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My fundamental question in this postdoc research project is how to generate music 

that is reasonable and emotional. For this purpose, I focus on investigating how the 

global structure of an entire musical piece is constructed from basic units 

(vocabularies) that can be easily recognized, such as melodic motifs, rhythmic 

patterns, chord patterns, etc.  

 

I first investigated the style of baroque polyphonic music, in which melodic motifs 

are important as the basic vocabulary. In polyphonic music, melodic motifs such as 

subject, response, countersubject, and other melodic figures are frequently repeated 

and the entire piece can be seen as a sort of puzzle that consists of such melodic 

fragments. To analyze the configuration of motifs in a musical piece and to reveal 

the structure of the piece, I developed a computational analysis that decomposes a 

polyphonic piece into a small number of classes of motif. Here, I adopt the class of 

motif instead of mere motif based on a contrapuntal viewpoint. In counterpoint, 

which is a theory of creating polyphonic music, motifs are seen as identical under 

certain types of transformations, i.e., inversion, retrograde, argumentation, 

diminution, transpositions. These transformations form a mathematical group. 

Using this transformation group, I can define equivalence classes of motif derived 

by the relation given by this group (this is to say that the motif after a 

transformation by this group and the motif before the transformation are related, 

and therefore belong to the same motif class).  

 

Compared to a usual analysis by human, this computational method would allow us 

to accomplish more detailed analysis (melodic segmentation) detecting a set of motif 

classes that can reconstruct the entire structure. However, there are many possible 

solutions. To determine the best solution, I posed a constraint that fixes the number 



of motif classes and I defined an objective function to be minimized as the number of 

motifs that appear in the segmentation. Minimizing this objective function is 

equivalent to maximizing the average length of the motifs. This means the optimal 

solution would provide a set of motif classes that cover the piece the most 

“efficiently.” After giving this formulation, I found that this is a variation of the 

set-partitioning problem, which is well-known in the field of operations research, 

and I could implement this problem by integer programming, which is a highly 

developed tool to deal with computationally complex combinatorial problems.  

 

To test this method, I analyzed J.S. Bach’s Invention No.1. Thanks to the 

application of integer programming, I succeeded to obtain an optimal solution. In 

the resulting motifs, there were those that cover diverse characteristics such as the 

theme, countersubject, zigzag pattern, octave leap, irregular rhythmic pattern, etc. 

The distribution of these motifs within the piece gives us a lot of useful information 

to clarify the structure of the piece and the roles of each motif. For example, we 

could easily see that this piece consists of three sections, each consists of two parts, 

an exposition of the theme and a 1.5-measure ending part without an occurrence of 

the theme. Also, the irregular rhythmic pattern only appears directly before the 

1.5-measure ending parts. This is as if this motif has a role for announcing the end 

of the sections. Although the zigzag pattern and stepwise pattern, which cause the 

sense of direction, only appear in ascending forms in the first two sections, these 

appear in descending forms in the last section. We can consider that the ascending 

forms of these motifs create the sense of expectation that the piece will continue 

further and that the descending forms create the sense of expectation that this piece 

will end soon. That implies, in the composition based on melodic motifs, the 

locations of motif and the types of transformation can have roles to control the 

perception of the listener. In this way, this analysis reveals the roles and the 

psychological/emotional meanings of the motifs and helps us to understand the 

global structure of the piece. Moreover, using the result of this analysis, I developed 

a method to visualize the relationship between acquired motifs using Hasse 

diagram. By seeing maximal elements of this diagram, we can clearly understand 

which motifs can derive the whole piece and the role of these motifs. For example, 

we can reduce J.S. Bach’s Invention No.1 to only four small motifs (I call these four 



motifs subject, countersubject, zigzag, and pre-cadence signal). Thus we can detect 

the basic elements of the piece. This analysis method was presented at 

International Congress of Mathematics and Music (ICMM). Concerning possible 

applications, this analysis would provide useful information to construct an 

algorithm to generate musical structure or to assist music performers to interpret 

the pieces. 

 

Based on the same method (integer programming) and the same basic idea that 

musical pieces consist of localized musical vocabularies such as chords, rhythmic 

patterns, and melodic patterns, I formulated a method of generating global musical 

structures from a given set of localized musical patterns. This method allows us to 

generate a sequence of patterns that have a hierarchy and some global 

characteristics, as well as localized transition rules between the patterns. This 

formulation consists of only linear equations and linear inequalities and that allows 

us to apply integer programming. However, there is a limitation that only short 

sequences can be generated currently because finding a solution takes a lot of 

calculation time. So, section-wise generation is a realistic compromise for the 

moment. This method was presented at the conference Mathematics and 

Computation in Music (MCM2015).  

 

Although the above methods were intended to treat classical music, I found, 

through some discussions with researchers whom I met at MCM2015, that similar 

method can be applied to the global structure of the pieces of Milton Babbitt, an 

American composer of 20th and 21st centuries who is famous for his mathematical 

ways of composition. In his certain compositions, he created an underlying 

structure called an all-partition allay, and then he realized the surface of the piece 

based on it. For Babbitt, all-partition allay is an extension of the maximal diversity 

principle of dodecaphonic music and it is a global structure that is formed by a 

covering of an given pitch class matrix by small sub-regions of the matrix whose 

shapes are determined by the type of integer partitions of 12 (an integer partition is 

a division of an integer such as 12 into a number of non-negative integers, e.g. 

6+6+0+0 = 12 or 4+2+5+1=12.). Every type of integer partition must appear in an 

all-partition array. The problem of generating an all-partition array is a difficult 



combinatorial problem and the method to solve it had not been revealed yet 

(although Babbitt and his student had a few solutions without using a computer 

and used them in composition.). To solve this problem by computer, I tried to 

formulate it by integer programming. In this formulation, I introduced a concept of 

duplication of the matrix elements between contiguous integer partition regions. 

Thanks to this, I found that this problem can be formalized as a variation of the set 

covering problem, which is well-known in the field of integer programming and is 

similar to the set-partitioning problem. Although I could formalize this problem by 

integer programming, I could not find a solution at that time because of the 

largeness of the problem. I presented only the formulation of this problem at the 

conference of International Society of Music Information Retrieval (ISMIR2016).  

 

After this formulation, I reformulated the same problem by constraint 

programming, which is also effective to solve complex constraint satisfaction 

problem, and developed a new algorithm by integrating a statistic method and a 

divide-and-conquer method. As a result, I succeeded to find a solution for a four-row 

matrix, which is the smallest matrix that Babbitt used. This solution seems to be 

the first solution found by a computer. This result would be an important step 

toward automation of Babbitt’s way of composition. This was presented at 

International Conference on Principles and Practice of Constraint Programming 

(CP2016). This was an important opportunity because I could introduce this 

difficult problem to the community of constraint programming research.  
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Melodic Pattern Segmentation of Polyphonic
Music as a Set Partitioning Problem

Tsubasa Tanaka and Koichi Fujii

Abstract In polyphonic music, melodic patterns (motifs) are frequently imitated or
repeated, and transformed versions of motifs such as inversion, retrograde, augmen-
tations, diminutions often appear. Assuming that economical efficiency of reusing
motifs is a fundamental principle of polyphonic music, we propose a new method
of analyzing a polyphonic piece that economically divides it into a small number
of types of motif. To realize this, we take an integer programming-based approach
and formalize this problem as a set partitioning problem, a well-known optimiza-
tion problem. This analysis is helpful for understanding the roles of motifs and the
global structure of a polyphonic piece.

1 Motif Division

In polyphonic music like fugue-style pieces or J.S. Bach’s Inventions and Sinfo-
nias, melodic patterns (motifs) are frequently imitated or repeated. Although some
motifs are easy to find, others are not. This is because they often appear implicitly
and/or appear in the transformed versions such as inversion, retrograde, augmenta-
tions, diminutions. Therefore, motif analysis is useful to understand how polyphonic
music is composed.

Simply speaking, we can consider the motifs that appear in a musical piece to
be economical if the number of types of motif is small, the numbers of repetitions
are large, and the lengths of the motifs are long. Assuming that this economical
efficiency of motifs is a fundamental principle of polyphonic music, we propose a
new method of analyzing a polyphonic piece that efficiently divides it into a small
number of types of motif. Using this division, the whole piece is reconstructed with
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2 Tsubasa Tanaka and Koichi Fujii

a small number of types of motif like the puzzle game Tetris[1] (In tetris, certain
domains are divided with only seven types of piece). We call such a segmentation a
motif division.

If a motif division is accomplished, it provide us a simple and higher-level rep-
resentation whose atom is a motif, not a note, and it will be helpful to clarify the
structures of polyphonic music. The representation may provide knowledge about
how frequent and where each motif is used, the relationships between motifs such as
causality and co-occurrence, which transformations are used, how the musical form
is constructed by motifs, and how the long-term musical expectations are formed.
This analysis may be useful for applications such as systems of music analysis,
performance, and composition.

Studies about finding boundaries of melodic phrases are often based on human
cognition. For example, [2] is based on grouping principles of gestalt psychology,
and [3] is based on a short-term memory model. While these studies deal with rel-
atively short range of perception and require small amounts of computational time,
we focus on global configuration of motifs on the level of compositional planning.
This requires us to solve an optimization problem that is hard to solve. To deal with
this difficulty, we take an integer programming-based approach [4] and show that
this problem can be formalize as a set partitioning problem [5]. This problem can
be solved by integer programming solvers that use efficient algorithms such as the
branch and bound method.

2 Transformation Group and Equivalence Classes of Motif

In this section, we introduce equivalence classes of motif derived from a group of
motif transformations as the criterion of identicalness of motifs. These equivalence
classes are used to formulate the motif division in Sect. 3.

Firstly, a motif is defined as an ordered correction of notes [N1,N2, · · · ,Nk]
(k > 0), where Ni is the information for the ith note, comprising the combination
of the pitch pi, start position si, and end position ei (Ni = (pi,si,ei), si < ei ≤ si+1).
Next, let M be the set of every possible motif, and let Tp, St , R, I, Ar be one-to-
one mappings (transformations) from M to M , where Tp is the transposition by
pitch interval p, St is the shift by time interval t (p, t ∈ R), R is the retrograde, I is
the inversion, and Ar(r > 0) is the r-fold argumentation (diminution, in the case of
0 < r < 1). These transformations generate a transformation group T whose oper-
ation is the composition of two transformations and whose identity element is the
transformation that does noting. Each transformation in T is a strict imitation that
preserves the internal structures of the motifs.

Here, a binary relation between a motif m (∈ M ) and τ(m) (τ ∈ T ) can be
defined. Due to the group structure of T , this relation is an equivalence relation (i.e.,
it satisfies reflexivity, symmetry and transitivity[6]). Then, it derives equivalence
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classes in M . Because the motifs that belong to a same equivalence class share the
same internal structure, they can be regarded as identical (or the same type)1.

3 Formulation as a Set Partitioning Problem

A set partitioning problem, which is well known in the context of operations re-
search, is an optimization problem defined as follows. Let N be a set that consists of
n elements {N1,N2, · · · ,Nn}, and let M be a family of sets {M1,M2, · · · ,Mm}, where
each Mj is a subset of N. If

⋃
j∈X Mj = N is satisfied, X , a subset of indexes of M, is

called a cover, and the cover X is called a partition if Mj1
⋂

Mj2 = /0 is satisfied for
different j1, j2 ∈ X . If a constant c j called a cost is defined for each Mj, the problem
of finding a partition X that minimizes the sum of the costs ∑ j∈X c j is called a set
partitioning problem.

