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CONSISTENT SEGREGATED STAGGERED SCHEMES WITH EXPLICIT STEPS

FOR THE ISENTROPIC AND FULL EULER EQUATIONS.

R. Herbin1, J.-C. Latché2 and T.T. Nguyen3

Abstract. In this paper, we build and analyze the stability and consistency of decoupled schemes,
involving only explicit steps, for the isentropic Euler equations and for the full Euler equations. These
schemes are based on staggered space discretizations, with an upwinding performed with respect to
the material velocity only. The pressure gradient is defined as the transpose of the natural velocity
divergence, and is thus centered. The velocity convection term is built in such a way that the solutions
satisfy a discrete kinetic energy balance, with a remainder term at the left-hand side which is shown to
be non-negative under a CFL condition. In the case of the full Euler equations, we solve the internal
energy balance, to avoid the space discretization of the total energy, whose expression involves cell-
centered and face-centered variables. However, since the residual terms in the kinetic energy balance
(probably) do not tend to zero with the time and space steps when computing shock solutions, we
compensate them by corrective terms in the internal energy equation, to make the scheme consistent
with the conservative form of the continuous problem. We then show, in one space dimension, that,
if the scheme converges, the limit is indeed an entropy weak solution of the system. In any case, the
discretization preserves by construction the convex of admissible states (positivity of the density and,
for Euler equations, of the internal energy), under a CFL condition. Finally, we present numerical
results which confort this theory.
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1. Introduction

The objective pursued in this work is to develop and study, both theoretically and numerically, a decoupled
scheme for the simulation of non viscous compressible flows, modeled either by the isentropic Euler equations or
by the full Euler equations for an ideal gas. More precisely, we intend to build a variant involving only explicit
time-steps (i.e. without any linear system solution) of implicit and semi-implicit schemes that were developed
and studied recently in the framework of the simulation of compressible flows at all speeds [13,17]. In this latter
works, the implicit scheme is studied as a first step in the mathematical analysis of some pressure correction
schemes; these are obtained by extending some algorithms which are classical in the incompressible framework;
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they are based on (inf-sup stable) staggered discretizations. In our approach, the upwinding techniques which
are implemented for stability reasons are performed for each equation separately and with respect to the material
velocity only. This is in contradiction with the most common strategy adopted for hyperbolic systems, where
upwinding is built from the wave structure of the system (see e.g. [2, 7, 23] for surveys). However, it yields
algorithms which are used in practice (see e.g. the so-called AUSM family of schemes [19,20]), because of their
generality (a closed-form solution of Riemann problems is not needed), their implementation simplicity and
their efficiency, thanks to an easy construction of the fluxes at the cell faces. Up to now, these schemes have
scarcely been studied from a theoretical point of view; one of our main concerns here will thus be to bring, as
far as possible, theoretical arguments supporting our numerical developments.

We first deal with the isentropic Euler equations:

∂tρ+ div(ρu) = 0, (1a)

∂t(ρu) + div(ρu ⊗ u) +∇p = 0, (1b)

ρ ≥ 0, p = ℘(ρ) = ργ , (1c)

where t stands for the time, ρ, u, and p are the density, velocity and pressure respectively, and γ ≥ 1 is a
coefficient specific to the considered fluid. Note that, for γ = 2, this system is identical to the usual shallow
water (or Saint-Venant) equations in the case of no source term (no topography, no Coriolis force), up to a
multiplicative coefficient 1/2 at the right-hand side of the equation of state (and replacing the density ρ by the
fluid height h). Of course, this minor change in the equation of state does not bring any additional difficulty,
and, more generally, present results may probably be extended to the barotropic case, i.e. to general equations
of state of the form p = φ(ρ) with φ a strictly increasing function.

We then address the full Euler equations, which read:

∂tρ+ div(ρu) = 0, (2a)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (2b)

∂t(ρE) + div(ρE u) + div(pu) = 0, (2c)

p = (γ − 1) ρ e, E =
1

2
|u|2 + e, (2d)

where E and e are the total energy and internal energy respectively. For this system, the coefficient γ is now
supposed to be strictly greater than 1. Problems (1) and (2) are posed over Ω × (0, T ), where Ω is an open
bounded connected subset of Rd, 1 ≤ d ≤ 3, and (0, T ) is a finite time interval. They are complemented by
initial conditions for ρ, e and u, denoted by ρ0 e0, and u0 respectively, with ρ0 > 0 and e0 > 0, and by a
boundary condition which we suppose to be u · n = 0 at any time and a.e. on ∂Ω, where n stands for the
normal vector to the boundary.

The organization and main results of this paper are as follows.

- The space discretization is given in Section 2.

- Section 3 is devoted to the isentropic Euler equations (i.e. System (1)). The proposed scheme is decoupled
in time (the mass and momentum equations are solved one after the other) and only involves explicit steps.
The scheme is based on a staggered mesh, and obtained by writing a finite volume discretization on the
primal cells for the mass balance equation and a finite volume scheme on the dual cells for the momentum
balance equation. Upwinding is performed with respect to the material velocity (by opposition to the
speed of the waves of the system), and the pressure gradient is defined as the transpose of the natural
velocity divergence, so is thus centered. We prove that the solutions of this scheme satisfy a discrete
kinetic energy balance (on dual cells) and an elastic potential balance (on primal cells). Then, in one
space dimension, we show that the algorithm is consistent in the Lax-Wendroff sense: passing to the limit
in the scheme, we prove that, if a sequence of discrete solutions obtained with vanishing time and space
steps converges and is uniformly bounded in suitable norms, then its limit satisfies a weak formulation
of the continuous problem. Then, passing now to the limit in the discrete kinetic energy and elastic
potential equations, we show that the limit of such a converging sequence also satisfies the weak form of
the entropy balance.

- Section 4 is devoted to the full Euler equations. The scheme is obtained by complementing the algorithm
developed for the isentropic case by an explicit finite volume discretization of the internal energy balance
equation on the primal mesh. This offers two main advantages: first, we avoid the space discretization
of the total energy, the expression of which involves cell-centered and face-centered variables; second,
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the discretization ensures by construction the positivity of the internal energy, under a CFL condition.
However, since this scheme does not use the original (total) energy conservative equation, in order to
obtain correct weak solutions (in particular, with shocks satisfying the Rankine-Hugoniot conditions), we
need to introduce corrective terms in the internal energy balance. These corrective terms are found from
the discrete kinetic energy balance (already derived in the isentropic case), observing that this relation
contains residual terms which do not tend to zero (at least, under reasonable stability assumptions) and,
finally, compensating them in the discrete internal energy balance. With this correction, we are once
again able to prove, in 1D, the consistency of the scheme in the Lax-Wendroff sense; more precisely
speaking, passing to the limit separately in the discrete kinetic and internal energy balances (which are
not posed on the same mesh), we obtain that the limit of a convergent sequence of discrete solutions
satisfies a weak form of the total energy equation.

- Finally, we present some numerical tests for both the isentropic case and the full Euler case in Section 5.

In several theoretical developments, we are lead to use a derived form of a discrete finite volume convection
operator (for instance, typically, a convection operator for the kinetic energy, possibly with residual terms,
obtained from the finite volume discretization of the convection of the velocity components); the proofs of
various related discrete identities are given in the Appendix A. Note that some of the results of the work which
we present here were announced in the proceedings [15], but without any proof.

2. Meshes and unknowns

In this section, we recall some staggered discretizations which were already used for implicit schemes for
compressible flows, see e.g. [13]; we focus here on the discretization of a multi-dimensional domain (i.e. d = 2
or d = 3); the extension to the one-dimensional case is straightforward (see sections 3.3 and 4.2).

Let M be a mesh of the domain Ω, supposed to be regular in the usual sense of the finite element literature
(e.g. [4]). The cells of the mesh are assumed to be:

- for a general domain Ω, either non-degenerate quadrilaterals (d = 2) or hexahedra (d = 3) or simplices;
in two space dimensions, both types of cells may possibly be combined in a same mesh;

- for a domain whose boundaries are hyperplanes normal to a coordinate axis, rectangles (d = 2) or
rectangular parallelepipeds (d = 3) (the faces of which, of course, are then also necessarily normal to a
coordinate axis).

By E and E(K) we denote the set of all (d − 1)-faces σ of the mesh and of the element K ∈ M respectively.
The set of faces included in the boundary of Ω is denoted by Eext and the set of internal faces (i.e. E \ Eext)
is denoted by Eint; a face σ ∈ Eint separating the cells K and L is denoted by σ = K|L. The outward normal
vector to a face σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E, we denote by |K| the measure of K and by

|σ| the (d − 1)-measure of the face σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E and E
(i)
ext ⊂ Eext the subset of the

faces of E and Eext respectively which are perpendicular to the ith unit vector of the canonical basis of Rd.

