 1. Such a behaviour is not realistic from a biological viewpoint. Here
we modifiy the model model (24) by considering markers that are sticked to the boundary and
thus create the attracting drift. More precisely, in this part we will study the stationary states
associated with the following model:

∂tc(t, x) = ∂xxc(t, x) + ∂x ((x+ µ−(t)− µ+(t)) c(t, x)) , t > 0 , x ∈ (−1, 1)
d
dtµ−(t) = c(t,−1)− µ−(t) ,
d
dtµ+(t) = c(t, 1)− µ+(t) ,

(57)
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together with the flux condition at the boundary:{
∂xc(t,−1) + (−1 + µ−(t)− µ+(t)) c(t,−1) = d

dtµ−(t) ,

∂xc(t, 1) + (1 + µ−(t)− µ+(t)) c(t, 1) = − d
dtµ+(t) .

(58)

The quantities µ± represent the concentrations of markers which are sticked to the boundary
and thus create the attracting drift µ−(t) − µ+(t). The dynamics of µ± is driven by sim-
ple attachment/detachment kinetics. The mass of molecular markers is shared between the
free particles c(t, x) and the particles on the boundary µ±(t). The boundary condition (58)
guarantees conservation of the total mass:∫ 1

−1
c(t, x) dx+ µ−(t) + µ+(t) = M . (59)

From (59), we easily deduce that finite time blow-up cannot occur since |µ−(t) − µ+(t)| is
bounded by M . We denote by m(t) the mass of free particles:

m(t) =

∫ 1

−1
c(t, x) dx .

The conservation of mass reads

d

dt
m(t) +

d

dt
(µ−(t) + µ+(t)) = 0 .

Stationary solutions (c, µ−, µ+) are characterized by:
c(x) = c(−1)e−

x2−1
2
−α(x+1) , x ∈ (−1, 1)

α = c(−1)(1− e−2α) ,∫ 1
−1 c(x) dx+ c(−1) + c(1) = M ,

(µ−, µ+) = (c(−1), c(1)) ,

where we have denoted α = c(−1)− c(1).
We establish the following lemma.

Lemma 23. Denote M0 = 1 + 1
2

∫ 1
−1 exp

(
−x2−1

2

)
dx > 1. Then,

• for M ≤M0, the problem (57) - (58) admits a unique symmetric stationary solution GM
defined by:

GM (x) =
M

2 +
∫ 1
−1 e

−x2−1
2 dx

e−
x2−1

2 dx . (60)

• for M > M0, there are two other asymmetric solutions G±α, with

Gα(x) =
α

1− e−2α
e−

x2−1
2
−α(x+1) ,

for some α > 0 defined by the mass constraint

Mα :=
α

1− e−2α

(
2 +

∫ 1

−1
e−

x2−1
2
−α(x+1) dx

)
− α = M .
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b) Dynamical exchange case

Figure 3: Mass of Gα as a function of α for a) the direct case ; b) the dynamical exchange case.

Etats_stats_attach-eps-converted-to.pdf

Figure 4: Numerical simulations of the spatial concentration profile c(x) of the marker, for
the dynamical exchange model. Each plot corresponds to a different initial profile and mass
: a) sub-critical case ; b) critical case ; c), d) super-critical case. Each curve represents the
concentration profile at a specific time. Parameters: T = 20 ; dt = 10−2 ; dx = 2 ∗ 10−3.

Proof. A simple computation yields that any stationary solution is either of the form GM or
of the form Gα. It is straightforward that for all M > 0, GM is solution and satisfies the mass
constraint. For Gα, we need to characterize the set I = {Mα, α > 0}. It can be proved that for
all α > 0, Mα = M−α, and Mα ∼+∞ α, and that limα→0Mα = M0. As before, we performed
a numerical simulation of Mα as a function of α (see figure 4, b)), leading to I = (M0,+∞),
hence the result.

Numerical simulations for this model are presented in figure 4 below.

5 Perspectives

In this work, we presented a model of 1D cell migration based on the diffusion and advection
of a molecular marker inside the cell, that itself exerts a feedback on this dynamics. The
marker’s spatial repartition is supposed to be characteristic of the polarisation state of the
cell. The resulting equation, a non linear and non local Fokker-Planck equation, was shown to
admit a dichotomy behaviour at equilibrium. Below and at the critical mass, polarisation is
not possible. Above the critical mass, and below a limiting mass M0, the system admits two
polarised equilibria. Moreover, we have proved that for initial concentrations ”steep enough”,
a blow up occurs in finite time, corresponding to a polarised state, but mainly showing that
the model lacks regularity and that there is room for improvement. We next presented a more
realistic model, where attachment-detachment kinetics of the marker at the membrane is taken
into account. In this case, we were able to prove again a dichotomy behaviour for the existence
of asymmetric steady states, and that the additional dynamics at the boundary is enough to
prevent the blow up apparition.
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A few questions remain today unresolved, and will be the object of a future work. The sta-
bility of either symmetric or asymmetric stationary states ought to be discussed, as prospective
numerical simulations suggest non trivial results. Also, in the super critical case, it is of interest
to search for a quantitative criterion to discriminate between the three stationary solutions.
Finally, the controllability of the cell velocity can be studied.

This model was designed to investigate the initiation of polarisation during motion. In
order to describe a whole displacement, a stochastic instability could be included in the marker’s
dynamics. Then, the dichotomy’s result could be investigated at long time scales. The question
of an external signal perturbing the molecular dynamics is of similar nature.

Moreover, a natural continuation consists in studying the corresponding 2D model, and the
equivalent problem on a free boundary domain, in order to describe geometrical feedbacks of
the cell on its motion.

Acknowledgement: the authors are very grateful to V. Calvez, B. Maury, A. Mogilner and M.
Piel for very helpful discussions.
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