3.1 Condition of motif division

If Ni corresponds to each note of a musical piece to be analyzed and Mj corresponds
to a motif, the problem of finding the most economically efficient motif division can
be interpreted as a set partitioning problem. The index i starts from the first note
of a voice to the last note of the voice and from the first voice to the last voice.
Mj(1 ≤ j ≤ m) corresponds to [N1], [N1,N2], [N1,N2,N3], · · · , [N2], [N2,N3], · · · in
this order. The number of notes in a motif is less than a certain limit number (Fig.
1).
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Fig. 1 Possible motifs of the first voice of J.S. Bach’s Invention No. 1. (In the case where the
maximum number of notes in a motif is 4.

This information can be represented by the following matrix A:

1 Although the criterion for identical motifs defined here only deals with strict imitations, we can
define the criterion in different ways to allow more flexible imitations, such as by (1) defining an
equivalence relation from the equality of a shape type [7, 8, 9, 10] and (2) defining a similarity
measure and performing a clustering of motifs using methods such as k-medoid method [11] (the
resulting clusters derive an equivalence relation). In any case, making equivalence classes from a
certain equivalence relation is a versatile way to define the identicalness of the motifs.
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A =





1 1 1 1 0 0 0 0 0 0 0 0 0 · · ·
0 1 1 1 1 1 1 1 0 0 0 0 0 · · ·
0 0 1 1 0 1 1 1 1 1 1 1 0 · · ·
0 0 0 1 0 0 1 1 0 1 1 1 1 · · ·
0 0 0 0 0 0 0 1 0 0 1 1 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 1 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .





(1)

where each row corresponds to each note Ni and each column corresponds to which
notes are covered by each motif Mj. This matrix is the case where the maximum
number of notes in a motif is 4. Representing the element of A as ai j, the condition
that the whole piece is exactly divided by a set of selected motifs can be described
by the following constraints, which mean that each note Ni is covered by one of Mj
once and only once:

∀i ∈ {1,2, · · · ,n},
m

∑
j=1

ai jx j = 1, (2)

where x j is a 0-1 variable that represents whether or not Mj is used in the motif
division. These conditions are equivalent to the condition of partitioning.

3.2 Objective Function

The purpose of motif division is to find the most efficient solution from the many
solutions that satisfy the condition of partitioning. Then, we must define efficiency
of motif division. We can consider that the average length (the number of notes) of
motifs used in the motif division is one of the simplest barometers that represent
the efficiency of motif division. Also, the number of motifs and that of the types of
motif used in motif division will be efficient if they are small. In fact, the average
length of motifs is inversely proportional to the number of motifs. Therefore, if the
number of types of motif (denoted by P) is fixed, the number of motifs will be what
we should minimize.

The number of motifs can be simply represented by ∑m
j=1 x j This is the cost

function ∑m
j=1 c jx j whose c j is 1 for each j. We adopt this cost function. However,

in the next subsection, we introduce additional variables and constraints to fix the
number P.

3.3 Controlling the Number of Equivalence Classes

Let C be the set of equivalence classes of motif, which is derived from M, which
is the set of all possible motif classes that can be found in a piece (only the motif
classes whose number of notes is less than a certain number is included in M).
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This means that M is derived from M by a restriction. Let yk be a 0-1 variable
that represents whether or not one of the members of Ck appears in X (the set of
selected motifs), where each element of C is denoted as Ck(1 ≤ k ≤ l). This means
that statement “yk = 1 ⇔ ∑ j∈Ck x j > 0” must be satisfied. This statement can be
represented by the following constraints that use ∑ j∈Ck x j, the number of selected
motifs that belong to Ck:

∀k ∈ {1,2, · · · , l}, yk ≤ ∑
j∈Ck

x j ≤ Qyk, (3)

where Q is a constant that is sufficiently large. Then, the statement that the number
of equivalence classes is P can be represented by the following constraint:

l

∑
k=1

yk = P. (4)

If P is small to a certain degree, the motif division will tend to be simple. How-
ever, if P is too small, covering whole piece with few motif classes will be difficult
and one note motif will be used too many times. This will lead to a loss of the
efficiency of motif division. Therefore, we should find good balance between the
smallness of the objective function and the smallness of P. Because knowing which
number is adequate for P in advance is difficult, we will solve the optimization
problems for respective P in a certain range. Then, we will determine an adequate
number for P, observing the solutions for respective P.

4 Result

We analyzed J.S. Bach’s Invention No. 1 by solving the optimization problem de-
scribed in the previous section. The maximum length of motif was set as 7. An IP
solver Numerical Optimizer 16.1.0. and a branch and bound method was used for
searching the solution. From the observation of solutions for various values for P,
P was set as 13. It took less than one minute to obtain a solution for P = 13. Fig. 3
shows the result of motif division. The slurs represent the motifs and the one-note
motifs don’t have a slur. Fig. 3 shows the representatives of 13 motif classes that are
used in the motif division.

This result tells us many things. For example, 4th, 10th, and 11th motif classes in
Fig. 3 are slightly different but can be regarded as the same motif, which corresponds
to the subject of this piece. Searching for the domains where the subject doesn’t
appear, we find that there are three domains whose durations are one and half bars
(These are indicated by the big rectangles). The ends of these domains coincide with
the places where the cadences exist. Therefore, we could detect three sections of this
piece properly.
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Music engraving by LilyPond 2.16.2—www.lilypond.orgFig. 2 The representatives of motif classes that appear in the motif division of J.S. Bach’s Invention
No. 1. in the case that P = 13. Some flats are replaced by sharps for the purpose of programming.

The last motif class in Fig. 3 is a leap of octave. This motif class appears in all
of the cadence domains and is related to the ends of sections. It also co-occurs with
2nd motif class, which is a two-note motif, in the cadence domains.
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Fig. 3 The motif classes that appear in the motif division of J.S. Bach’s Invention No. 1 (the
number of motif classes was set at 13.).

The 12th motif class is a very characteristic one that includes a doted note and a
large leap. This motif class only appears before the cadence domains (the two motifs
surrounded by the rounded rectangle). We can consider that this remarkable motif
class plays an important role that tells listeners the end of the exposition of subject
and the beginning of the cadence domain.

The 9th zigzag motif class and the motif classes that are one-way slow move-
ments shown by the arrows in Fig. 3 only appear as the ascending form in the first
2 sections. In contrast, these motif classes appear only as the descending form in
the final section. We interpret this contrast means that the ascending form creates a
sense of continuation of the piece and the descending form creates a sense of con-
clusion. Thus, long-term musical expectations seems to be formed by the selections
of transformation.

In such ways, motif division is useful to make us understand the roles of motifs
and how global musical structures are formed.

5 Conclusion

In this paper, we formulated the problem of motif division, which decompose poly-
phonic music into a small number of motif classes, as a set partitioning problem,
and we obtained the solution using an IP solver. It was shown that the motif divi-
sion provides useful information to understand the roles of motifs and how grobal
musical structures are constructed from the motifs.

Future tasks include construction of a program that automatically analyzes global
structures utilizing the obtained motifs and automatic composition of new pieces
that use the same motifs as the original piece using the result of the analysis pro-
gram. To create a criterion for determining adequate value of P automatically is also
a remaining problem.

Acknowledgements This work was supported by JSPS Postdoctoral Fellowships for Research
Abroad.
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Abstract. Music can be regarded as sequences of localized patterns,
such as chords, rhythmic patterns, and melodic patterns. In the study
of music generation, how to generate musically adequate sequences is an
important issue. In particular, generating sequences by controlling the
relationships between local patterns and global structures is a difficult
and open problem. Whereas the grammatical approaches that represent
global structures are suitable to analyze how the pieces are constructed,
they are not necessarily designed to generate new pieces with controlling
their characteristics of global structures such as the redundancy of the
sequence and the statistical distribution of specific patterns. To achieve
this, we must overcome the difficulty of solving computationally complex
problems. In this paper, we take an integer-programming-based approach
and show that some important characteristics of global structures can
be described only by linear equalities and inequalities, which are suitable
for the integer programming.

Keywords: musical patterns, global structure, hierarchy, redundancy,
integer programming

1 Introduction

Music can be regarded as sequences of localized musical patterns such as chords,
rhythmic patterns, and melodic patterns. In the study of music generation, it is
important to know the characteristics of these sequences. For example, a Markov
model is used to learn transition probabilities of localized musical elements in
existing pieces or real-time performances [1], and pieces that imitate the original
styles are expected to be generated from the model.

However, learning local characteristics is not sufficient to understand or gen-
erate music. Global musical structures or musical forms are necessary to be
considered. Contrary to Markov models, grammatical approaches such as gen-
erative theory of tonal music [2] (GTTM, hereafter), are used to analyze the
global structures of musical pieces. In GTTM, a musical piece is abstracted step
by step by discarding less important elements and the whole piece is understood
as a hierarchical tree structure. For example, Hamanaka et al. have implemented
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GTTM on a computer and analyzed musical pieces [3]. However, this model does
not have a strategy for composing new pieces. We should note that the gram-
matical models are not designed to generate new pieces with specifying their
characteristics of global structures such as the redundancy of the sequence and
the statistical distribution of specific patterns that actually appear in the gen-
erated pieces.

Therefore, the objective of this paper is to propose a model that can give
specifications of characteristics of global musical structures in the context of
music generation. We expect the proposed model to be applied to help users
generate new pieces of music and/or obtain desired musical structures.

Compared to the problem of analysis, the problem of generation has a diffi-
culty of a combinatorial explosion of possibilities. When we compose a new piece
or sequence, we have to choose a sequence from all the possible combinations
of patterns, whose number increases exponentially depending on the number of
basic patterns. To deal with such combinatorial problems, we propose an integer-
programming-based approach. In order to apply the integer programming, the
structural specifications have to be described by linear equalities and inequali-
ties. This is the main challenge for our study.

Integer programming is a framework to solve linear programming problems
whose variables are restricted to integer variables or 0–1 variables [4]. Although
it shares something in common with constraint programming, which has been
often used in the realm of music, one of the advantages of integer programming
is that it has an efficient algorithm to find the optimum solution by updating
the estimations of the lower and upper bounds of the optimum solution based
on the linear programming relaxation technique. Integer programming has been
applied to various problems. In our previous study [5], musical motif analysis
was formulated as a set partitioning problem, which is a well-known integer pro-
gramming problem. Thanks to the recent improvements of integer programming
solvers such as Numerical Optimizer [6], more and more practical problems have
been solved within a reasonable time. We expect that integer programming may
also play an important role in the generation of music.

Other possible generation methods than integer programming and constraint
programming include the use of metaheuristics. In the study of solving coun-
terpoint automatically [7], counter melodies were generated based on the local
search whose objective function is defined as how well the generated counter
melody satisfies the rules of counterpoint. In such a search algorithm, there is no
guarantee to find the optimum solution. Especially, in the case where there are
conflicts between many rules, some rules might be violated. This is not prefer-
able for us because we think that the structural specification should be strictly
respected. Therefore, we take an integer-programming approach, which we think
is suitable to find strict solutions for the discrete optimization problems.

There are several limitations about what we can describe in this paper. Three
main limitations are as follows: (1) we do not describe the objective function and
only focus on the constraints to be satisfied strictly (however, we are planning
to introduce the objective function in the future work). (2) We do not propose
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a comprehensive formulation that covers various situations. We would rather
explain our point of view based on a concrete examples of typical musical struc-
ture. (3) We only focus on the aspect of formulation and do not proceed to the
steps of generation and evaluation.

The rest of this paper is organized as follows: In section 2, we show the
relationship between localized musical patterns and hierarchical global structure
referring to the chord progression of a piece that has typical phrase structures.
In section 3, we describe how to implement this relationship by linear equalities
and inequalities. In section 4 and section 5, we describe the similar relationships
for the structures of rhythmic pattern sequence and intervallic pattern sequence
by linear constraints. Then, these are combined to formulate the constraints for
generating a melody. Section 6 gives some concluding remarks.