The space discretization is staggered, using either the Marker-And Cell (MAC) scheme [11,12], or the degrees
of freedom (i.e. the discrete unknowns) of nonconforming low-order finite element approximations, namely the
Rannacher and Turek element (RT) [21] for quadrilateral or hexahedric meshes, or the lowest degree Crouzeix-
Raviart element (CR) [5] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure, the density and the internal energy
are associated to the cells of the mesh M, and are denoted by:

{
pK , ρK , eK , K ∈ M

}
.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete velocity unknowns).

- Rannacher-Turek or Crouzeix-Raviart discretizations – In this case, all the components of the ve-
locity are approximated on each face of the mesh, so the degrees of freedom for the velocity components
are located at their center. The set of degrees of freedom reads:

{uσ,i, σ ∈ E, 1 ≤ i ≤ d}.

- MAC discretization – Only the normal components of the velocities are approximated, and the degrees
of freedom for the ith component of the velocity are defined at the centre of the faces σ ∈ E(i), and the
set of discrete velocity unknowns is:

{
uσ,i, σ ∈ E

(i), 1 ≤ i ≤ d
}
.
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Figure 1. Notations for control volumes and dual cells – Left: Finite Elements (the present
sketch illustrates the possibility, implemented in our software CALIF3S [3], of mixing simplicial
(Crouzeix-Raviart) and quadrangular (Rannacher-Turek) cells) – Right: MAC discretization,
dual cell for the y-component of the velocity.

We now introduce a dual mesh, which will be used for the finite volume approximation of the time derivative
and convection terms in the momentum balance equation.

- Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR discretizations, the dual
mesh is the same for all the velocity components. When K ∈ M is a simplex, a rectangle or a cuboid,
for σ ∈ E(K), we define DK,σ as the cone with basis σ and with vertex the mass center of K (see Figure
1). We thus obtain a partition of K in m sub-volumes, where m is the number of faces of the mesh, each
sub-volume having the same measure |DK,σ| = |K|/m. We extend this definition to general quadrangles
and hexahedra, with a (virtual) partition with sub-cells which are still of equal-volume, and with the
same connectivities. The volume DK,σ is referred to as the half-diamond cell associated to K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated to σ by Dσ = DK,σ ∪DL,σ; for an
external face σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.

- MAC discretization – For the MAC scheme, the definition of the dual mesh depends on the component
of the velocity. For each component, the MAC dual mesh only differs from the RT or CR dual mesh by
the choice of the half-diamond cell, which, for K ∈ M and σ ∈ E(K), is now the rectangle or rectangular
parallelepiped of basis σ and of measure |DK,σ| = |K|/2.

We denote by |Dσ| the measure of the dual cell Dσ, and by ǫ = Dσ|Dσ′ the face separating two diamond

cells Dσ and Dσ′ . The set of the faces of a dual cell Dσ is denoted by Ẽ(Dσ).

Finally, we need to deal with the impermeability (i.e. u · n = 0) boundary condition. As in [13] we suppose
throughout this paper that the boundary is a.e. normal to a coordinate axis which allows to simply set to zero
the corresponding velocity unknowns:

for i = 1, . . . , d, ∀σ ∈ E
(i)
ext, uσ,i = 0. (3)

Therefore, there are no degrees of freedom for the velocity on the boundary for the MAC scheme, and there are
only d− 1 degrees of freedom on each boundary face for the CR and RT discretizations, which depend on the
orientation of the face. We again use the notations of [13] to be able to write a unique expression of the discrete

equations for both MAC and CR/RT schemes: we introduce the sets of faces E
(i)
S

associated to the degrees of
freedom of each component of the velocity (S stands for “scheme”):

E
(i)
S

=

∣
∣
∣
∣
∣

E(i) \ E
(i)
ext for the MAC scheme,

E \ E
(i)
ext for the CR or RT schemes.

For both schemes, we define Ẽ(i), for 1 ≤ i ≤ d, as the set of faces of the dual mesh associated to the ith

component of the velocity. For the RT or CR discretizations, the sets Ẽ(i) does not depend on the component
(i.e. of i), up to the elimination of some unknowns (and so some dual cells and, finally, some external faces) to
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take the boundary conditions into account. For the MAC scheme, Ẽ(i) depends on i; note that each face of Ẽ(i)

is perpendicular to a unit vector of the canonical basis of Rd, but not necessarily to the ith one.

General domains can be addressed with the CR or RT discretizations by redefining, through linear combi-
nations, the degrees of freedom at the external faces, so as to introduce the normal velocity as a new degree of
freedom.

3. The isentropic Euler equations

We address in this section the numerical solution of the isentropic Euler equations (i.e. System (1)). The
presentation is organized as follows. We first describe the proposed scheme (Section 3.1). Then, we study its
stability properties in Section 3.2 (precisely speaking, we show that the solutions satisfy a discrete kinetic energy
and an elastic potential balance ). Finally, consistency properties of the scheme, in 1D, are studied in Section
3.3.

3.1. The scheme

Let us consider a discretization 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), which we suppose
uniform for the sake of simplicity, and let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the (constant) time step.
We consider a decoupled-in-time scheme, which reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn
K,σ = 0, (4a)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ , (4b)

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S
,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ,i − ρnDσ

unσ,i) +
∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫu

n
ǫ,i + |Dσ| (∇p)n+1

σ,i = 0, (4c)

where the terms introduced for each discrete equation are defined herafter.

Equation (4a) is obtained by the discretization of the mass balance equation (1a) over the primal mesh, and
Fn
K,σ stands for the mass flux across σ outward K, which, because of the impermeability condition, vanishes on

external faces and is given on the internal faces by:

∀σ = K|L ∈ Eint, Fn
K,σ = |σ| ρnσ u

n
K,σ. (5)

In this relation, unK,σ is an approximation of the normal velocity to the face σ outward K, defined by:

unK,σ =

∣
∣
∣
∣
∣

unσ,i e
(i) · nK,σ for σ ∈ E

(i) in the MAC case,

u
n
σ · nK,σ in the CR and RT cases,

(6)

where e
(i) denotes the i-th vector of the orthonormal basis of Rd. The density at the face σ = K|L is approxi-

mated by the upwind technique:

ρnσ =

∣
∣
∣
∣
∣

ρnK if unK,σ ≥ 0,

ρnL otherwise.
(7)

We now turn to the discrete momentum balance (4c), which is obtained by discretizing the momentum
balance equation (1b) on the dual cells associated to the faces of the mesh. The first task is to define the values
ρn+1
Dσ

and ρnDσ
, which approximate the density over the dual cell Dσ at time tn+1 and tn respectively, and the

discrete mass flux through the dual face ǫ outward Dσ, denoted by Fn
σ,ǫ; the guideline for their construction is

that we want a finite volume discretization of the mass balance equation over the diamond cells, of the form

∀σ ∈ E,
|Dσ|

δt
(ρn+1

Dσ
− ρnDσ

) +
∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫ = 0, (8)
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to hold in order to be able to derive a discrete kinetic energy balance (see Section 3.2 below). The density on
the dual cells is given by the following weighted average:

for σ = K|L ∈ Eint, for k = n and k = n+ 1, |Dσ| ρ
k
Dσ

= |DK,σ| ρ
k
K + |DL,σ| ρ

k
L. (9)

For the MAC scheme, the flux through a dual face which is located on two primal faces is the mean value of
the sum of fluxes on the two primal faces, and the flux through a dual face located between two primal faces
is again the mean value of the sum of fluxes on the two primal faces [14]. In the case of the CR and RT
schemes, for a dual face ǫ included in the primal cell K, this flux is computed as a linear combination (with
constant coefficients, i.e. independent of the cell) of the mass fluxes through the faces of K, i.e. the quantities
(Fn

K,σ)σ∈E(K) appearing in the discrete mass balance (4a). We refer to [1, 6] for a detailed construction of this
approximation. Let us remark that a dual face lying on the boundary is then either also a primal face or the
union of the half-part of two primal faces, and, in both cases, the flux across this face is zero. Therefore, the
values unǫ,i are only needed at the internal dual faces, and are upwinded:

for ǫ = Dσ|Dσ′ , unǫ,i =

∣
∣
∣
∣
∣

unσ,i if F
n
σ,ǫ ≥ 0,

unσ′,i otherwise.
(10)

The last term (∇p)n+1
σ,i stands for the i-th component of the discrete pressure gradient at the face σ. The

gradient operator is built as the transpose of the discrete operator for the divergence of the velocity, the
discretization of which is based on the primal mesh. Let us denote the divergence of un+1 over K ∈ M by
(divu)n+1

K ; its natural approximation reads:

for K ∈ M, (divu)n+1
K =

1

|K|

∑

σ∈E(K)

|σ| un+1
K,σ . (11)

Consequently, we choose the components of the pressure gradient as:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|

|Dσ|
(pn+1

L − pn+1
K ) nK,σ · e(i), (12)

in order that the following duality relation (with respect to the L2 inner product) be satisfied:

∑

K∈M

|K| pn+1
K (divu)n+1

K +

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| u
n+1
σ,i (∇p)n+1

σ,i = 0. (13)

Note that, because of the impermeability boundary conditions, the discrete gradient is not defined at the
external faces.

