In the ABC framework, the posterior distribution is given by: π ABC (θ|D sim , D obs , M) ∝ f w (D obs |D sim , θ, M)f (D sim |θ, M)π(θ|M) D sim is the simulated data. If ε is small enough, π ABC (θ|D sim , D obs , M) is a good approximation of the true posterior distribution. Sequence of the tolerance thresholds:

ε 1 > ε 2 > . . . > ε T .
Type of kernels to move particles and models.

N number of particles per population.

Stopping criterion.

The efficiency of the algorithm depends heavily on the selection of the tuning parameters.

Always the objective is to strike the right balance between computational requirements and acceptable precision.

ABC favours automatically simpler models.

Example 1: Cubic and CQ models → Two competing models: each model is characterised by a set of parameters Θ. Example 1: Cubic and CQ models

M 1 : mz + c ż + kz + k 3 z 3 = f (t), M 2 : mz + c ż + kz + k 3 z 3 + k 5 z 5 = f (t
Input force: Gaussian with µ = 0, σ = 10. Training data from the CQ model (noise of 1% r.m.s was added). Equal prior probabilities: p(M 1 ) = p(M 2 ) = 1 2 . Uniform priors for model parameters.

Uniform kernels are used to move particles.

The tolerance thresholds sequence is set successively to be ε i=1:19 = (100, 80, . . . , 0.05, 0.03).

The MSE is considered to measure the level of agreement:

∆(u obs , ǔsim ) = 100 pσ 2 u p =1 u obs -ǔsim 2
Model posterior probabilities: The ABC-SMC algorithm tends first to converge to the cubic model (the model with less parameters).

M1 M2 0 0.5 p=1, ε=100 M1 
Example 1: Cubic and CQ models 
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The ABC-NS algorithm is based on the concept of the nested sampling (NS) algorithm proposed by Skilling Ref. 2 and the ellipsoidal sampling technique proposed by Mukherjee et al. Ref. 3 .

The implementation of the algorithm requires the selection of a number of hyperparameters, (the values used here are given):

β 0 : proportion of the alive particles (β 0 = 0.6).

α 0 : proportion of the died particles (α 0 = 0.3).

f 0 : enlargement factor (f 0 = 1.1).
The first iteration of the ABC-NS algorithm is described in the pseudocode given in the next slide. For the next iteration, (1 -β 0 )N particles are sampled (subjected to the constraint ∆(u, u * ) < ε 2 ) inside the ellipse defined by its covariance matrix and mean value estimated based on the alive particles obtained previously. For the next iterations, the same procedure is repeated until the convergence criterion is met.

Principle of the ABC-NS algorithm:

Algorithm 1 ABC-NS sampler Require: u: Observed data, M(•), ε1, N 1: while i ≤ N do 2: repeat 3:
Sample θ * from the prior distributions π(•)

4:

Simulate u * using the model M(•)

5: until ∆(u, u * ) ≤ ε1 6: set Θi = θ * , ei = ∆(u, u * ) 7:
set i = i + 1 8: end while 9: Sort e on ascending order, ε2 = e(α0N ), α0 ∈ [0.2, 0.3]

10: ωi ∝ 1 ε1 1 -( ei ε1
) 2 11: Remove dead particles, ∆(u, u * ) ≥ ε2, ωj=1:α 0N = 0 12: Normalise the weights such that Training data (free-of-noise). Illustration of the ABC-NS algorithm. 

Frequency

Comparison between the acceptance rates. 

M 1 : mz + c ż + kz = f (t), M 2 : mz + c ż + kz + k 3 z 3 = f (t).
→ Objective: Identify the most likely model.

The training data was synthetically generated from the cubic model (free-of-noise). Evolution of the number of particles for the linear model.
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  f w (D obs |D sim , θ, M) is the weighting function so-called indicator function.f w (D obs |D sim , θ, M) ∝ I(d(D obs , D sim|θ ) ≤ ε, M) d(D obs , D sim|θ) is a distance measure between the observed data and the simulated data.

  2 >⋯ > 𝜀 𝑇 𝜀 𝑇 pM i = Number of particles accepted for M i Total number of particles Hyperparameters to be defined: ∆(u, u * ): distance to measure the degree of similarity.

  general BA ABC-SMC for model selection ABC-NS as a new alternative Conclusions Example 1: Cubic and CQ models → Selection of the ABC-SMC Ref. 1 hyperparameters: Number of particles N =1000.

  Select β0N alive particles, β0 ∈ [0.5, 1 -α0] 14: Define the ellipse by its covariance matrix and mean value E1 = {B1, µ1} 1 The equation of motion is given by: mÿ + c ẏ + ky + k 3 y 3 = f (t) Objective: identify the unknown parameters Θ = (k, k 3 ) from the training data. m = 1. c = 0.05. k ∼ U(20, 80). k 3 ∼ U(500, 1500).

  general BA ABC-SMC for model selection ABC-NS as a new alternative Conclusions Example 2: ABC-NS for parameter estimation Illustration of the ABC-NS algorithm.
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  The equation of motion is given by: mÿ + c ẏ + ky + k 3 y 3 = f (t)Objective: identify the unknown parameters Θ = (c, k, k 3 ) from the training data (free-of-noise). general BA ABC-SMC for model selection ABC-NS as a new alternative Conclusions Example 3: ABC-NS for parameter estimation general BA ABC-SMC for model selection ABC-NS as a new alternative Conclusions Example 3: ABC-NS for parameter estimation general BA ABC-SMC for model selection ABC-NS as a new alternative Conclusions Example 3: ABC-NS for parameter estimation Comparison between the posterior distributions using the differential entropy.

  Figure: 3 unknown parameters

  general BA ABC-SMC for model selection ABC-NS as a new alternative Conclusions Example 4: ABC-NS for model selection Evolution of the number of particles for the linear model.

  After few iterations, the linear model is eliminated and the algorithm converges to the right model: model posterior probabilities over few populations:
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	Parameter True value Lower bound Upper bound
	m	1	0.1	10
	c	0.05	0.005	0.5
	k	50	5	500
	k 3 k 5	10 3 10 5	10 2 10 4	10 4 10 6

  Evolution of the number of particles for the linear model. Outline Aims The general BA ABC-SMC for model selection ABC-NS as a new alternative Conclusions Example 4: ABC-NS for model selection Evolution of the number of particles for the linear model. Evolution of the number of particles for the linear model.
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Evolution of the number of particles for the linear model. 

Conclusions

The parsimony principle is well embedded in the ABC algorithm.

ABC-SMC and ABC-NS provide good estimates.

The ABC-NS outperforms the ABC-SMC in terms of computational efficiency.

The ABC-NS can be applied simultaneously for parameter estimation and model selection.

ABC-NS requires less parameters to be tuned compared with the ABC-SMC.

To run the ABC-NS algorithm, Matlab files calc ellipsoid.m and draw from ellipsoid.m from the MultiNest package Ref. 4 have been used.

Future work

Compare the ABC-NS with other variants of ABC algorithms.

Introduce the use of the ABC-NS for real applications.

Extend the use of the ABC to infer systems with complex behaviours and systems with larger datasets by extracting useful features.

More details and examples about the implementation of the ABC-NS algorithm and hyperparameters selection will be investigated and presented in a forthcoming journal paper.
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