2 Hierarchy and Redundancy

From the micro-level point of view, composing a piece of music can be regarded
as determining how the sequences of localized musical patterns are arranged. If
such sequences are seen from the macro-level point of view, they can be regarded
as the musical forms.

Then, a question arises: what are the global characteristics that a musical
sequence should have to construct a global musical form and to generate well-
organized music? In this section, we study the piece Op. 101 No. 74 by Ferdinand
Beyer to consider this problem. The chord sequence of this piece is clearly related
to the phrase structures and the musical form, and it will provide a good clue
for this problem.

The chord sequence of this piece is TTSTTTDTSTSTTTDTDTDTDTDT,
using T (tonic), S (subdominant), and D (dominant). Each chord corresponds
to one measure. To see the phrase structures more clearly, let’s combine each
two bars, four bars, and eight bars. Then these four levels can be represented as
the following sequences:

– 1st level:A1A1A2A1A1A1A3A1A2A1A2A1A1A1A3A1A3A1A3A1A3A1A3A1 (3/24)
– 2nd level: B1B2B1B3B2B2B1B3B3B3B3B3 (3/12)
– 3rd level: C1C2C3C2C4C4 (4/6)
– 4th level: D1D2D3 (3/3)

Here, the same indices indicate the same patterns. For example, A1 =T, A2 =S
and A3 =D. There are relationships between the consecutive levels such as
B1 = A1A1, C1 = B1B2, D1 = C1C2, and so on (The notations like “A1A1”
represent the concatenations of the patterns and do not indicate multiplica-
tions). The numerators of the fractions indicated between parentheses after each
sequence indicate the numbers of the variety of patterns that exist in the se-
quences in each level, and the denominators indicate the lengths of each level.
We call the inverse numbers of these fractions redundancies1. Fig. 1 visualizes
1 The study [8] focuses on the redundancy of musical sequence, and models the mu-
sical style by referring to the Lempel-Ziv compression algorithm. We extend this
perspective and pay attention to the redundancies of multiple levels simultaneously.
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this hierarchical structure. Because the fourth level has three different elements,
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Fig. 1. Hierarchical structure of chord sequence of Beyer No. 74.

we see that this piece consists of three different parts. When observing the re-
lationship between the third level and fourth level, we find that the latter parts
of D1 and D2 are the same and D3 consists of a repetition of C4.

We can observe that there are many repetitions of the same patterns and
that the lower the level, the higher the redundancy. In addition, T is more
than twice as frequent as D, and D is twice as frequent as S. These biases
of frequency are also notable characteristics of this sequence. Thus, the global
structure of this piece can be regarded to be, at least, constrained by hierarchy,
redundancies, and frequencies of patterns. Without repetitions in lower levels,
the music will become unmemorable and lose the attention of human listeners.
Moreover, repetitions in higher levels are related to known musical forms such
as A-B-A ternary form or rondo form. Thus, frequency and redundancy are
important fearures for describing musical structures.

Focusing on each level, state transition diagrams can be depicted per level
(Fig. 2). From the global point of view, state transitions of multiple levels should

Rhythm Patterns of “Ode to Joy” (2)�

①

②

③ ①

②

③
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1st'level� 2nd'level'� 3rd'level'� 4th'level'�
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b2�
b3�

c1�

c2�
c3�c4�

d1� d2� d3�

T�
S�

D�
①

②

③

④

Fig. 2. Transition diagram of chord patterns in each level.

be considered simultaneously. In these diagrams, the lowest level (first level)
represents the rules of chord progression proper to this piece. Although the
transition from S to D is possible in ordinary rules of harmony, this transition
is not used in this piece.

3 Implementation of Constraints on Chord Progression

It is difficult to find new sequences that have specific redundancies in respective
levels, because the constraints for different levels may cause conflicts during the
process of searching for the solutions. Also, the naive method of enumerating
possible sequences one by one and checking whether or not they satisfy specific
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redundancies in each level won’t be realistic because the number of possible
sequences increases exponentially with the length of the sequence based on the
number of the states in the lowest level.

To deal with this problem, we take an integer-programming-based approach,
which has good search algorithms to practically solve computationally complex
problems. In order to use integer programming, the characteristics of the se-
quence should be expressed by linear constraints (equalities and inequalities). In
this section, we demonstrate that some important characteristics of the sequence
observed in the Beyer’s piece can be expressed by linear constraints.2

Let A, B, C, D be the set of patterns that can appear in respective levels.
The number of elements in each level is denoted by K1, K2, K3, and K4. For
explanation, we set these possible patterns as the patterns that actually appear
in the Beyer’s piece (i.e., A = {A1, A2, · · ·A3}, B = {B1, B2, · · · , B3}, · · ·.). 3 Let
at be a variable that corresponds to the t-th element in the sequence of variables
for the patterns of the first level, bt for those of the second level, ct for those of
the third level, and dt for those of the fourth level. For example, in the original
piece, a1 = A1, a2 = A1, a3 = A2, a4 = A1, · · ·, a24 = A1, b1 = B1, b2 = B2,
b3 = B1, b4 = B2, · · ·, b12 = B3, and so on.

The followings are important characteristics of the original sequence ex-
plained in Section 2:

1. Hierarchy of phrase structures (relationships between neighboring levels):
bt = a2t−1a2t(1 ≤ t ≤ 12), ct = b2t−1b2t(1 ≤ t ≤ 6), dt = c2t−1c2t(1 ≤ t ≤ 3).

2. Variety of patterns that appear in each level: the first level has three patterns,
the second has three patterns, the third has four patterns, and the fourth
has three patterns.

3. Frequency of each state in each level (in the first level, these are the frequency
of each chord).

4. State transition rules (in the first level, these are the chord progression rules).

In this section, we show how to formalize these rules by variables and linear
constraints on the variables.

3.1 Constraints of Hierarchical Phrase Structures

Let xt,i, yt,i, zt,i, and wt,i be 0–1 variables that represent whether or not the t-th
element of the sequence for each level is the pattern i (For example, the pattern
2 In this paper, in order to avoid the explanation from being complicated, we only treat
the stereotype examples of musical pieces whose groupings are always combinations
of two consecutive elements in every level. However, in practice, such structures
should vary depending on the specifications of the pieces that the user wants to
create. For example, we can think of the case where the number of combination in
the groupings are different between the levels. We can also think of the case where
the consecutive patterns can be overlapped as is mentioned in [9]. How to formulate
such cases is an important future issue.

3 In practice, it is not necessary to stick to existing pieces.
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i indicates Ai, in the case of the first level). xt,i, yt,i, zt,i, and wt,i correspond
to the first, second, third, and fourth levels respectively. For example, xt,i = 1
if at = Ai, and otherwise xt,i = 0. yt,i = 1 if bt = Bi and otherwise yt,i = 0.
zt,i and wt,i are also defined similarly. at, bt, ct, and dt take one of the values
in A, B, C, and D, respectively. The numbers of elements of A, B, C, and D
are denoted by K1, K2, K3, and K4, respectively. Because at, bt, ct, and dt take
only one value at a location t, respectively (here, location t means t-th element
in the sequence of each level), they satisfy the following constraints:

K1∑

i=1

xt,i = 1 (∀t, 1 ≤ t ≤ 24),
K2∑

i=1

yt,i = 1 (∀t, 1 ≤ t ≤ 12),

K3∑

i=1

zt,i = 1 (∀t, 1 ≤ t ≤ 6),
K4∑

i=1

wt,i = 1 (∀t, 1 ≤ t ≤ 3). (1)

Now the hierarchy can be expressed by constraints on xt,i, yt,i, zt,i, and wt,i.
For example, if Bi = Aj1Aj2 , the statement “bt = Bi (i.e. yt,i = 1)” must be
equivalent to “a2t−1 = Aj1 and a2t = Aj2 (i.e., x2t−1,j1 = 1 and x2t,j2 = 1)”,
and this equivalence can be expressed by the three constraints: yt,i ≤ x2t−1,j1 ,
yt,i ≤ x2t,j2 , and x2t−1,j1 + x2t,j2 − 1 ≤ yt,i. Therefore, the constraints that
correspond to the whole hierarchy are described as follows:

for all (i, j1, j2) that satisfy Bi = Aj1Aj2(1 ≤ i ≤ K1),

yt,i ≤ x2t−1,j1 , yt,i ≤ x2t,j2 , x2t−1,j1 + x2t,j2 − 1 ≤ yt,i (1 ≤ t ≤ 12), (2)

for all (i, j1, j2) that satisfy Ci = Bj1Bj2(1 ≤ i ≤ K2),

zt,i ≤ y2t−1,j1 , zt,i ≤ t2t,j2 , y2t−1,j1 + y2t,j2 − 1 ≤ zt,i (1 ≤ t ≤ 6), (3)

for all (i, j1, j2) that satisfy Di = Cj1Cj2(1 ≤ i ≤ K3),

wt,i ≤ z2t−1,j1 , wt,i ≤ z2t,j2 , z2t−1,j1 + z2t,j2 − 1 ≤ wt,i (1 ≤ t ≤ 3). (4)

Finally, the statement that every element in the last level is different can be
expressed by the following constraints:

w1,i + w2,i + w3,i ≤ 1 (∀i, 1 ≤ i ≤ K4). (5)

3.2 Constraints on Frequencies of Each Patterns

The constraints to control the frequency (or the range of frequency) of each state
can be described by the following inequalities using 0–1 variables αi, βi, γi, and
δi for each level:

L1,iαi ≤
24∑

t=1

xt,i ≤ H1,iαi (∀i, 1 ≤ i ≤ K1), (6)
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L2,iβi ≤
12∑

t=1

yt,i ≤ H2,iβi (∀i, 1 ≤ i ≤ K2), (7)

L3,iγi ≤
6∑

t=1

zt,i ≤ H3,iγi (∀i, 1 ≤ i ≤ K3), (8)

L4,iδi ≤
3∑

t=1

wt,i ≤ H4,iδi (∀i, 1 ≤ i ≤ K4), (9)

where L1,i, L2,i, L3,i, L4,i, H1,i, H2,i, H3,i, and H4,i are the constants4 for lower
and upper bounds in the case that the i-th element of each level appears. The
statement “αi = 0” is equivalent to “xt,i = 0 for all t(1 ≤ t ≤ 24)”. This means
that αi represents whether or not the state ai appears in the sequence. βi, γi,
and δi also have such meanings in their own levels.

Also, relative differences of frequencies that T is more than twice or twice as
frequent as D and D is twice as frequent as S can be expressed by the following
constraints:

24∑

t=1

xt,1 ≥ 2
24∑

t=1

xt,3,
24∑

t=1

xt,3 = 2
24∑

t=1

xt,2 (10)

3.3 Constraints on Varieties of Patterns

Using the variables αi, βi, γi, and δi, the number of variety of patterns in each
level can be described. For example,

∑
i αi indicates the number of variety of

patterns in the first level. Similarly, the statement that the numbers of variety
of patterns in respective levels are 3, 3, 4, and 3 can be represented as:

K1∑

i=1

αi = 3,
K2∑

i=1

βi = 3,
K3∑

i=1

γi = 4,
K4∑

i=1

δi = 3. (11)

3.4 Constraints on State Transitions

The possibility of state transitions in the first level can be controlled by posing
the following inequality for all of the combinations of (t, i, j) whose transition
from i to j at the location t is prohibited:

xt,i + xt+1,j ≤ 1. (12)

The same is true in other levels. One way to determine the allowed transitions
is to prohibit the transitions that do not occur in the original piece.

Thus, linear constraints can describe both global structures and local state
transitions.
4 For example, they can be set depending on user’s preference or statistics of the
original piece. If Lj,i ≤ 1 and Hj,i is larger than or equal to the length of the
sequence, these equations give no limitation to the number of each pattern that
appears in the sequence.
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4 Constraints on Rhythmic Patterns

In this section, the hierarchical structure of rhythmic patterns is illustrated in a
similar way to the hierarchical structure of chords. Beethoven’s famous melody
Ode to Joy is used as an model example of monophony (Fig. 3).