Finally, the initial approximations for ρ and u are given by the average of the initial conditions ρ0 and u0

on the primal and dual cells respectively:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S
, u0σ,i =

1

|Dσ|

∫

Dσ

(u0(x))i dx.

(14)

The following positivity result is a classical consequence of the upwind choice in the mass balance equation.

Lemma 3.1 (Positivity of the density). Let ρ0 be given by (14). For a ∈ R, let us define a+ = max(a, 0).
Then, since ρ0 is assumed to be a positive function, ρ0 > 0 and, under the CFL condition:

δt ≤
|K|

∑

σ∈E(K)

|σ| (unK,σ)
+
, ∀K ∈ M and for 0 ≤ n ≤ N − 1, (15)

the solution to the scheme satisfies ρn > 0, for 1 ≤ n ≤ N .
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3.2. Discrete kinetic energy and elastic potential balances

We begin by deriving a discrete kinetic energy balance equation, as was already done in [13] in the implicit
and fractional time step cases. Let us denote by Ek the kinetic energy Ek = 1

2 |u|
2. Let us recall that, taking the

inner product of (1b) by u yields, after formal compositions of partial derivatives and using the mass balance
(1a):

∂t(ρEk) + div
(
ρEk u

)
+∇p · u = 0. (16)

This relation is referred to as the kinetic energy balance, and we recover its discrete analogue from the scheme
by some equivalent discrete computations.

Lemma 3.2 (Discrete kinetic energy balance). A solution to the system (4) satisfies the following equality, for

1 ≤ i ≤ d, σ ∈ E
(i)
S

and 0 ≤ n ≤ N − 1:

1

2

|Dσ|

δt

[

ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(unσ,i)
2
]

+
1

2

∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫ (unǫ,i)

2 + |Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i , (17)

with:

Rn+1
σ,i =

1

2

|Dσ|

δt
ρn+1
Dσ

(un+1
σ,i − unσ,i)

2 +
1

2

∑

ǫ=Dσ|Dσ′∈Ẽ(Dσ)

(Fn
σ,ǫ)

−(unσ′,i − unσ,i)
2

−
∑

ǫ=Dσ |Dσ′∈Ẽ(Dσ)

(Fn
σ,ǫ)

−(unσ′,i − unσ,i) (u
n+1
σ,i − unσ,i), (18)

where, for a ∈ R, a− ≥ 0 is defined by a− = −min(a, 0). This remainder term is non-negative under the
following CFL condition:

∀σ ∈ E
(i)
S
, δt ≤

|Dσ| ρ
n+1
Dσ

∑

ǫ∈Ẽ(Dσ)

(Fn
σ,ǫ)

−
. (19)

Proof. The proof of this lemma is simply obtained by multiplying the (ith component of the) momentum balance
equation (4c) associated to the face σ by the unknown un+1

σ,i , and invoking Lemma A.2 of the appendix A. �

We now derive a balance equation (with remainder terms) for the so-called elastic potential. This quantity
is the function P, from (0,+∞) to R, defined as a primitive of s 7→ ℘(s)/s2; as in [13], we also introduce H,
defined by H(s) = sP(s), ∀s ∈ (0,+∞). For the specific equation of state ℘ used here, we obtain:

H(s) = sP(s) =







sγ

γ − 1
if γ > 1,

s ln(s) if γ = 1.

(20)

As soon as ℘ is an increasing function, which is true here, H is convex. In addition, it may easily be checked
that ρH′(ρ)−H(ρ) = ℘(ρ). Therefore, by a formal computation detailed in [13, Appendix A], multiplying (1a)
by H′(ρ) yields:

∂t
(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (21)

The solution to the scheme (4) satisfies a discrete version of this relation, which we now state.

Lemma 3.3 (Discrete potential balance). Let H be defined by (20). A solution to the system (4) satisfies the
following equality, for K ∈ M and 0 ≤ n ≤ N − 1:

|K|

δt

[

H(ρn+1
K )−H(ρnK)

]

+
∑

σ∈E(K)

|σ| H(ρnσ) u
n
K,σ + |K| pnK(divun)K = −Rn+1

K . (22)

In this relation, the remainder term is defined by:

Rn+1
K =

1

2

|K|

δt
H

′′(ρnK,1) (ρ
n+1
K − ρnK)2 +

1

2

∑

σ=K|L∈E(K)

|σ| (unK,σ)
−

H
′′(ρnσ) (ρ

n
K − ρnL)

2

+
∑

σ∈E(K)

|σ|unK,σ H
′′(ρnK,2) ρ

n
σ (ρ

n+1
K − ρnK), (23)
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with ρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, and ρnσ ∈ |[ρnK , ρ
n
σ]| for all σ ∈ E(K), where, for a, b ∈ R, we denote by |[a, b]| the

interval {θa+ (1− θ)b, θ ∈ [0, 1]}.

Proof. The proof of this lemma is obtained by multiplying the discrete mass balance equation (4a) by H
′(ρn+1

K )
and invoking Lemma A.1 of the appendix A. �

Summing (16) and (21), we get: ∂tη + div
(
(η + p)u

)
= 0, where η = ρEk +H(ρ). In fact this computation

can only be done for regular functions; for irregular functions, one gets the following entropy inequality (see
e.g. [7, Introduction, Section 3.2]):

∂tη + div
(
(η + p)u

)
≤ 0. (24)

The quantity η is an entropy of the system, and an entropy solution to (1) is thus required to satisfy:

∫ T

0

∫

Ω

[
−η∂tϕ− (η + p)u ·∇ϕ

]
dxdt−

∫

Ω

η0 ϕ(x, 0) dx ≤ 0, ∀ϕ ∈ C
∞
c

(
Ω× [0, T )

)
, ϕ ≥ 0, (25)

with η0 = 1
2ρ0|u0|

2 +H(ρ0). Then, since the normal velocity is prescribed to zero at the boundary, integrating
(24) over Ω yields:

d

dt

∫

Ω

[1

2
ρ |u|2 +H(ρ)

]
dx ≤ 0. (26)

Since ρ ≥ 0 by Lemma 3.1 and the function s 7→ H(s) is bounded by below and increasing at least for s large
enough, Inequality (26) provides an estimate on the solution. In [13, Proposition 3.3 and 3.13], we gave a
discrete equivalent of this latter estimate for implicit and semi-implicit schemes. Unfortunately, we are not able
to do so for the explicit scheme since the remainder term Rn+1

K defined by (23) is not always positive; therefore
we are not able to prove a discrete counterpart of the total entropy estimate (26), which would yield a stability
estimate for the present explicit scheme. However, under a condition for a time step which is only slightly more
restrictive than a CFL-condition, and under some stability assumptions for the solutions to the scheme, we are
able to show, in one space dimension, that the possible non-positive part of this remainder term tends to zero
in L1(Ω× (0, T )) with the space and time steps; this allows to conclude, still in the 1D case, that a convergent
sequence of solutions satisfies the entropy inequality (25): this is the result stated in Lemma 3.6 below.

3.3. Passing to the limit in the scheme

The objective of this section is to show, in the one dimensional case, that if a sequence of solutions is controlled
in suitable norms and converges to a limit, this latter necessarily satisfies a (part of the) weak formulation of
the continuous problem.

As in [13, Sections 3.1.3 and 3.3.2], the 1D version of the scheme which is studied in this section may be
obtained from Scheme (4) by taking the MAC variant of the scheme, using only one horizontal stripe of grid
cells, supposing that the vertical component of the velocity (the degrees of freedom of which are located on the
top and bottom boundaries) vanishes, and that the measure of the vertical faces is equal to 1. For the sake
of readability, however, we completely rewrite this 1D scheme, and, to this purpose, we first introduce some
adaptations of the notations to the one dimensional case. For any face σ ∈ E, let xσ be its abscissa. For K ∈ M,
we denote by hK its length (so hK = |K|); when we write K = [σσ′], this means that either K = (xσ , xσ′) or

K = (xσ′ , xσ); if we need to specify the order, i.e. K = (xσ , xσ′) with xσ < xσ′ , then we write K = [
−→
σσ′]. For

an interface σ = K|L between two cells K and L, we define hσ = (hK + hL)/2, so, by definition of the dual

mesh, hσ = |Dσ|. If we need to specify the order of the cells K and L, say K is left of L, then we write σ =
−−→
K|L.

With these notations, the explicit scheme (4) may be written as follows in the one dimensional setting:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,
(27a)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn
σ′ − Fn

σ = 0, (27b)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ , (27c)



9

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ − ρnDσ

unσ) + Fn
Lu

n
L − Fn

Ku
n
K + pn+1

L − pn+1
K = 0. (27d)

The mass flux in the discrete mass balance equation is given, for σ ∈ Eint, by F
n
σ = ρnσu

n
σ, where the upwind

approximation for the density at the face, ρnσ, is defined by (7). In the momentum balance equation, the density
associated to the dual cell Dσ, with σ = K|L, reads

for k = n and k = n+ 1, ρkDσ
=

1

2 |Dσ|
(|K| ρkK + |L| ρkL), (28)

and the application of the procedure described in Section 3.1 yields, for the mass fluxes at the dual face located

at the center of the mesh K = [
−→
σσ′]:

Fn
K =

1

2
(Fn

σ + Fn
σ′). (29)

The approximation of the velocity at this face is upwind: unK = unσ if Fn
K ≥ 0 and unK = unσ′ otherwise.

Let a sequence of discretizations (M(m), δt(m))m∈N be given. We define the size h(m) of the mesh M(m) by
h(m) = supK∈M(m) hK . Let ρ(m), p(m) and u(m) be the solution given by the scheme (27) with the mesh M(m)

and the time step δt(m). To the discrete unknowns, we associate piecewise constant functions on time intervals
and on primal or dual meshes, so the density ρ(m), the pressure p(m) and the velocity u(m) are defined almost
everywhere on Ω× (0, T ) by:

ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK(x)X[n,n+1)(t),

p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK(x)X[n,n+1)(t),

u(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
(x)X[n,n+1)(t),

(30)

where XK , XDσ
and X[n,n+1) stand for the characteristic function of the intervals K, Dσ and [tn, tn+1) respec-

tively.

For discrete functions q and v defined on the primal and dual mesh, respectively, we define a discrete
L1((0, T ); BV(Ω)) norm by:

‖q‖T,x,BV =
N∑

n=0

δt
∑

σ=K|L∈Eint

|qnL − qnK |, ‖v‖T,x,BV =
N∑

n=0

δt
∑

ǫ=Dσ|Dσ′∈Ẽint

|vnσ′ − vnσ |,

and a discrete L1(Ω; BV((0, T ))) norm by:

‖q‖T,t,BV =
∑

K∈M

|K|

N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T,t,BV =

∑

σ∈E

|Dσ|

N−1∑

n=0

|vn+1
σ − vnσ |.

For the consistency result that we are seeking (Theorem 3.5 below), it is assumed that a sequence of discrete
solutions

(
ρ(m), p(m), u(m)

)

m∈N
satisfies ρ(m) > 0 and p(m) > 0, ∀m ∈ N (which may be a consequence of the

fact that the CFL stability condition (15) is satisfied), and is uniformly bounded in L∞((0, T )× Ω)3, i.e.:

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, for K ∈ M
(m), 0 ≤ n ≤ N (m), m ∈ N, (31)

and
|(u(m))nσ| ≤ C, ∀σ ∈ E

(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (32)

where C is a positive real number. By definition of the initial conditions of the scheme, these inequalities imply
that the functions ρ0 and u0 belong to L∞(Ω). We also assume that a sequence of discrete solutions satisfies
the following uniform bounds in the discrete BV-norms:

‖ρ(m)‖T,x,BV + ‖u(m)‖T,x,BV ≤ C, ∀m ∈ N. (33)
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We are not able to prove the estimates (31)–(33) for the solutions of the scheme; however, such inequalities are
satisfied by the ”interpolates” (for instance, by taking the cell average) of the solution to a Riemann problem,
and are observed in computations (of course, as far as possible, i.e. in a limited number of cases and with a
limited sequence of meshes and time steps).

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞
c

(
Ω× [0, T )

)
:

−

∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (34a)

−

∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx = 0, (34b)

p = ργ . (34c)

Even though these relations do not take into account the boundary conditions, they allow to derive the Rankine-
Hugoniot conditions; hence, if they are shown to be satisfied by the limit of a sequence of solutions to the scheme,
this implies, loosely speaking, that the scheme computes correct shocks. This is the result stated in Theorem
3.5. In order to prove this theorem, the following definitions of interpolates of regular test functions on the
primal and dual mesh are useful.

Definition 3.4 (Interpolates on one-dimensional meshes). Let Ω be an open bounded interval of R, let ϕ ∈
C∞

c (Ω× [0, T )), and let M be a mesh over Ω. The interpolate ϕM of ϕ on the primal mesh M is defined by:

ϕM =
N−1∑

n=0

∑

K∈M

ϕn
K XK X[tn,tn+1),

where, for 0 ≤ n ≤ N and K ∈ M, ϕn
K = ϕ(xK , t

n), with xK the mass center of K. The time and space discrete
derivatives of the discrete function ϕM are defined by:

ðtϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕn

K

δt
XK X[tn,tn+1), and ðxϕM =

N−1∑

n=0

∑

σ=
−−→
K|L∈Eint

ϕn
L − ϕn

K

hσ
XDσ

X[tn,tn+1).

Let ϕE be an interpolate of ϕ on the dual mesh, defined by:

ϕE =

N−1∑

n=0

∑

σ∈E

ϕn
σ XDσ

X[tn,tn+1),

where, for 0 ≤ n ≤ N and σ ∈ E, ϕn
σ = ϕ(xσ , t

n), with xσ the abscissa of the interface σ. We also define the
time and space discrete derivatives of this discrete function by:

ðtϕE =

N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕn

σ

δt
XDσ

X[tn,tn+1), and ðxϕE =

N−1∑

n=0

∑

K=[
−−→
σσ′]∈M

ϕn
σ′ − ϕn

σ

hK
XK X[tn,tn+1).

Finally, let ðxϕM,E be defined by:

ðxϕM,E =

N−1∑

n=0

∑

K=[
−−→
σσ′]∈M

ϕn+1
K − ϕn+1

σ

hK/2
XDK,σ

X[tn,tn+1) +
ϕn+1
σ′ − ϕn+1

K

hK/2
XDK,σ′

X[tn,tn+1).

Theorem 3.5 (Consistency of the one-dimensional scheme).
Let Ω be an open bounded interval of R. We suppose that the initial data satisfies ρ0 ∈ L∞(Ω) and u0 ∈ L∞(Ω).
Let (M(m), δt(m))m∈N be a sequence of discretizations such that both the time step δt(m) and the size h(m) of the
mesh M(m) tend to zero as m→ +∞, and let (ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions.
We suppose that this sequence satisfies the estimates (31)–(33) and converges in Lr(Ω×(0, T ))3, for 1 ≤ r <∞,
to (ρ̄, p̄, ū) ∈ L∞(Ω× (0, T ))3.

Then the limit (ρ̄, p̄, ū) satisfies the system (34).
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Proof. It is clear that, with the assumed convergence for the sequence of solutions, the limit satisfies the equation
of state. The proof of this theorem is thus obtained by passing to the limit in the scheme for the mass balance
equation first, and then for the momentum balance equation.

Mass balance equation – Let ϕ ∈ C∞
c (Ω × [0, T )). Let m ∈ N, M(m) and δt(m) be given. Dropping for

short the superscript (m), let ϕM be the interpolate of ϕ on the primal mesh and let ðtϕM and ðxϕM be its
time and space discrete derivatives in the sense of Definition 3.4. Thanks to the regularity of ϕ, these functions
respectively converge in Lr(Ω × (0, T )), for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and ∂xϕ respectively. In
addition, ϕM(·, 0) (which, for K ∈ M and x ∈ K, is equal to ϕ0

K = ϕ(x, 0)) converges to ϕ(·, 0) in Lr(Ω) for
r ≥ 1. Since the support of ϕ is compact in Ω× [0, T ), for m large enough, the interpolate of ϕ vanishes at the
boundary cells and at the last time step(s); this is always assumed in the sequel.

Let us multiply the first equation (27b) of the scheme by δt ϕn+1
K , and sum the result for 0 ≤ n ≤ N − 1 and

K ∈ M, to obtain T
(m)
1 + T

(m)
2 = 0 with

T
(m)
1 =

N−1∑

n=0

∑

K∈M

|K|(ρn+1
K − ρnK)ϕn+1

K , T
(m)
2 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(Fn
σ′ − Fn

σ )ϕ
n+1
K .

Reordering the sums in T
(m)
1 yields:

T
(m)
1 = −

N−1∑

n=0

δt
∑

K∈M

|K| ρnK
ϕn+1
K − ϕn

K

δt
−

∑

K∈M

|K| ρ0K ϕ0
K ,

so:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m)
ðtϕM dxdt−

∫

Ω

(ρ(m))0(x) ϕM(x, 0) dx.