 

 Ode to Joy 

! "! ! !# $% & ! !! ! ! ! !! ! !

! "! ! !# $
5

% ! !! ! ! ! !! ! !

!! ! !% ! ! !
9

! !! ! ! ! ! !! ! !

" !! ! ! # $
13

% ! !! ! ! ! !! ! !

Music engraving by LilyPond 2.16.2—www.lilypond.org

Fig. 3. Beethoven’s melody Ode to Joy.

Adopting a beat as a unit length, the different elements of the first level are
A1 = [f ], A2 = [f∼], A3 = [∼e, e], A4 = [∼f ], and A5 = [e, e], where e, f , and s
represent 8th note, 4th note, 2nd note, respectively, and “.” and “∼” represent
a “dot” and a “tie,” respectively. Each Ai represents one beat and does not
necessarily correspond to the actual notations (the “ties” and “dots” actually
correspond to the ties or prolongations of a note beyond the beat). The second
level consists of B1 = [f, f ], B2 = [f., e], B3 = [s], B4 = [f, e, e], B5 = [f, f∼],
and B6 = [∼f, f ]. The entire hierarchy is as follows:

– at (1st level): ||A1A1A1A1|A1A1A1A1|A1A1A1A1|A2A3A2A4|| · · · (5/64)
– bt (2nd level): ||B1B1|B1B1|B1B1|B2B3|| · · · (6/32)
– ct (3rd level): ||C1|C1|C1|C2||C1|C1|C1|C2||C1|C3|C3|C4||C5|C1|c1|c2|| (5/16)
– dt (4th level): ||D1D2||D1D2||D3D4||D5D1|| (5/8)
– et (5th level): ||E1||E1||E2||E3|| (3/4)
– ft (6th level): ||F1 F2|| (2/2)

where, “|” is a bar line and “||” is a four-bar partition. This hierarchy can be
described by linear constraints in a similar way to the previous section. However,
this case has more levels than the previous case. In general, the number of
possible patterns increases drastically when looking at a higher level. If the
number of levels is too large, the number of variables for the level may become
too large.

Therefore, we introduce an alternative way to describe the constraints for
redundancies of higher levels using the variables for the first level xt,i(1 ≤ i ≤
K1) (without using yt,i, zt,i, and wt,i).5

5 However, at the current moment, we do not know an alternative way to implement
the constraints for state transitions and frequencies of each pattern in the high levels.
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4.1 Alternative Way to Control Redundancies of High Levels

Let us consider a 0–1 variable sn,t whose value is 1 if and only if an element
in a level n first appear at the location t. Then,

∑
t sn,t represents how many

different elements appear in level n. This offers an alternative way to specify the
redundancies. Our purpose here is to construct the variables sn,t that have such
meaning. In order to do so, we introduce other subsidiary variables qn,t1,t2 and
rn,i,u1,u2.

qn,t1,t2 is a 0–1 variable that represents whether the sections t1 and t2 (t1 <
t2) in level n are the same or not (we call each content of the time span of an
element such as bt, ct, · · · a section). qn,t1,t2 = 1 means that all of corresponding
elements au1 and au2 in the sections t1 and t2 in level n are the same. Therefore,
it is necessary to introduce the constraints that make the statement “qn,t1,t2 = 1
⇐⇒ xu1,i = xu2,i (∀(i, u1, u2) s.t. i ∈ [1,Kn], (u1, u2) ∈ D(n, t1, t2))” true, where
D(n, t1, t2) represents the range of the combinations (u1, u2) where au1 and au2

are all of the pairs of corresponding elements in the sections t1 and t2 in level
n. This statement can be replaced by the statement “rn,i,u1,u2 = 1 (∀(i, u1, u2)
s.t. i ∈ [1,Kn], (u1, u2) ∈ D(n, t1, t2)) ⇐⇒ qn,t1,t2 = 1,” where the 0–1 variable
rn,i,u1,u2 means whether xu1,i = xu2,i or not.

Here, the statement “rn,i,u1,u2 = 1 ⇐⇒ xu1,i = xu2,i,” can be expressed by
the following constraints:

rn,i,u1,u2 ≤ 1 + xu1,i − xu2,i, (13)

rn,i,u1,u2 ≤ 1− xu1,i + xu2,i, (14)

1− xu1,i − xu2,i ≤ rn,i,u1,u2 , (15)

−1 + xu1,i + xu2,i ≤ rn,i,u1,u2 . (16)

Also, the statement “rn,i,u1,u2 = 1 (∀(i, u1, u2) s.t. i ∈ [1,Kn], (u1, u2) ∈
D(n, t1, t2)) ⇐⇒ qn,t1,t2 = 1,” can be expressed by the following constraints:

1−
∑

i∈[1,Kn]

∑

(u1,u2)∈D(n,t1,t2)

(1− rn,i,u1,u2) ≤ qn,t1,t2 , (17)

qn,t1,t2 ≤ rn,i,u1,u2 (∀(i, u1, u2) s.t. i ∈ Kn, (u1, u2) ∈ D(n, t1, t2)). (18)

Let vn,t be
∑

t1<t qn,t1,t, then vn,t represents how many the same sections as
t there are before the section t in level n. vn,t = 0 means that the content of
section t first appears. Therefore, the statement “vn,t = 0 ⇐⇒ sn,t = 1” must
be true to let sn,t have the proper meaning. This statement can be expressed by
a constraint:

1− sn,t ≤ vn,t ≤ M · (1− sn,t), (19)

where M is a sufficiently large constant number. Under the constraints above,
we can control the redundancy of each level n by a constraint:

∑

t

sn,t = Constant. (20)
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5 Constraints on Melodic Patterns

In this section, hierarchical structure of the melodic patterns, which has infor-
mation of pitches and rhythms, is illustrated using the same melody Ode to Joy.
Although pitch information and rhythmic information in melodic patterns are
not completely independent of each other, the hierarchical structure of pitch pat-
terns and rhythmic patterns are different in general. Therefore, we treat these two
hierarchical structures separately. After that, we consider compatibility between
them and combine them. Considering that the same pitch patterns can occur
in different transpositions on the scale, we treat pitch information as the series
of intervals. In section 5.1, we introduce constraints on structure of intervallic
patterns. In section 5.2, constraints for controlling pitch range is introduced.
Then, in section 5.3, we describe how to combine the rhythmic structure and
the intervallic structure to generate melodies.

5.1 Constraints on Intervallic Patterns

There are nine different one-beat intervallic patterns that appear in the piece
Ode to Joy. The intervals are denoted by the interval numbers on the scale - 1,
based on the diatonic scale6. These are [0], [1], [−1], [∼], [−1, 0], [−2], [1,−1],
[−4], [5], which are denoted by A1∼A9, respectively. These are series of intervals
that start from the interval between the first pitch and the second pitch of the
beat to the interval between the last pitch to the first pitch of the next beat. [∼]
means the interval 0 by a tie or a prolongation of a pitch to the next pattern.
Though there is no beat after the last beat, the last beat obviously corresponds
to the last beats of the bar 4 and bar 8. Therefore, we regard the last beat as
the same intervallic pattern as the last beats of the bar 4 and bar 8, namely [1].
The sequences of each level is as follows:

– at (1st level): ||A1A2A2A1|A3A3A3A3|A1A2A2A1|A4A5A4A1|| · · · (9/64)
– bt (2nd level): ||B1B2|B3B3|B1B2|B4B5|| · · · (10/32)
– ct (3rd level): ||C1|C2|C1|C3||C1|C2|C4|C3||C5|C6|C7|C8||C1|C2|C1|C3|| (8/16)
– dt (4th level): ||D1D2||D1D3||D4D5||D1D2|| (5/8)
– et (5th level): ||E1||E2||E3||E1|| (3/4)
– ft (6th level): ||F1 F2|| (2/2)

Comparing, for example, the sequence of the fifth level of the rhythmic patterns
||E1||E1||E2||E3||）and the sequence of the intervallic patterns (||E1||E2||E3||E1||),
we see that the first two elements are the same and the first and last elements
are not the same in the former sequence. On the other hand, the first two ele-
ments are not the same and the first and the last elements are the same in the
latter sequence. This difference adequately represents that although the first,
second, and fourth 4-bars phrases are almost the same, the first and second have
6 Here, we can also represent the pitches and the intervals based on the chromatic
scale. However, we use the scale degrees and the interval numbers based on the
diatonic scale because that is more efficient.
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the same rhythms but slightly different intervals and the first and last 4-bars
phrases have the same intervals but slightly different rhythms. This is the benefit
of treating the rhythmic structure and the intarvallic structure separately.

5.2 Constraints for Pitch Range

The intervallic structures described in the previous section do not have the lim-
itation of the pitch range. This problem occurs because the intervallic patterns
are based on relative intervals instead of absolute pitches. Therefore, in this
subsection, we introduce extra variables and constraints for bounding the pitch
range.

Let pt be the first pitch of the pattern at the location t of the sequence. The
pitch is counted on the scale, where the starting pitch p1 is set as 0. In the case
of Ode to Joy, C = −2, D = −1, E = 0, etc. The scale of the piece is {-5, -4, -3,
-2, -1, 0, 1, 2}. Let Intvl(Ai) be the total interval of the intervallic pattern Ai

(e.g., Intvl(A7) = 0, because the total interval of A7( = [1,−1]) is 0 (= 1− 1)).
Then, pt is equal to the accumulation of the total intervals from the first pattern
to the (t− 1)-th pattern as in the following equation:

pt =
∑

t1<t

Intvl(at1) =
∑

t1<t

∑

i

Intvl(Ai) · xt1,i (21)

Let Int(i, j) be the total interval from the beginning of Ai to the end of jth
interval. If at = Ai, the pitch after the jth interval of Ai in at is pt+Int(i, j). If
the next constraint:

LBt ≤ pt + Int(i, j)xt,i ≤ UBt (22)

is satisfied for all (t, i, j), the upper bound UBt and lower bound LBt for pitches
in t-th element of the sequence can be set.

5.3 Compatibility of Rhythmic Pattern and Intervallic Pattern

Although the sequences of rhythmic patterns and intervallic patterns have been
independently introduced in the previous subsections, it is necessary to combine
these two sequences to complete a melody, which contains both rhythms and
intervals. To combine both of the sequences, compatibility between rhythmic
patterns and intervallic patterns must be assured. For example, [s] and [-1,0] are
not compatible because the number of elements differs ([s] indicates that there
is only one note in this rhythmic pattern, and [-1,0] indicates that there are two
notes in the intervallic pattern).

Therefore, we introduce constraints to assure that both sequences can coexist
and propose a formulation to generate both sequences simultaneously. Let’s dis-
criminate variables and constants for intervallic patterns from those of rhythmic
patterns by adding a dash on the shoulder of the variable names. The compati-
bility between both sequences depends on whether at and a′t are compatible in
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every location t or not. Therefore, the compatibility can be expressed by the
following inequality for all combination Ai1 and A′

i2 that are not compatible:

xt,i1 + x′
t,i2 ≤ 1. (23)

If we find a solution for the problem that is a combination of the problems for
rhythmic patterns and intervallic patterns with these inequalities, we will be
able to obtain a complete melody.

6 Conclusion

In this paper, we proposed a formulation to generate sequences of musical pat-
terns controlling some global structures of the sequences especially focusing on
hierarchy and degree of redundancy in each level. We showed that such struc-
tures can be expressed only by linear constraints, which are necessary to apply
integer programming. Future tasks include describing global structures more
comprehensively, implementation of the constraints and actually generating new
pieces, defining constraints on the relationships between melody and chords, and
defining the constraints for polyphonic relationships.