The boundedness of ρ0 and the definition (27a) of the initial conditions for the scheme ensures that the sequence
((ρ(m))0)m∈N converges to ρ0 in Lr(Ω) for r ≥ 1. Since, by assumption, the sequence of discrete solutions and
of the interpolate time derivatives converge in Lr

(
Ω× (0, T )

)
for r ≥ 1, we obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ∂tϕdxdt−

∫

Ω

ρ0(x)ϕ(x, 0) dx.

Using the expression of the mass flux Fn
σ and reordering the sums in T

(m)
2 , we get, remarking that |Dσ| = hσ:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

|Dσ| ρ
n
σu

n
σ

ϕn+1
L − ϕn+1

K

hσ
.

Since |Dσ| = (|K| + |L|)/2 and ρnσ is the upwind approximation of ρn at the face σ, we can rewrite T
(m)
2 =

T
(m)
2 + R

(m)
2 with

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

( |K|

2
ρnK +

|L|

2
ρnL

)

unσ
ϕn+1
L − ϕn+1

K

hσ
,

R
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

(ρnK − ρnL)
[ |K|

2
(unσ)

− +
|L|

2
(unσ)

+
] ϕn+1

L − ϕn+1
K

hσ
,

where, for a ∈ R, a+ = max(a, 0) and a− = −min(a, 0) (so a = a+ − a−). We have, for the term T
(m)
2 :

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m)u(m)
ðxϕM dxdt

and therefore

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū ∂xϕdxdt.
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The remainder term R
(m)
2 is bounded as follows, with Cϕ = ‖∂xϕ‖L∞(Ω×(0,T )):

|R
(m)
2 | ≤ Cϕ

N−1∑

n=0

δt
∑

σ=K|L∈E

|ρnK − ρnL| |Dσ| |u
n
σ| ≤ Cϕ ‖u(m)‖L∞(Ω×(0,T )) ‖ρ

(m)‖T,x,BV h(m),

and therefore tends to zero when m tends to +∞, by the assumed boundedness of the sequence of solutions.

Momentum balance equation – Let ϕE, ðtϕE and ðxϕE be the interpolate of ϕ on the dual mesh and its
discrete time and space derivatives, in the sense of Definition 3.4, which converge in Lr(Ω× (0, T )), for r ≥ 1, to
ϕ, ∂tϕ and ∂xϕ respectively. Let us multiply Equation (27d) by δt ϕn+1

σ , and sum the result for 0 ≤ n ≤ N − 1

and σ ∈ Eint. We obtain T
(m)
1 + T

(m)
2 + T

(m)
3 = 0 with

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ| (ρ
n+1
Dσ

un+1
σ − ρnDσ

unσ)ϕ
n+1
σ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[

Fn
L u

n
L − Fn

K unK

]

ϕn+1
σ ,

T
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )ϕn+1
σ .

Reordering the sums, we get for T
(m)
1 :

T
(m)
1 = −

N−1∑

n=0

δt
∑

σ∈Eint

|Dσ| ρ
n
Dσ
unσ

ϕn+1
σ − ϕn

σ

δt
−

∑

σ∈Eint

|Dσ| ρ
0
Dσ
u0σ ϕ

0
σ.

Thanks to the definition of the quantity ρDσ
(namely the fact that |Dσ| ρ

n
Dσ

= (|K| ρnK + |L| ρnL)/2), we have:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðtϕE dxdt−

∫

Ω

(ρ(m))0(x) (u(m))0(x) ϕE(x, 0) dx.

By the same arguments as for the mass balance equation, we therefore obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ū ∂tϕdxdt−

∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx.

Let us now turn to T
(m)
2 . Reordering the sums and using the definition of the mass fluxes at the dual faces, we

get:

T
(m)
2 = −

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

Fn
K unK (ϕn+1

σ′ − ϕn+1
σ ) = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(ρnσu
n
σ + ρnσ′unσ′)unK (ϕn+1

σ′ − ϕn+1
σ ).

Using the relation

∫ T

0

∫

Ω

ρ(m) (u(m))2 ðxϕE dxdt =
1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρnK
[
(unσ)

2 + (unσ′)2
]
(ϕn+1

σ′ − ϕn+1
σ ),

we can rewrite the term T
(m)
2 as

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) u(m)2
ðxϕE dxdt+ R

(m)
2 ,

where:

R
(m)
2 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

(ρnσu
n
σ + ρnσ′unσ′)unK − ρnK

(
(unσ)

2 + (unσ′)2
)]

(ϕn+1
σ′ − ϕn+1

σ ).
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Let us split this latter expression as R
(m)
2 = R

(m)
21 + R

(m)
22 , with:

R
(m)
21 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

unσ (ρnσu
n
K − ρnKu

n
σ) (ϕ

n+1
σ′ − ϕn+1

σ ),

R
(m)
22 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

unσ′ (ρnσ′unK − ρnKu
n
σ′) (ϕn+1

σ′ − ϕn+1
σ ).

Applying the identity 2(ab− cd) = (a− c)(b + d) + (a+ c)(b − d), ∀(a, b, c, d) ∈ R
4, to the term ρnσu

n
K − ρnKu

n
σ

and using the fact that the quantities ρnσ − ρnK and unσ − unK are either zero or differences of the density at two

neighbouring cells and of the velocity at two neighbouring faces respectively, we obtain for R
(m)
21 :

|R
(m)
21 | ≤ Cϕ

[

‖u(m)‖
2

L∞(Ω×(0,T )) ‖ρ
(m)‖T,x,BV + ‖u(m)‖L∞(Ω×(0,T )) ‖u

(m)‖T,x,BV ‖ρ(m)‖L∞(Ω×(0,T ))

]

h(m),

where the real number Cϕ only depends on ϕ. Since the same estimate holds for R
(m)
22 , the remainder term

R
(m)
2 tends to zero when m tends to +∞ and:

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxdt.

Let us finally study T
(m)
3 . Reordering the sums, we obtain T

(m)
3 = T

(m)
3 + R

(m)
3 with:

T
(m)
3 = −

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

pnK (ϕn+1
σ′ − ϕn+1

σ ),

R
(m)
3 = −

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(pn+1
K − pnK) (ϕn+1

σ′ − ϕn+1
σ ).

The remainder term reads:

R
(m)
3 =

N−1∑

n=1

δt
∑

K=[
−−→
σσ′]∈M

pnK
[
(ϕn+1

σ′ − ϕn+1
σ )− (ϕn

σ′ − ϕn
σ)
]
+ δt

∑

K=[
−−→
σσ′]∈M

p0K (ϕ1
σ′ − ϕ1

σ),

and thus:

|R
(m)
3 | ≤ Cϕ (δt(m) + h(m)) ‖p‖L∞(Ω×(0,T )),

where the real number Cϕ only depends on (the first and second derivatives of) ϕ. Thus R
(m)
3 tends to zero

when m tends to +∞ and, since

T
(m)
3 = −

∫ T

0

∫

Ω

p(m)
ðxϕM dxdt,

we obtain that:

lim
m→+∞

T
(m)
3 =

∫ T

0

∫

Ω

p̄ ∂xϕdxdt.

Conclusion – Gathering the limits of all the terms of the mass and momentum balance equations concludes
the proof. �

We now turn to the entropy balance (25). To this purpose, we need to introduce the following additional
condition for a sequence of discretizations:

lim
m→+∞

δt(m)

minK∈M(m) hK
= 0. (35)

Note that this condition is more restrictive than a standard CFL condition. It allows to bound the remainder
term in the discrete elastic potential balance as stated in the following lemma.
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Lemma 3.6. Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequence of discretizations
such that the time step δt(m) tends to zero as m → +∞, and let (ρ(m), p(m), u(m))m∈N be the corresponding
sequence of solutions. We suppose that this sequence satisfies the estimates (31) and (32). In addition, we
assume that (ρ(m))m∈N satisfies the following uniform BV estimate:

‖ρ(m)‖T,t,BV ≤ C, ∀m ∈ N, (36)

and, for γ < 2 only, is uniformly bounded by below, i.e. that there exists c > 0 such that:

c ≤ (ρ(m))nK , ∀K ∈ M
(m), for 0 ≤ n ≤ N (m), ∀m ∈ N. (37)

Let us suppose that the condition (35) holds. Let R(m) be defined by:

R
(m) =

N−1∑

n=0

δt
∑

K∈M

(Rn+1
K )−,

with Rn+1
K given by (23). Then:

lim
m→+∞

R
(m) = 0.

Proof. For K = [
−→
σσ′] ∈ M, with σ =

−−−→
M |K and σ′ =

−−→
K|L, we write Rn+1

K = (T1)
n+1
K + (T2)

n+1
K + (T3)

n+1
K , with:

(T1)
n+1
K =

1

2

|K|

δt
H

′′(ρnK,1) (ρ
n+1
K − ρnK)2,

(T2)
n+1
K =

1

2

[

(unσ′)− H
′′(ρnσ′) (ρnK − ρnL)

2 + (−unσ)
−

H
′′(ρnσ) (ρ

n
K − ρnM )2

]

,

(T3)
n+1
K =

[

ρnσ′ unσ′ − ρnσ u
n
σ

]

H
′′(ρnK,2) (ρ

n+1
K − ρnK),

where ρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, ρnσ′ ∈ |[ρnK , ρ
n
L]| and ρ

n
σ ∈ |[ρnK , ρ

n
M ]|. The first two terms are non-negative, and

thus (Rn+1
K )− ≤ |(T3)

n+1
K |. Since both ρ, u and, for γ < 2, 1/ρ are supposed to be bounded, we have:

N−1∑

n=0

δt
∑

K∈M

|(T3)
n+1
K | ≤ C

δt(m)

minK∈M hK
‖ρ(m)‖T,t,BV,

which yields the conclusion by the assumption (35). �

Theorem 3.7 (Entropy consistency of the one dimensional scheme).
Let the assumptions of Theorem 3.5 hold. Let us suppose in addition that the considered sequence of discretiza-
tions satisfies (35), and that (ρ(m))m∈N satisfies the BV estimate (36) and, for γ < 2, the uniform control (37)
of 1/ρ(m). Then the limit (ρ̄, p̄, ū) satisfies the entropy condition (25).

Proof. Let ϕ ∈ C
∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0. As in the previous proofs, we suppose that the space and times steps

are small enough for ϕ to vanish at the boundary cells and at the last time step. With the notations for the
interpolate of ϕ given in Definition 3.4, we multiply the kinetic balance equation (17)-(18) by ϕn+1

σ , and the
elastic potential balance (22)-(23) by ϕn+1

K , sum over the edges and cells respectively and over the time steps,
to obtain the discrete version of (25):

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = −R(m) − R̃(m) (38)

where:

T
(m)
1 =

N−1∑

n=0

∑

K∈M

|K|
[
H(ρn+1

K )−H(ρnK)
]
ϕn+1
K ,

T
(m)
2 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
H(ρnσ′ )unσ′ −H(ρnσ)u

n
σ

]
ϕn+1
K ,
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T
(m)
3 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
pnK(unσ′ − unσ)

]
ϕn+1
K ,

T̃
(m)
1 =

1

2

N−1∑

n=0

∑

σ∈Eint

|Dσ|
[
ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]
ϕn+1
σ ,

T̃
(m)
2 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
Fn
L (unL)

2 − Fn
K (unK)2

]
ϕn+1
σ ,

T̃
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )un+1
σ ϕn+1

σ ,

R(m) =
N−1∑

n=0

δt
∑

K∈M

Rn+1
K ϕn+1

K , R̃(m) =
N−1∑

n=0

δt
∑

σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantities Rn+1
K and Rn+1

σ are given by (the one-dimensional version of) Equation (23) and (18)
respectively.

The fact that

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

H(ρ̄) ∂tϕdxdt−

∫

Ω

H(ρ0)(x) ϕ(x, 0) dx,

is proven by the same technique as in the passage to the limit in the term T
(m)
1 of the discrete mass balance

equation in the proof Theorem 3.5, thanks to the fact that, with the assumed convergence of the sequence

(ρ(m))m∈N, the sequence (H(ρ(m)))m∈N converge to H(ρ̄) in Lr(Ω × (0, T )), for r ≥ 1. For T
(m)
2 , we have,

reordering the sums:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

H(ρnσ)u
n
σ (ϕn+1

L − ϕn+1
K ).

Let us write T
(m)
2 = T

(m)
2 + R

(m)
2 , with

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(
|DK,σ| H(ρnK) + |DL,σ| H(ρnL)

)
unσ

ϕn+1
L − ϕn+1

K

hσ
.

We have:

T
(m)
2 = −

∫ T

0

∫

Ω

H(ρ(m)) u(m)
ðxϕM dxdt,

so

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

H(ρ̄) ū ∂xϕdxdt.

The remainder term R
(m)
2 reads:

R
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
|Dσ| H(ρnσ)− |DK,σ| H(ρnK)− |DL,σ| H(ρnL)

]
unσ

ϕn+1
L − ϕn+1

K

hσ
.

This term satisfies:

|R
(m)
2 | ≤

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

|H(ρnK)−H(ρnL)| u
n
σ |ϕn+1

L − ϕn+1
K |,

and so
|R

(m)
2 | ≤ Cϕ h(m) ‖u(m)‖L∞(Ω×(0,T )) ‖ρ

(m)‖T,x,BV,

provided that a uniform (with respect to the faces, the time steps and the meshes) Lipschitz condition holds
for |H(ρnK) −H(ρnL)| which, in view of the expression of H, requires that the sequence (ρ(m))m∈N be bounded
by below away from zero when γ = 1.

The other terms at the left-hand side of (38) are similar to the samely-named terms in the proof of consistency
of the scheme for the full Euler equations, and their treatment is detailed in the proof of Theorem 4.2 below.
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Finally, the remainder term R(m) is non-negative under the CFL condition (19), while the positive part of R̃(m)

tends to zero in L1(Ω× (0, T )) under the assumption (35) by Lemma 3.6. The proof is thus complete. �

Remark 3.8 (On BV-stability assumptions).
The proof of Theorem 3.5 shows that the scheme is consistent under a BV-stability assumption much weaker
than (33), namely:

lim
m→+∞

h(m)
[
‖ρ(m)‖T,x,BV + ‖u(m)‖T,x,BV

]
= 0.

The situation is completely different when proving that the limit of convergent sequences is an entropy solution
(i.e. when proving Theorem 3.7); indeed, in the preliminary lemma 3.6, we need:

lim
m→+∞

δt(m)

minK∈M(m) hK
‖ρ(m)‖T,t,BV = 0.

4. The full Euler equations

We build in this section a scheme for the solution of the full Euler equations (2). Let us recall that the
(conservative) energy equation in this system is the total energy balance, which reads:

∂t(ρE) + div(ρE u) + div(pu) = 0.

If we subtract to this relation the kinetic energy balance (see Section 3.2)

∂t(ρEk) + div
(
ρEk u

)
+∇p · u = 0,

we obtain the so-called internal energy balance equation:

∂t(ρe) + div(ρeu) + p divu = 0. (39)

Since,

- thanks to the mass balance equation, the first two terms in the left-hand side of (39) may be recast as a
transport operator: ∂t(ρe) + div(ρeu) = ρ [∂te+ u ·∇e],

- and, from the equation of state, the pressure vanishes when e = 0,

this equation implies, if e ≥ 0 at t = 0 and with suitable boundary conditions, that e remains non-negative at
all times. As mentioned in the introduction, solving this latter equation instead of the total energy balance is
appealing, to preserve by construction of the scheme this positivity property. In addition, it avoids to introduce
a space discretization for the total energy which, for a staggered discretization, combines cell-centered (the
internal energy and the density) and face-centered (the velocity) variables. However, a raw discretization of a
non-conservative equation derived (formally, i.e. supposing unrealistic regularity properties of the solution) from
a conservative system may be non-consistent (and numerical experiments show that, for the problem at hand,
the so-derived scheme is unable to capture shock solutions). We circumvent here this problem by correcting the
internal energy balance discretization, following a strategy already implemented in [13] for pressure correction
schemes: the remainder terms obtained in the kinetic energy balance (term defined by Equation (18)) are
compensated in the internal energy one, in order to make the scheme consistent with the total energy balance,
in a sense which will be clarified in Section 4.2 below.

The paper is organized as follows. We first introduce the scheme in Section 4.1, and the above-mentionned
corrective terms in the discrete internal energy balance are given; their expression is justified in Section 4.2
by proving a Lax-Wendroff consistency property for the algorithm in one space dimension (if a sequence of
discrete solution converges in suitable norms, the limit necessarily satisfies a weak formulation of the continuous
problem). The fact that the scheme keeps the internal energy positive under a CFL condition is demonstrated
in Section 4.1; since ρ is positive thanks to the upwind discretization of the mass balance (Lemma 3.1), the
proposed algorithm thus preserves the convex of admissible states.

4.1. The scheme

Let us consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), which we suppose uniform
for the sake of simplicity, and let δt = tn+1− tn for n = 0, 1, . . . , N − 1 be the (constant) time step. We consider
a decoupled-in-time scheme, which reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn
K,σ = 0, (40a)
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∀K ∈ M,
|K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn
K,σe

n
σ + |K| pnK (divu)nK = Sn

K , (40b)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (40c)

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S
,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ,i − ρnDσ

unσ,i) +
∑

ǫ∈Ẽ(Dσ)

Fn
σ,ǫu

n
ǫ,i + |Dσ| (∇p)n+1

σ,i = 0. (40d)

The discrete mass balance and momentum balance equations (40a) and (40d) have already been derived in
the previous section. Equation (40b) is an approximation of the internal energy balance (39) over the primal
cell K. The positivity of the convection operator is ensured if we use an upwinding technique for this term [18]:

for σ = K|L ∈ Eint, enσ =

∣
∣
∣
∣
∣

enK if Fn
K,σ ≥ 0,

enL otherwise.