Acknowledgments. This work was supported by JSPS Postdoctoral Fellow-
ships for Research Abroad.
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ABSTRACT

Milton Babbitt (1916–2011) was a composer of twelve-
tone serial music noted for creating the all-partition array.
The problem of generating an all-partition array involves
finding a rectangular array of pitch-class integers that can
be partitioned into regions, each of which represents a dis-
tinct integer partition of 12. Integer programming (IP) has
proven to be effective for solving such combinatorial prob-
lems, however, it has never before been applied to the prob-
lem addressed in this paper. We introduce a new way of
viewing this problem as one in which restricted overlaps
between integer partition regions are allowed. This permits
us to describe the problem using a set of linear constraints
necessary for IP. In particular, we show that this problem
can be defined as a special case of the well-known prob-
lem of set-covering (SCP), modified with additional con-
straints. Due to the difficulty of the problem, we have yet
to discover a solution. However, we assess the potential
practicality of our method by running it on smaller similar
problems.

1. INTRODUCTION

Milton Babbitt (1916–2011) was a composer of twelve-
tone serial music noted for developing complex and highly
constrained music. The structures of many of his pieces
are governed by a structure known as the all-partition ar-
ray, which consists of a rectangular array of pitch-class
integers, partitioned into regions of distinct “shapes”, each
corresponding to a distinct integer partition of 12. This
structure helped Babbitt to achieve maximal diversity in
his works, that is, the presentation of as many musical pa-
rameters in as many different variants as possible [13].

In this paper, we formalize the problem of generating an
all-partition array using an integer programming paradigm
in which a solution requires solving a special case of the
set-covering problem (SCP), where the subsets in the cover
are allowed a restricted number of overlaps with one an-
other and where the ways in which these overlaps can oc-

c� Tsubasa Tanaka, Brian Bemman, David Meredith. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Tsubasa Tanaka, Brian Bemman, David
Meredith. “Integer Programming Formulation of the Problem of Gener-
ating Milton Babbitt’s All-partition Arrays”, 17th International Society
for Music Information Retrieval Conference, 2016.

cur is constrained. It turns out that this is a hard combina-
torial problem. That this problem was solved by Babbitt
and one of his students, David Smalley, without the use
of a computer is therefore interesting in itself. Moreover, it
suggests that there exists an effective procedure for solving
the problem.

Construction of an all-partition array begins with an
I ⇥ J matrix, A, of pitch-classes, 0, 1, . . . , 11, where each
row contains J/12 twelve-tone rows. In this paper, we only
consider matrices where I = 6 and J = 96, as matri-
ces of this size figure prominently in Babbitt’s music [13].
This results in a 6 ⇥ 96 matrix of pitch classes, contain-
ing 48 twelve-tone rows. In other words, A will contain an
approximately uniform distribution of 48 occurrences of
each of the integers from 0 to 11. On the musical surface,
rows of this matrix become expressed as ‘musical voices’,
typically distinguished from one another by instrumental
register [13]. A complete all-partition array is a matrix,
A, partitioned into K regions, each of which must contain
each of the 12 pitch classes exactly once. Moreover, each
of these regions must have a distinct “shape”, determined
by a distinct integer partition of 12 (e.g., 2+2+2+3+3

or 1+2+3+1+2+3) that contains I or fewer summands
greater than zero [7]. We denote an integer partition of an
integer, L, by IntPartL(s1, s2, . . . , sI) and define it to be
an ordered set of non-negative integers, hs1, s2, . . . , sIi,
where L =

PI
i=1 si and s1 � s2 � · · · � sI . For exam-

ple, possible integer partitions of 12 when I = 6, include
IntPart12(3, 3, 2, 2, 1, 1) and IntPart12(3, 3, 3, 3, 0, 0).
We define an integer composition of a positive integer,
L, denoted by IntCompL(s1, s2, . . . , sI), to also be an
ordered set of I non-negative integers, hs1, s2, . . . , sIi,
where L =

PI
i=1 si, however, unlike an integer partition,

the summands are not constrained to being in descending
order of size. For example, if L = 12 and I = 6, then
IntComp12(3, 3, 3, 3, 0, 0) and IntComp12(3, 0, 3, 3, 3, 0)

are two distinct integer compositions of 12 defining the
same integer partition, namely IntPart12(3, 3, 3, 3, 0, 0).

Figure 1 shows a 6⇥12 excerpt from a 6⇥96 pitch-class
matrix, A, and a region determined by the integer composi-
tion, IntComp12(3, 2, 1, 3, 1, 2), containing each possible
pitch class exactly once. Note, in Figure 1, that each sum-
mand (from left to right) in IntComp12(3, 2, 1, 3, 1, 2),
gives the number of elements in the corresponding row of
the matrix (from top to bottom) in the region determined
by the integer composition. We call this part of a region



Figure 1: A 6⇥12 excerpt from a 6⇥96 pitch-class matrix
with the integer composition, IntComp12(3, 2, 1, 3, 1, 2)

(in dark gray), containing each pitch class exactly once.

Figure 2: A 6 ⇥ 12 excerpt from a 6 ⇥ 96 pitch-class
matrix with a region whose shape is determined by the
integer composition, IntComp12(3, 3, 3, 3, 0, 0) (in light
gray), where three elements (in bold) are horizontal inser-
tions of pitch classes from the previous integer partition
region. Note that the two indicated regions represent dis-
tinct integer partitions.

in a given row of the matrix a summand segment. For
example, in Figure 1, the summand segment in the first
row for the indicated integer partition region contains the
pitch classes 11, 4 and 3. On the musical surface, the dis-
tinct shape of each integer composition helps contribute
to a progression of ‘musical voices’ that vary in textural
density, allowing for relatively thick textures in, for ex-
ample, IntComp12(2, 2, 2, 2, 2, 2) (with six participating
parts) and comparatively sparse textures in, for example,
IntComp12(11, 0, 1, 0, 0, 0) (with two participating parts).

There exist a total of 58 distinct integer partitions of 12
into 6 or fewer non-zero summands [13]. An all-partition
array with six rows will thus contain K = 58 regions,
each containing every pitch class exactly once and each
with a distinct shape determined by an integer composi-
tion representing a distinct integer partition. However, the
number of pitch-class integers required to satisfy this con-
straint, 58 ⇥ 12 = 696, exceeds the size of a 6 ⇥ 96

matrix containing 576 elements, by 120. In order to sat-
isfy this constraint, additional pitch-classes therefore have
to be inserted into the matrix, with the added constraint
that only horizontal insertions of at most one pitch class
in each row are allowed for each of the 58 integer parti-
tion regions. Each inserted pitch class is identical to its
immediate neighbor to the left, this being the right-most
element of a summand segment belonging to a previous
integer partition region. This constraint ensures that the or-
der of pitch classes in the twelve-tone rows of a given row
of A is not altered [13]. Figure 2 shows a second integer
partition region, IntComp12(3, 3, 3, 3, 0, 0), in the matrix
shown in Figure 1 (indicated in light gray), where three
of its elements result from horizontal insertions of pitch
classes from the previous integer partition region. Note, in

Figure 2, the three horizontal insertions of pitch-class inte-
gers, 3 (in row 1), 7 (in row 2), and 10 (in row 4), required
to have each pitch class occur exactly once in the second
integer partition region. Not all of the 58 integer partitions
must contain one or more of these insertions, however, the
total number of insertions must equal the 120 additional
pitch classes required to satisfy the constraint that all 58
integer partitions are represented. Note that, in order for
each of the resulting integer partition regions to contain
every pitch class exactly once, ten occurrences of each of
the 12 pitch classes must be inserted into the matrix. This
typically results in the resulting matrix being irregular (i.e.,
“ragged” along its right side).

In this paper, we address the problem of generating an
all-partition array by formulating it as a set of linear con-
straints using the integer programming (IP) paradigm. In
section 2, we review previous work on general IP problems
and their use in the generation of musical structures. We
also review previous work on the problem of generating
all-partition arrays. In section 3, we introduce a way of
viewing insertions of elements into the all-partition array
as fixed locations in which overlaps occur between con-
tiguous integer partition regions. In this way, our matrix
remains regular and we can define the problem as a special
case of the well-known IP problem of set-covering (SCP),
modified so that certain overlaps are allowed between the
subsets. In sections 4 and 5, we present our IP formula-
tion of this problem as a set of linear constraints. Due to
the difficulty of the problem, we have yet to discover a so-
lution using our formulation. Nevertheless, in section 6,
we present the results of using our implementation to find
solutions to smaller versions of the problem and in this
way explore the practicality of our proposed method. We
conclude in section 7 by mentioning possible extensions to
our formulation that could potentially allow it to solve the
complete all-partition array generation problem.

2. PREVIOUS WORK

Babbitt himself laid the foundations for the construction
of what would become the all-partition array during the
1960s, and he would continue to use the structure in nearly
all of his later works [1–4]. Subsequent composers made
use of the all-partition array in their own music and further
developed ways in which its structure could be formed and
used [5,6,11,12,14,15,17,18,21]. Most of these methods
focus on the organization of pitch classes in a twelve-tone
row and how their arrangement can make the construction
of an all-partition array more likely. We propose here a
more general purpose solution that will take any matrix and
attempt to generate a successful structure. Furthermore,
many of these previous methods were music-theoretical in
nature and not explicitly computational. Work by Bazelow
and Brickle is one notable exception [5, 6]. We agree here
with their assessment that ‘partition problems in twelve-
tone theory properly belong to the study of combinatorial
algorithms’ [6]. However, we differ considerably in our
approach and how we conceive of the structure of the all-
partition array.



More recent efforts to automatically analyze and gen-
erate all-partition arrays have been based on backtracking
algorithms. [7–9]. True to the structure of the all-partition
array (as it appears on the musical surface) and the way
in which Babbitt and other music theorists conceive of
its structure, these attempts to generate an all-partition ar-
ray form regions of pitch classes according to the pro-
cess described in section 1, where horizontal repetitions
of pitch-classes are added, resulting in an irregular matrix.
While these existing methods have further proposed vari-
ous heuristics to limit the solution space or allow for in-
complete solutions, they were unable to generate a com-
plete all-partition array [7–9].

In general, for difficult combinatorial problems, more
efficient solving strategies than backtracking exist. One
such example is integer programming (IP). IP is a compu-
tationally efficient and practical paradigm for dealing with
typically NP-hard problems, such as the traveling sales-
man, set-covering and set-partitioning problems, where
these are expressed using only linear constraints (i.e.,
equations and inequalities) and a linear objective func-
tion [10, 16]. One benefit of using IP, is that it allows for
the separation of the formulation of a problem by users and
the development by specialists of an algorithm for solving
it. Many of these powerful solvers dedicated to IP prob-
lems have been developed and used particularly in the field
of operations research. Compared to approximate compu-
tational strategies, such as genetic algorithms, IP formu-
lations and their solvers are suitable for searching for so-
lutions that strictly satisfy necessary constraints. For this
reason, we expect that the IP paradigm could provide an
appropriate method for approaching the problem of gener-
ating all-partition arrays.

In recent work, IP has been applied to problems of anal-
ysis and generation of music [19, 20]. This is of impor-
tance to the research presented here as it demonstrates the
relevance of these traditional optimization problems of set-
covering (SCP) and set-partitioning (SPP), to general prob-
lems found in computational musicology, where SPP has
been used in the segmentation of melodic motifs and IP
has been used in describing global form. In the next sec-
tion, we address the set-covering problem (SCP) in greater
detail and show how it is related to the problem of gener-
ating all-partition arrays.

3. SET-COVERING PROBLEM FORMULATION
OF ALL-PARTITION ARRAY GENERATION

The set-covering (SCP) problem is a well-known prob-
lem in computer science and operations research that can
be shown to be NP-hard [10]. Let E be a set whose el-
ements are {E1, E2, · · · , E#E} (where #E denotes the
number of elements in E), F be a family of subsets of E,
{F1, F2, · · · , F#F }, and S be a subset of F . By assign-
ing a constant cost, cs, to each Fs, the objective of the

Figure 3: A 6⇥12 excerpt from a 6⇥96 pitch-class matrix
with two integer compositions, IntComp12(3, 2, 1, 3, 1, 2)

(in dark gray and outlined) and IntComp12(3, 3, 3, 3, 0, 0)

(in light gray), that form distinct integer partition regions.
Note, that the second composition overlaps three fixed lo-
cations in the first.

set-covering problem (SCP) is to

Minimize

S⇢F

X

Fs2S

cs

subject to

[

Fs2S

Fs = E.

In other words, a solution S is a cover of E that allows for
the same elements to appear in more than one subset, Fs.
In this section, we suggest that our problem can be viewed
as an SCP with additional constraints.

3.1 All-partition array generation as a set-covering
problem (SCP) with additional constraints

When viewing the all-partition array in the context ofS
Fs2S Fs = E above, E is the set that consists of all loca-

tions (i, j) in the matrix, A, and Fs are the sets of locations
(i, j) that correspond to the “shapes” of integer composi-
tions. We call each Fs a candidate set. A candidate set Fs

is characterized by two conditions that we call containment
and consecutiveness. Containment means that the elements
(i.e., locations (i, j)) of Fs correspond to twelve distinct
integers, 0, 1, . . . , 11, in A. Consecutiveness means that
each of its elements belonging to the same row in A are
consecutive. In this sense, F includes all sets found in A

that satisfy the conditions of consecutiveness and contain-
ment.

As the expression
S

Fs2S Fs = E implies, a candidate
set is allowed to share elements with another candidate set.
Similarly, the pitch classes in A (i.e., corresponding to el-
ements in E) that become insertions in the original prob-
lem can be instead regarded as shared elements or overlaps
between contiguous integer composition regions, with the
result that the matrix remains regular. Figure 3 shows how
these overlaps would occur in the two integer composition
regions shown in Figure 2.

Viewed in this way, a solution to the problem of gen-
erating an all-partition array thus satisfies the basic cri-
terion of an SCP, namely, the condition for set-covering,S

Fs2S Fs = E. However, this criterion alone fails to ac-
count for the unique constraints under which such a cover-
ing is formed in an all-partition array. In the original SCP,
there are no constraints on the order of subsets, the order
of their elements or the number of overlaps and the ways in



which they can occur. On the other hand, an all-partition
array must satisfy such additional conditions. We denote
the constraints for satisfying such additional conditions by
Add. Conditions.

Add. Conditions includes the conditions in the all-
partition array governing (1) the left-to-right order of con-
tiguous candidate sets, (2) permissible overlaps between
such sets, and (3) the distinctness of sets in S. This last
condition of distinctness ensures that the integer composi-
tions used in a cover, S, define every possible integer par-
tition once and only once. On the other hand, the condi-
tions for set-covering,

S
Fs2S Fs = E, are conditions of

(1) candidate sets (which satisfy containment and consec-
utiveness) and (2) covering, meaning that each element in
E is covered no less than once.

We can now state that our problem of generating an all-
partition array is to

Minimize

S⇢F

X

Fs2S

cs

subject to

[

Fs2S

Fs = E,

Add. Conditions.

where the associated cost, cs, of each Fs, can be inter-
preted as a preference for one integer composition or an-
other. It is likely that, in the interest of musical expression,
Babbitt may have preferred the shapes of some integer par-
tition regions over others [13]. However, as his preference
is unknown, we can regard these costs to have the same
value for each Fs.

Due to the condition of distinctness (just described),
|S| can be fixed at 58. This feature, combined with the
equal costs of each Fs, means that the objective function,P

Fs2S cs, for this problem, is constant. For these reasons,
the above formulation is a constraint satisfaction problem.
This motivates our discussions in sections 6 and 7 on pos-
sible alternative objective functions.

In the next two sections, we implement the constraint
satisfaction problem defined above using integer program-
ming (IP). In particular, section 4 addresses the conditions
for set-covering,

S
Fs2S Fs = E, and section 5 addresses

those in Add. Conditions. It is because of our new way
of viewing this problem, with a regular matrix and over-
laps, that we are able to introduce variables for use in IP to
describe these conditions.

4. IP IMPLEMENTATION OF CONDITIONS FOR
SET-COVERING IN ALL-PARTITION ARRAY

GENERATION

In this section, we introduce our set of linear constraints
for satisfying the general conditions for set-covering,S

Fs2S Fs = E, in the generation of an all-partition ar-
ray. Before we introduce these constraints, we define the
necessary variables and constants used in our implemen-
tation of the conditions for set-covering. We begin with
a given matrix found in one of Babbitt’s works based on

the all-partition array. Examples of the matrices used in
this paper can be found in Babbitt’s Arie da Capo (1974)
and None but the Lonely Flute (1991), among others. Let
(Ai,j) be a (6, 96)-matrix whose elements are the pitch-
class integers, 0, 1, . . . , 11. We denote the number of rows
and columns by I and J , respectively.

Let xi,j,k (1  i  I , 1  j  J) be a binary vari-
able corresponding to each location (i, j) in A and a sub-
set (i.e., integer partition) identified by the integer k, where
1  k  K and K = 58. Here, we consider the case
where I = 6 and J = 96, so there are 58 sets of 576 such
variables. Each of these variables will indicate whether
or not a location (i, j) belongs to a candidate set for the
kth position in the sequence of 58 integer partition regions.
We denote the set of locations (i, j) whose corresponding
value for xi,j,k is 1, to be Ck. Subject to conditions for
consecutiveness and containment, Ck will be a candidate
set.

Let (Bp
i,j) (0  p  11) be constant matrices, equal

in size to A, where B

p
i,j = 1 if and only if Ai,j = p and

B

p
i,j = 0 otherwise. The locations (i, j) whose values of

B

p
i,j equal 1, correspond to the locations of pitch-class p in

A.

4.1 Conditions for Ck to contain twelve distinct
integers in A (condition of containment)

A condition for Ck to satisfy the condition of containment
is that its number of elements is 12 and each corresponds to
a distinct pitch-class in A. These conditions are expressed
by the following two equations:

8k 2 [1,K],

IX

i=1

JX

j=1

xi,j,k = 12, (1)

8p 2 [0, 11], 8k 2 [1,K],

IX

i=1

JX

j=1

B

p
i,j · xi,j,k = 1. (2)

Because xi,j,k equals 1 if (i, j) is included in Ck and 0

if it is not, Equation 1 means that there are 12 elements
in Ck. In Equation 2, we ensure that each corresponding
pitch-class integer p for the elements in Ck, appears once
and only once.

4.2 Conditions for Ck to be integer compositions in A

(condition of consecutiveness)

Let Ck,i be the ith-row part of Ck (i.e., the summand seg-
ment of composition k for row i). Let si,k be an integer
variable corresponding to the x-coordinate of a ‘starting
point’, which lies at the left side of the leftmost component
of Ck,i. The value of si,k is then equal to the column num-
ber of the leftmost component of Ck,i, minus 1. The origin
point of this coordinate lies along the left hand side of the
matrix A, and we set the width of each location (i, j) to be
1. Similarly, let ei,k be an integer variable corresponding
to the x-coordinate of an ‘ending point’, which lies at the
right side of the rightmost component belonging to Ck,i.
The value of ei,k is then equal to the column number of the



(a) Ck,i contains pitch classes
11, 4, 3 (j = 1, 2, 3) and satisfies
consecutiveness.

(b) Ck,i contains pitch classes
11, 4, 5 (j = 1, 2, 4) and does
not satisfy consecutiveness.

Figure 4: Two Ck,i and corresponding si,k and ei,k from
Figure 3 when k = 1 and i = 1. Shaded elements indicate
xi,j,k = 0 and unshaded elements indicate xi,j,k = 1.

rightmost component of Ck,i. Figure 4 shows an example
of two possible Ck,i from Figure 3. If there is no compo-
nent in Ck,i (k � 2), we define si,k to be ei,k�1 and ei,k to
be si,k. If there is no component in C1,i, we define si,k and
ei,k to be 0. Then, si,k and ei,k are subject to the following
constraint of range:

8i 2 [1, I], 8k 2 [1,K], 0  si,k  ei,k  J. (3)

The condition under which Ck (k 2 [1,K]) forms an inte-
ger composition—that is, satisfies the condition of consec-
utiveness, is expressed by the following three constraints:

8i 2 [1, I], 8j 2 [1, J ], 8k 2 [1,K], (4)
j · xi,j,k  ei,k,

8i 2 [1, I], 8j 2 [1, J ], 8k 2 [1,K], (5)
J � si,k � (J + 1� j) · xi,j,k,

8i 2 [1, I], 8k 2 [1,K],

JX

j=1

xi,j,k = ei,k � si,k. (6)

In Equation 4, each element of Ck,i must be located at col-
umn ei,k or to the left of column ei,k. Equation 5 states that
each element of Ck,i must be located at column si,k +1 or
to the right of column si,k +1. Equation 6, combined with
the previous two constraints, states that the length of Ck,i

must be equal to ei,k�si,k, implying that the column num-
bers j of the elements in Ck,i are consecutive from si,k+1

to ei,k, where Ck,i contains at least one element.

4.3 Condition for covering A

As every location (i, j) in A (i.e., E in our SCP) must be
covered at least once, we pose the following condition of
covering:

8i 2 [1, I], 8j 2 [1, J ],

KX

k=1

xi,j,k � 1. (7)

Equation 1 states that for all K = 58 integer partitions,
there are 12 · K = 696 variables, xi,j,k, that will equal
1. A successful cover of A by Equation 7, however, states
that all of I · J = 576 places (i, j) in A, are covered once
or more than once. Collectively, these imply that there are
120 or less than 120 places (i.e., combinations of (i, j))

that are covered twice or more than twice. These 120 over-
laps correspond to the 120 insertions of pitch-class integers
used when constructing an all-partition array in its original
form. By satisfying all of the constraints above, each Ck

forms a candidate set (i.e., a member of F in our SCP) and
the condition for set-covering,

S
Fs2S Fs = E, is satisfied.

5. IP IMPLEMENTATION OF ADDITIONAL
CONDITIONS IN ALL-PARTITION ARRAY

GENERATION

In this section, we introduce our set of additional linear
constraints beyond those required for satisfying the condi-
tion of set-covering in the SCP.

5.1 Left-to-right order of Ck and permissible overlaps

Ck must be located immediately to the right of Ck�1. This
is expressed by

8i 2 [1, I], 8k 2 [2,K], ei,k�1  ei,k, (8)

Ck�1,i and Ck,i may overlap by no more than one element.
This is expressed by the following inequality:

8i 2 [1, I], 8k 2 [2,K], ei,k�1 � 1  si,k  ei,k�1, (9)

meaning that si,k will be equal to ei,k�1 if there is no over-
lap and si,k will be equal to ei,k�1�1 if there is an overlap.

5.2 Conditions for Ck to be integer compositions
defining distinct integer partitions (condition of
distinctness)

Let yi,k,l be a binary variable that indicates whether or not
the length of Ck,i is greater than or equal to l (1  l 
L,L = 12), by introducing the following constraints:

8i 2 [1, I], 8k 2 [1,K], ei,k � si,k =

LX

l=1

yi,k,l, (10)

8i 2 [1, I], 8k 2 [1,K], 8l 2 [2, L], (11)
yi,k,l�1 � yi,k,l.

Equation 10 states that the sum of all elements in
hyi,k,1, yi,k,2, . . . , yi,k,Li is equal to the length of Ck,i,
while Equation 11 states that its elements equal to 1

begin in the first position and are consecutive (e.g.,
h1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0i, when the length of Ck,i is
3.)