The discrete divergence of the velocity, (divu)nK , is defined by (11). The right-hand side, Sn
K , is derived below,

using consistency arguments; at the first time step, it is simply set to zero:

∀K ∈ M, S0
K = 0.

The initial approximations for ρ, e and u are given by the average of the initial conditions ρ0 and e0 on the
primal cells and of u0 on the dual cells:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx, and e0K =
1

|K|

∫

K

e0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S
, u0σ,i =

1

|Dσ|

∫

Dσ

(u0(x))i dx.

(41)

Let us now detail how we choose the corrective term SK in the internal energy balance, with the aim to
recover a consistent discretization of the total energy balance. We wish to build these corrective terms so
as to compensate the remainder terms in the kinetic energy balance (16), which we suspect not to tend to
zero (for instance, the piecewise constant function associated to these terms for a shock solution - precisely
speaking, to the terms obtained by applying (18) to the interpolate of a discontinuous function, on a sequence
of discretizations with vanishing time and space steps - does not tend to zero in L1). The first idea to do this
could be just to sum the (discrete) kinetic energy balance with the internal energy balance: it would indeed be
possible for a collocated discretization. But here, we face the fact that the kinetic energy balance is associated
to the dual mesh, while the internal energy balance is discretized on the primal mesh. The way to circumvent
this difficulty is to remark that we do not really need a discrete total energy balance; in fact, we only need to
recover (a weak form of) this equation when the mesh and time steps tend to zero. To this purpose, we choose
the quantities (Sn+1

K ) in such a way as to somewhat compensate the terms (Rn+1
σ,i ) given by (18). For K ∈ M,

we obtain Sn+1
K =

∑d
i=1 S

n+1
K,i with:

Sn+1
K,i =

1

2
ρn+1
K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|

δt

(
un+1
σ,i − unσ,i

)2
+

∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅

αK,ǫ R
n+1
ǫ,i (42)

where Rn+1
ǫ,i is defined as follows. Let σU

ǫ and σD
ǫ be the two primal faces such that ǫ = DσD

ǫ
|DσU

ǫ
and that

Fn
σD
ǫ ,ǫ

≤ 0, which means that DσD
ǫ

is the dual cell located downstream ǫ. Then:

Rn+1
ǫ,i =

|Fn
σD
ǫ ,ǫ

|

2
(unσD

ǫ ,i − unσU
ǫ ,i)

2 + Fn
σD
ǫ ,ǫ

(
un+1
σD
ǫ ,i

− unσD
ǫ ,i

)
(unσU

ǫ ,i − unσD
ǫ ,i).

The coefficient αK,ǫ allows to distribute the remainder term Rn+1
ǫ,i over the neighbouring primal cells. If the

face ǫ is included in K, αK,ǫ = 1, which means that Rn+1
ǫ,i is totally affected to K; this is the only situation

to consider for the RT and CR discretizations. For the MAC scheme, some dual faces also are included in the
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primal cells (and for these faces, αK,ǫ is still set to 1), but some lie on the boundary of the primal cells. In such
a case, let us denote by ND

ǫ the set of the two primal control volumes separated by σD
ǫ . The coefficient αK,ǫ is

then given by:

αK,ǫ =







|K|
∑

L∈ND
ǫ
|L|

if K ∈ N
D
ǫ ,

0 otherwise.

(43)

For a uniform grid, this formula yields αK,ǫ = 1/2 if K ∈ ND
ǫ .

The expression of the correction terms Sn+1
K ,K ∈ M is justified by the passage to the limit in the scheme

(for a one-dimensional problem) performed in the next section. We note however here that:

∑

K∈M

Sn+1
K −

d∑

i=1

∑

σ∈E
(i)
S

Rn+1
σ,i = 0. (44)

Indeed, the first part of Sn+1
K,i , thanks to the expression (9) of the density at the face ρn+1

Dσ
, results from

dispatching the first part of the residual over the two adjacent cells:

1

2

|Dσ|

δt
ρn+1
Dσ

(
un+1
σ,i − unσ,i

)2
=

1

2

|DK,σ|

δt
ρn+1
K

(
un+1
σ,i − unσ,i

)2

︸ ︷︷ ︸

affected to K

+
1

2

|DL,σ|

δt
ρn+1
L

(
un+1
σ,i − unσ,i

)2

︸ ︷︷ ︸

affected to L

.

The same argument holds for the terms associated to the dual faces, which explains, in particular, the definition
of the coefficients αK,ǫ. The scheme thus conserves the integral of the total energy over the computational

domain. In the scheme itself, we shall use the term Sn
K rather than Sn+1

K , because we want an explicit scheme,
but this does not hinder the consistency of the scheme, as shown in the proof of Theorem 4.2.

The definition (42) of (Sn+1
K )K∈M allows to prove that, under a CFL condition, the scheme preserves the

positivity of e.

Lemma 4.1. Let us suppose that, for 0 ≤ n ≤ N − 1, for all K ∈ M and σ ∈ E(K), we have:

δt ≤ min
( |K|

γ
∑

σ∈E(K)

|σ| (unK,σ)
+
,

|DK,σ| ρ
n+1
K

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (Fn
σ,ǫ)

−

)

. (45)

Then the internal energy (en)1≤n≤N given by the scheme (40) is positive.

Proof. Let n such that 0 ≤ n ≤ N be given, and let us assume that enK ≥ 0 and Sn
K ≥ 0 for all K ∈ M. Since,

by assumption, γ > 1, the CFL condition (45) implies that the CFL condition (15) is satisfied, and by Lemma
3.1 we thus have ρnK > 0 and ρn+1

K > 0, for all K ∈ M. In the internal energy equation (40b), let us express the
pressure thanks to the equation of state (40c) to obtain:

|K|

δt
ρn+1
K en+1

K =
[ |K|

δt
ρnK −

∑

σ∈E(K)

(Fn
K,σ)

+ − (γ − 1) ρnK
∑

σ∈E(K)

|σ| (unK,σ)
+
]

enK

+
∑

σ∈E(K)

(Fn
K,σ)

−enL + (γ − 1) ρnK enK
∑

σ∈E(K)

|σ| (unK,σ)
− + Sn

K . (46)

Using the fact that, when unK,σ ≥ 0, the upwind density at the face is ρnK , we have:

(Fn
K,σ)

+ + (γ − 1) |σ| ρnK (unK,σ)
+ = γ |σ| ρnK (unK,σ)

+,

and hence Relation (46) reads:

|K|

δt
ρn+1
K en+1

K =
[ |K|

δt
− γ

∑

σ∈E(K)

|σ| (unK,σ)
+
]

ρnK enK

+
∑

σ∈E(K)

(Fn
K,σ)

−enL + (γ − 1) ρnK enK
∑

σ∈E(K)

|σ| (unK,σ)
− + Sn

K .



19

Then we get en+1
K > 0 under the following CFL condition:

δt ≤
|K|

γ
∑

σ∈E(K) |σ|(u
n
K,σ)

+
.

Let us now derive a condition for the non-negativity of the source term. To this purpose, for K ∈ M, let us
recall the definition (42) of Sn+1

K,i :

Sn+1
K,i =

1

2
ρn+1
K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|

δt

(
un+1
σ,i − unσ,i

)2

+
∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ|Dσ′ , F
n
σ,ǫ≤0

αK,ǫ

[ |Fn
σ,ǫ|

2
(unσ,i − unσ′,i)

2 + Fn
σ,ǫ

(
un+1
σ,i − unσ,i

)
(unσ′,i − unσ,i)

]

.

In the indexes of the last sum, the purpose of the second line is to define the notations used in the sum: the
diamond cells separated by ǫ are denoted by Dσ and Dσ′ , and Dσ is the cell downstream ǫ. We also recall that

the coefficient αK,ǫ is different from zero only if σ is a face of K (and, of course, σ ∈ E
(i)
S
, so, if αK,ǫ 6= 0, σ

appears in the first sum of the expression). Applying Young’s inequality to the last term of Sn+1
K,i , denoted by

(Sn+1
K,i )3, we obtain

(Sn+1
K,i )3 ≥ −

∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ|Dσ′ , F
n
σ,ǫ≤0

αK,ǫ

|Fn
σ,ǫ|

2

(
un+1
σ,i − unσ,i

)2
−

∑

ǫ∈Ẽ
(i)
S

, ǫ∩K̄ 6=∅,

ǫ=Dσ |Dσ′ , F
n
σ,ǫ≤0

αK,ǫ

|Fn
σ,ǫ|

2
(unσ′,i − unσ,i)

2.