The number of the lengths of Ck,i (1  i  I) that
are greater than or equal to l is given by

PI
i=1 yi,k,l. The

twelve values of
PI

i=1 yi,k,l (1  l  L) then, will pre-
cisely represent the type of partition. For example, if Ck

is IntComp12(3, 2, 1, 3, 1, 2), then yi,k,l (8i 2 [1, I], 8l 2
[1, L]) would be

1,1,1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0,0,0



and
PI

i=1 yi,k,l would be [6, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0].
We denote the number of all integer partitions by N

(N = K = 58) and denote a single integer parti-
tion n (1  n  N) by Pn. We can express Pn as
[Pn,1, Pn,2, . . . , Pn,L] (1  n  N), where Pn,l corre-
sponds to the twelve values

PI
i=1 yi,k,l (1  l  L) de-

scribed above.
Then, by implementing the following expression:

8k 2 [1,K], 8n 2 [1, N ], 8l 2 [1, L], (12)

Pn,l · zk,n 
IX

i=1

yi,k,l.

we can express whether Ck defines the integer partition n

or not by the binary variable zk,n. For example, if zk,n =

0, the value of Pn,l · zk,n = 0 constrains nothing, and thus
Ck cannot be the integer partition n (because of the next
equation). On the other hand, if zk,n = 1, Ck must be
the integer partition n. Accordingly, zk,n will equal 1 only
if the twelve values

PI
i=1 yi,k,l correspond to Pn. From

this, determining whether or not all different partitions are
present can be expressed by the following equation:

8n 2 [1, N ],

KX

k=1

zk,n = 1. (13)

6. EXPERIMENTS

In order to determine whether or not our formulation works
as intended, we implemented the constraints described in
sections 4 and 5 and supplied these to an IP solver based
on branch-and-bound (Gurobi Optimizer). As the objec-
tive function in our formulation amounts to a constant-cost
function (described in section 3), we replaced it with a
non-constant objective function,

P
i,j,k ci,j,k ·xi,j,k, where

ci,j,k assumes a randomly generated integer for promoting
this process of branch and bound. When the first feasible
solution is found, we stop the search.

Although we first attempted to find a complete all-
partition array, we were unable to discover a solution after
one day of calculation. This highlights the difficulty of the
problem and reinforces those findings by previous methods
that were similarly unable to find a complete all-partition
array [7]. As the target of our current formulation is only
solutions which strictly satisfy all constraints, we opted to
try finding complete solutions to smaller-sized problems,
using the first j columns of the original matrix. Because
we cannot use all 58 integer partitions in the case K < N ,
a slight modification to Equation 13 was needed for this
change. Its equality was replaced by  and an additional
constraint, 8k 2 [1,K],

PN
n=1 zk,n = 1, for allocating

one partition to each Ck, was added.
Figure 5 shows the duration (vertical axis) of time spent

on finding a solution in matrices of varying size. The num-
ber of integer compositions, K, was set to (J+2)/2, where
J is an even number. This ensures that a given solution will
always contain 12 overlaps. These findings suggest that the
necessary computational time in finding a solution tends to

Figure 5: Duration of time spent on finding the first solu-
tion for each small matrix, whose column length is J(12 
J  24, J 2 2N). K is set to (J + 2)/2, resulting in
12 overlaps. Note, that no feasible solution exists when
J = 14.

dramatically increase with an increase in J . However, this
increase fluctuates, suggesting that each small matrix rep-
resents a unique problem space with different sets of diffi-
culties (e.g., the case J = 14 was unfeasible). For this rea-
son, finding a solution in a complete matrix (6,96) within
a realistic limitation of time would be difficult for our cur-
rent method, even using a fast IP solver. This strongly mo-
tivates future improvements as well as the possibility of an
altogether different strategy.

7. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel integer-
programming-based perspective on the problem of gener-
ating Milton Babbitt’s all-partition arrays. We have shown
that insertions and the irregular matrix that results can be
replaced with restricted overlaps, leaving the regular ma-
trix unchanged. This view allows us to formulate the prob-
lem as a set-covering problem (SCP) with additional con-
straints and then implement it using integer programming.
Due to the difficulty of the problem, we have so far been
unable to find a solution. However, we have been able to
produce solutions in a practical running time (< 2500 sec-
onds) when the matrix is reduced in size to 24 columns or
less. These results motivate possible extensions to our for-
mulation. First, a relaxation of the problem is possible, for
example, by using an objective function that measures the
degree of incompleteness of a solution. This could allow
for approximate solutions to be discovered, such as those
found in previous work [7]. Second, it may be the case
that a solution to the full problem may be achievable by
combining solutions to smaller subproblems that we have
shown to be solvable in a practical running time.
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Abstract. Milton Babbitt (1916–2011) was a composer of twelve-tone
serial music noted for creating the all-partition array. One part of the
problem in generating an all-partition array requires finding a covering
of a pitch-class matrix by a collection of sets, each forming a region
containing 12 distinct elements and corresponding to a distinct integer
partition of 12. Constraint programming (CP) is a tool for solving such
combinatorial and constraint satisfaction problems. In this paper, we
use CP for the first time to formalize this problem in generating an all-
partition array. Solving the whole of this problem is di�cult and few
known solutions exist. Therefore, we propose solving two sub-problems
and joining these to form a complete solution. We conclude by presenting
a solution found using this method. Our solution is the first we are aware
of to be discovered automatically using a computer and di↵ers from those
found by composers.

Keywords: Babbitt · all-partition array · computational musicology ·
constraint programming

1 Introduction

Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted
for developing highly constrained and often complex musical structures. Many
of his pieces are organized according to one such structure known as the all-

partition array [1]. An all-partition array is a covering of a matrix of pitch-class
integers by a collection of sets, each of which forms a region in this matrix
containing 12 distinct pitch classes from consecutive elements in its rows and
that corresponds to a distinct integer partition of 12 (to be clarified in the next
section). This unique structure imposes a strict organization on the pitch classes
in his works, and it serves as both a method of musical composition and musical
form. Moreover, the all-partition array allowed Babbitt one of many ways to
achieve maximal diversity in his music.3

3 Maximal diversity is the presentation of as many musical parameters in as many
di↵erent ways as possible [2].
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In this paper, we formulate one part of the problem in generating an all-
partition array, beginning from a given matrix of pitch-class integers, using
constraint programming (CP) and with a particular focus on its mathemati-
cal aspects. Using our model and a method for dividing this matrix into smaller,
sub-problems, we obtained a solution, which, we believe, is the first to be discov-
ered automatically using a computer and di↵ers from those found by composers.
CP is a programming paradigm that has been successfully applied to the solving
of various constraint satisfaction problems in music [3–7]. It seems natural then,
that CP could be used in the problem we address here. Moreover, having such a
model could, for example, be used as a basis for generating new musical works.

1.1 The structure of an all-partition array

In this section, we describe the structure of an all-partition array in a way
that assumes the reader has a basic understanding of pitch class set theory.
Constructing an all-partition array begins with the construction of an I ⇥ J

matrix, A, whose elements are pitch-class integers, 0, 1, . . . , 11, where each row
contains J/12 twelve-tone rows. The dimensions of this matrix constrain the
most important requirement of the structure of an all-partition array, however,
Babbitt generally limited himself to sizes of 4⇥96, 6⇥96, and 12⇥72 [2]. In this
paper, we consider only matrices where I = 4 and J = 96, as matrices of this
size figure prominently in Babbitt’s music [2]. This results in a 4⇥ 96 matrix of
pitch classes, containing 32 twelve-tone rows from the possible 48 related by any
combination of transposition, inversion and retrograde (i.e., reversal). In other
words, A will contain an approximately uniform distribution of 32 occurrences
of each of the integers from 0 to 11.4 On the musical surface, rows of this matrix
become expressed as ‘musical voices’, typically distinguished from one another
by instrumental register [2].

A complete all-partition array is a covering of matrix, A, by K sets, each of
which is itself a partition of the set {0, 1, . . . , 11} whose parts (1) contain con-
secutive row elements from A and (2) have cardinalities equal to the summands
in one of the K distinct integer partitions of 12 (e.g., 6 + 6 or 5 + 4 + 2 + 1)
containing I or fewer summands greater than zero.5 Figure 1 shows a 4 ⇥ 12
excerpt from a 4 ⇥ 96 pitch-class matrix, A, and two such sets forming regions

in A each containing every pitch class exactly once and corresponding to two
distinct integer partitions, whose exact “shapes” are more precisely represented
as the integer compositions, IntComp12(4, 4, 4, 0) and IntComp12(0, 6, 3, 3).

6

4 For a more detailed description of the constraints governing the organization of
matrices in Babbitt’s music, see [2, 8].

5 We denote an integer partition of an integer, L, by IntPartL(s1, s2, . . . , sI) and define
it to be an ordered set of non-negative integers, hs1, s2, . . . , sIi, where L =

PI
i=1 si

and s1 � s2 � · · · � sI .
6 We define an integer composition of a positive integer, L, denoted by
IntCompL(s1, s2, . . . , sI), to also be an ordered set of I non-negative integers,
hs1, s2, . . . , sIi, where L =

PI
i=1 si.
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Fig. 1: A 4 ⇥ 12 excerpt from a 4 ⇥ 96 pitch-class matrix with two distinct
integer partition regions represented precisely by the integer compositions,
IntComp12(4, 4, 4, 0) (in dark gray) and IntComp12(0, 6, 3, 3) (in light gray), each
containing every pitch class exactly once.

Note, in Figure 1, that each summand (from left to right) in IntComp12(4, 4, 4, 0),
gives the number of elements in the corresponding row of the matrix (from top
to bottom) in this region. Unlike common tiling problems using, for example,
polyominoes, these regions need not have connected interiors, as demonstrated
by the second region in Figure 1 between rows 3 and 4. On the musical surface,
the distinct shape of each region helps contribute to a progression of ‘musical
voices’ that vary in textural density, allowing for relatively thick textures in, e.g.,
IntComp12(3, 3, 3, 3) (with four participating parts) and comparatively sparse
textures in, e.g., IntComp12(11, 0, 1, 0) (with two participating parts).

There exist a total of 34 distinct integer partitions of 12 into 4 or fewer
non-zero summands [2]. An all-partition array with four rows will thus contain
K = 34 regions, each containing every pitch class exactly once and each with a
distinct “shape” determined by an integer composition defining a distinct integer
partition. However, the number of pitch classes required to satisfy this constraint,
34⇥12 = 408, exceeds the size of a 4⇥96 matrix containing 384 elements, by 24.
In order to satisfy this constraint, contiguous regions may share pitch classes,
with the added constraint that only horizontal overlaps of at most one pitch class
in each row are allowed for each of the 34 integer partition regions. Figure 2 shows
a third region, IntComp12(5, 1, 0, 6) (in medium gray), in the matrix shown in
Figure 1, where two of its elements result from overlapped pitch classes from
previous regions. Note, in Figure 2, the two horizontal overlaps of pitch class, 7

Fig. 2: A 4 ⇥ 12 excerpt from a 4 ⇥ 96 pitch-class matrix with a third integer
composition, IntComp12(5, 1, 0, 6) (in medium gray), sharing one pitch class from
each of the two previous regions.

(in row 1 and belonging to the first region) and 8 (in row 4 and belonging to the
second region), required to have each pitch class occur exactly once in the third



4

integer partition region. This means that while contiguous regions may share
pitch classes, such regions need not be necessarily adjacent in sequence.

Composers have primarily relied on constructing all-partition arrays by hand
and at least some of their methods have been published [1,9,10]. Algorithms for
automating this task have also been proposed [8,11]. However, generating an all-
partition array is a large combinatorial problem and satisfying the constraints
of its structure is di�cult. To date, none of these algorithms have been able
to solve this problem automatically. This observation motivates our decision
here to look for alternative programming paradigms and methods for possibly
better addressing this problem. In section 2, we present our CP constraints
for implementing the problem of generating an all-partition array from a given
matrix. As solving for the entire matrix directly is di�cult, in section 3, we
present a method of dividing this matrix into two smaller matrices, choosing
integer partitions based on how frequently they appear in solutions to one of
these smaller matrices, and re-joining them to form a complete solution. We
conclude here with a solution discovered using this method.

2 CP constraints for the problem of generating an

all-partition array from a given matrix

We begin the discussion of our CP constraints for generating an all-partition
array, with a given matrix found in one of Babbitt’s works based on the all-
partition array.7 Let (Ai,j) be this (4, 96)-matrix whose elements are the pitch-
class integers, 0, 1, . . . , 11. We denote the number of rows and columns by I

and J , respectively. Let xi,j,k (1  i  I, 1  j  J) be a binary variable
corresponding to each location (i, j) in A and a subset (i.e., a region) identified
by the integer k, where 1  k  K and K = 34. There are then 34 sets of 384
such variables. Each of these variables will indicate whether or not a location
(i, j) belongs to a candidate set, which we denote, Ck, for the kth position in the
sequence of 34 regions. For Ck to be a candidate set, it must form a region in
A (as described in section 1), by satisfying two conditions, consecutiveness and
containment, which we will introduce below. Having satisfied these conditions,
Ck will be a candidate set in a possible solution to our problem, in which its
elements correspond to 12 distinct pitch classes inA and whose “shape” is defined
by an integer composition. Additional constraints e.g., ensuring that each of these
candidate sets is then a distinct integer partition and that their overlaps do not
exceed one in each row, will then complete our formulation of this problem.

2.1 Consecutiveness

The condition of consecutiveness states that pitch classes belonging to the same
region and row in A must lie adjacent to one another with no gaps between. We

7 Examples of this matrix can be found in Babbitt’s My Ends are My Beginnings
(1978) and Beaten Paths (1988), among others.
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ensure this is the case by placing constraints on the strings of 0’s and 1’s that
are allowed in the rows formed by hxi,1,k, xi,2,k, . . . , xi,J,ki for each (i, k). If, for
example, the string h. . . , 0, 1, . . .i appears in the ith row for some k, then there
can be no 1 occurring before 0. This is expressed by the following:

8i 2 [1, I], 8j 2 [3, J ], 8k 2 [1,K],

(xi,j�1,k = 0 ^ xi,j,k = 1) =)
j�2
^

j0=1
(xi,j0,k = 0). (1)

On the other hand, if h. . . , 1, 0, . . .i appears in this row, then there can be no 1
after 0. This is expressed by the following:

8i 2 [1, I], 8j 2 [1, J � 2], 8k 2 [1,K],

(xi,j,k = 1 ^ xi,j+1,k = 0) =)
J
^

j0=j+2
(xi,j0,k = 0). (2)

In other words, all 1’s in hxi,1,k, xi,2,k, . . . , xi,J,ki for each (i, k) must be consec-
utive, with any 0’s lying to the left or right end points of this string.

2.2 Containment

The condition of containment states that regions in A must contain 12 distinct
pitch classes. Let Bp (0  p  11) be the set of all locations (i, j) of pitch class
p in matrix A. From this, we can express the condition of containment by the
following:

8p 2 [0, 11], 8k 2 [1,K],
X

(i,j)2Bp

xi,j,k = 1, (3)

where for each k, xi,j,k is equal to 1 at one and only one location (i, j) whose
pitch class is p in A. When this is the case, Ck will contain one of each pitch
class.

2.3 Covering all (i, j) in A

A solution to our problem requires that every one element in A is covered by
at least one of the regions, Ck. We can express this condition by the following
constraint:

8i 2 [1, I], 8j 2 [1, J ],
K
_

k=1
(xi,j,k = 1). (4)

2.4 Restrictions on the left-to-right order of candidate sets and

their overlaps

As discussed in section 1, adjacent regions need not be contiguous in each row
in A, however, there are restrictions on their left-to-right order and allowed
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overlaps. The number of overlaps in each row between these regions must not
exceed 1. We can express this restriction by the following constraint:

8i 2 [1, I], 8j 2 [2, J ], 8k 2 [1,K � 1],

(xi,j,k = 1) =)
K
^

k0=k+1
(xi,j�1,k0 = 0). (5)

When combined with the constraint of consecutiveness, constraint 5 means that
if xi,j,k is equal to 1, the ith row of Ck0 , whose k

0 is greater than k, is either (1)
located at the right-hand side of (i, j) without overlapping the ith row of Ck or
(2) has only one overlap at the right-most element of the ith row of Ck.

2.5 Candidate sets as all di↵erent integer partitions

In order to determine that the integer composition “shape” of Ck is a distinct
integer partition, we introduce two variables, yi,k,l and zk,l. Let yi,k,l be a bi-
nary variable that indicates whether or not the length of the ith row of Ck is
greater than or equal to l (1  l  L,L = 12), by introducing the following two
constraints:

8i 2 [1, I], 8k 2 [1,K],
JX

j=1

xi,j,k =
LX

l=1

yi,k,l (6)

8i 2 [1, I], 8k 2 [1,K], 8l 2 [2, L], (yi,k,l = 1) =) (yi,k,l�1 = 1). (7)

Equation 6 states that the sum of all elements in hyi,k,1, yi,k,2, . . . , yi,k,Li is equal
to the length of the ith row of Ck while Equation 7 states that its elements equal
to 1 begin in the first position and are consecutive. For example, when the length
of the ith row of Ck is 3, hyi,k,1, yi,k,2, . . . , yi,k,Li is h1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0i.
The total number of rows in Ck whose lengths are greater than or equal to l is
given by

PI
i=1 yi,k,l. Let zk,l (0  zk,l  I) be an integer variable that is equal

to
PI

i=1 yi,k,l (1  l  L) with the following constraint:

8k 2 [1,K], 8l 2 [1, L], zk,l =
IX

i=1

yi,k,l. (8)

The ordered set of twelve values zk,l (1  l  L) will then identify the
type of integer partition corresponding to Ck. For example, when zk,l is
h4, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0i, Ck is IntPart12(5, 3, 2, 2). We denote this set zk,l

corresponding to an integer partition n by Pn = hPn,1, Pn,2, . . . Pn,Li (1  n 
N,N = 34), where integer partitions appear in reverse lexicographical order,
meaning that those containing the fewest parts and largest part lengths ap-
pear first. For example, P1 is IntPart12(12, 0, 0, 0) and P34 is IntPart12(3, 3, 3, 3).
From this, we determine the integer composition shape of Ck to be the integer
partition n by the following constraint:

8k 2 [1,K], 8n 2 [1, N ], (wk = n) ()
L
^
l=1

(zk,l = Pn,l), (9)
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where wk (1  wk  N) is an integer variable that indicates to which Pn Ck

corresponds. We can now express the condition that all integer partitions are
distinct by the constraint, AllDifferent(w1, w2, . . . , wK).

3 Solution

In order to confirm that our formulation of this problem is accurate, we imple-
mented our constraints described in section 2 and supplied these to a CP solver
(Sugar v2-1-0 [12,13]). We first tried to solve for the whole matrix directly, how-
ever, we were unable to obtain a solution after a day of calculation. We decided
instead, to divide the matrix into two, equally-sized halves and try solving for
each in such a way that their re-joining would form a complete solution to the
original problem. We made this division of the original matrix at [1, I]⇥ [1, J/2].
Columns 1 to (J/2) then correspond to the first smaller matrix we denote by A1

and columns (J/2) + 1 to J correspond to the second smaller matrix we denote
by A2. We allocated 34/2 = 17 integer partitions to be found in each.

With little modification, our constraints can be adapted to the solving of
these sub-problems. These changes include modifying Bp (in equation 3) to con-
tain only the locations of pitch classes in either A1 or A2, setting K to be the
new number of partitions in each (i.e., 17) and J to be their new column lengths
96/2 = 48. Solutions to A1 and A2 in which no integer partition is used more
than once and contains only pitch classes from one or the other matrix (but not
both), collectively form a solution to the original problem. Due to its smaller
size, we were able to find solutions beginning with A1 over the course of a day,
in which 506 were found. Naturally, solving for A1 makes finding a solution in
A2 more di�cult as the number of available partitions is now fewer, and in fact,
all 506 solutions to A1 made A2 unsatisfiable. We noticed, however, that certain
partitions in these 506 solutions e.g., IntPart12(3, 3, 3, 3) and IntPart12(4, 3, 3, 2)
occurred far less frequently than others. It would be reasonable then to conclude
that solutions in A1 which contain the greatest number of these less frequently
occurring partitions will make solving for A2 more likely, as the fewer available
partitions in A2 now consist of a proportionally greater number of frequently
occurring partitions. Therefore, we solved again for A1, this time by arbitrar-
ily restricting the domain of wk to exclude the top 6 most frequently occurring
partitions and include the top 5 least frequently occurring partitions.

If we denote the subset of integers from [1, 34] corresponding to the partitions
found in this solution to A1, S, then the domain of wk for possible solutions to
A2 becomes [1, 34] \ S. We then tried solving for A2, under the assumption that
its proportionally greater number of more frequently occurring partitions would
make finding a solution easier. While this means we exclude possible solutions
e.g., ones in which a rarely occurring partition occurs in A2 or where a partition
contains pitch classes from both A1 and A2, we were able to generate a complete
solution in this way. Solving for A1 took approx. 4 minutes while solving for A2

took approx. 28 minutes. Table 1 shows the complete solution found using this
method of re-joining A1 and A2.
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et37 62 4581 90 7 t6e 23510498 -867 2t e31 -1094
8940 15 32e6t7 859410t23 e67 549 10 -0 8te27365
2516 9t 0 87e4365t 219 e 03847 1t2 9653 784

74830e 9 12 t56e07348 6 5291 t 03e -e478 t6592

43 623 6412 822 93 913 543 831 34 4222 5321 84

85637 -72e t8 01945 32 7et6890 514 -4e2 -2t36795481
-58 49013 -3et276 450891et7 26 3 -30 -0

-4e09t -t5126 430 7e 8 6 95t1 -124 0e3872 16t9578 e
-21 4380e79 -9t16 -625 304e87 5 9t6

522 75 4322 5322 651 921 642 7312 632 732 10 12

023t67e -e 9 8504 1 2e3t76 48 9501
9185 42673te10598 -84 67 -7 t3e29 -908145 73 26et
4 0396t5 -5 21 e3 40785 619t20e 837 4

127 83e0421t -t5964738e0 2t916 -6 5 4 380e79t1625

741 12 6321 8212 10 2 5421 5212 62 7221 4231 11 1

Table 1: A generated all-partition array corresponding to a complete solution to
our problem, represented in the way used by music theorists [2]. Each column
contains the elements in A belonging to Ck, where a dash indicates those that
overlap. Note, that partitions are denoted using a shorthand notation, e.g., 43,
where the base indicates the length of a part and the exponent denotes its
number of occurrences. For clarity, the integers 10 and 11 have been replaced by
the letters t and e, respectively.

4 Conclusion

In this paper, we have introduced a novel formulation of one part of the problem
of generating an all-partition array, beginning from a given matrix, using con-
straint programming (CP). Solving for the whole of this matrix directly proved
too di�cult using our constraints. Therefore, we introduced a method of dividing
the matrix into two halves, solving for each and then re-joining them to form
a complete solution. Using this method, we were able to discover a solution.
This solution is the first we are aware of to be automatically generated by a
computer. Moreover, it is an all-together new all-partition array from those pre-
viously discovered by Babbitt and other composers. In future work, we hope to
examine in more detail how to make finding solutions in larger matrices possible
and without excluding potential solutions.
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