Gathering all terms of Sn+1
K,i yields:

Sn+1
K,i ≥

∑

σ∈E(K)

1

2

(
un+1
σ,i − unσ,i

)2
[ |DK,σ|

δt
ρn+1
K −

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (Fn
σ,ǫ)

−
]

,

thus Sn+1
K,i is non-negative under the CFL condition:

δt ≤
|DK,σ| ρ

n+1
K

∑

ǫ∈Ẽ(Dσ), ǫ∩K̄ 6=∅

αK,ǫ (Fn
σ,ǫ)

−
, ∀σ ∈ E(K),

which concludes the proof. �

4.2. Passing to the limit in the scheme

As in the isentropic case, we are now going to show in the one dimensional case that if a sequence of solutions
is controlled in suitable norms and converges to a limit, this latter necessarily satisfies a (part of the) weak
formulation of the continuous problem. We again write a 1D version of the scheme and use the same notations
as in Section 3.3. The explicit scheme (40) may be written as follows in the one dimensional setting:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx, e0K =
1

|K|

∫

K

e0(x) dx,

∀σ ∈ Eint, u0σ =
1

|Dσ|

∫

Dσ

u0(x) dx,
(47a)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn
σ′ − Fn

σ = 0, (47b)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) + Fn

σ′enσ′ − Fn
σ e

n
σ + pnK(unσ′ − unσ) = Sn

K , (47c)
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∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (47d)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ − ρnDσ

unσ) + Fn
Lu

n
L − Fn

Ku
n
K + pn+1

L − pn+1
K = 0, (47e)

where the corrective term Sn
K reads, for 1 ≤ n ≤ N and ∀K = [σ′ → σ]:

Sn
K =

|K|

4 δt
ρnK

[
(unσ − un−1

σ )2 + (unσ′ − un−1
σ′ )2

]
+

|Fn−1
K |

2
(un−1

σ − un−1
σ′ )2

− |Fn−1
K |(unσ − un−1

σ ) (un−1
σ′ − un−1

σ ), (48)

where the notation K = [σ′ → σ] means that the flow goes from σ′ to σ (i.e., if Fn
K ≥ 0, K = [

−→
σ′σ] and, if

Fn
K ≤ 0, K = [

−→
σσ′]). At the first time step, we set S0

K = 0, ∀K ∈ M.

We again consider a sequence of discretizations (M(m), δt(m))m∈N with h(m) = supK∈M(m) hK . Let ρ(m),

p(m), e(m) and u(m) be the solution given by the scheme (47) with the mesh M(m) and the time step δt(m). As
in the isentropic case, to the discrete unknowns, we associate piecewise constant functions on time intervals and
on primal or dual meshes, so the density ρ(m), the pressure p(m), the internal energy e(m) and the velocity u(m)

are defined almost everywhere on Ω× (0, T ) by (30) and

e(m)(x, t) =

N−1∑

n=0

∑

K∈M

(e(m))nK XK(x)X[n,n+1)(t). (49)

For the consistency result that we are seeking (Theorem 4.2 below), we have to assume that a sequence of
discrete solutions (ρ(m), p(m), e(m), u(m))m∈N satisfies ρ(m) > 0, p(m) > 0 and e(m) > 0, ∀m ∈ N (which may
be a consequence of the fact that the CFL stability condition (15) is satisfied), and is uniformly bounded in
L∞(Ω× (0, T ))4, i.e., for m ∈ N and 0 ≤ n ≤ N (m):

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, 0 < (e(m))nK ≤ C, ∀K ∈ M
(m), (50)

and
|(u(m))nσ| ≤ C, ∀σ ∈ E

(m), (51)

where C is a positive real number. Note that, by definition of the initial conditions of the scheme, these
inequalities imply that the functions ρ0, e0 and u0 belong to L∞(Ω). We also have to assume that a sequence
of discrete solutions satisfies the following uniform bounds with respect to the discrete BV-norms:

‖ρ(m)‖T,x,BV + ‖p(m)‖T,x,BV + ‖e(m)‖T,x,BV + ‖u(m)‖T,x,BV ≤ C, ∀m ∈ N, (52)

and
‖u(m)‖T,t,BV ≤ C, ∀m ∈ N. (53)

Again, we are not able to prove such estimates for the solutions of the scheme; however, such inequalities are
satisfied by the ”interpolates” (for instance, by taking the cell average) of the solution to a Riemann problem,
and are observed in computations (of course, as far as possible, i.e. with a limited sequence of meshes and time
steps).

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞
c

(
Ω× [0, T )

)
:

−

∫ T

0

∫

Ω

[

ρ ∂tϕ+ ρ u ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)ϕ(x, 0) dx = 0, (54a)

−

∫ T

0

∫

Ω

[

ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx = 0, (54b)

−

∫ T

0

∫

Ω

[

ρE ∂tϕ+ (ρE + p)u ∂xϕ
]

dxdt−

∫

Ω

ρ0(x)E0(x)ϕ(x, 0) dx = 0, (54c)

p = (γ − 1)ρ e, E =
1

2
u2 + e, E0 =

1

2
u20 + e0. (54d)
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As in the isentropic case, these relations are not sufficient to define a weak solution to the problem, since they
do not imply anything about the boundary conditions, but allow to derive the Rankine-Hugoniot conditions. We
show hereafter that they are satisfied by the limit of a sequence of solutions to the discrete problem (Theorem
4.2). This result thus proves that the introduction of corrective terms in the internal energy balance indeed
yields a consistent scheme; conversely, without these terms, we may anticipate that the algorithm will compute
uncorrect shocks (i.e. shocks where the jumps of the unknowns and of the fluxes are not linked to the shock
speed by the Rankine-Hugoniot conditions); this is confirmed by numerical experiments.

Theorem 4.2 (Consistency of the one-dimensional explicit scheme).
Let Ω be an open bounded interval of R. We suppose that the initial data satisfies ρ0 ∈ L∞(Ω), p0 ∈ BV(Ω),
e0 ∈ L∞(Ω) and u0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N be a sequence of discretizations such that both the time
step δt(m) and the size h(m) of the mesh M(m) tend to zero as m → ∞, and let (ρ(m), p(m), e(m), u(m))m∈N be
the corresponding sequence of solutions. We suppose that this sequence satisfies the estimates (50)–(53) and
converges in Lr(Ω× (0, T ))4, for 1 ≤ r <∞, to (ρ̄, p̄, ē, ū) ∈ L∞(Ω× (0, T ))4.

Then the limit (ρ̄, p̄, ē, ū) satisfies the system (54).

Proof. As in the isentropic case, it is clear that with the assumed convergence for the sequence of solutions, the
limit satisfies the equation of state. The fact that the limit satisfies the weak mass balance equation (54a) and
the weak momentum balance equation (54b) was shown in the previous section. There only remains to prove
that (54c) holds, by passing to the limit in the scheme, in the internal and the kinetic energy balance equations.

Let ϕ ∈ C∞
c (Ω× [0, T )). Let m ∈ N, M(m) and δt(m) be given. Dropping for short the superscript (m), let ϕM

be the interpolate of ϕ on the primal mesh and let ðtϕM and ðxϕM be its time and space discrete derivatives in
the sense of Definition 3.4. Thanks to the regularity of ϕ, these functions respectively converge in Lr(Ω×(0, T )),
for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and ∂xϕ respectively. In addition, ϕM(·, 0) (which, for K ∈ M and
x ∈ K, is equal to ϕ0

K = ϕ(xK , 0)) converges to ϕ(·, 0) in Lr(Ω) for r ≥ 1. We also define ϕE, ðtϕE and ðxϕE,
as, respectively, the interpolate of ϕ on the dual mesh and its discrete time and space derivatives, still in the
sense of Definition 3.4; once again thanks to the regularity of ϕ, these functions converge in Lr(Ω× (0, T )), for
r ≥ 1, to ϕ, ∂tϕ and ∂xϕ respectively. As for the primal mesh interpolate, the dual mesh interpolate ϕE(·, 0)
(which, for σ ∈ E and x ∈ Dσ, is equal to ϕ

0
σ = ϕ(xσ , 0)) converges to ϕ(·, 0) in Lr(Ω) for r ≥ 1.

Since the support of ϕ is compact in Ω × [0, T ), for m large enough, the interpolates of ϕ vanish on the
boundary cells and at the last time step(s); hereafter, we assume that we are in this case.

On one hand, let us multiply the one dimensional discrete internal energy balance equation (47c) by δt ϕn+1
K ,

and sum the result for 0 ≤ n ≤ N − 1 and K ∈ M. On the other hand, let us multiply the one-dimensional
version of the discrete kinetic energy balance (17) by δt ϕn+1

σ , and sum the result for 0 ≤ n ≤ N−1 and σ ∈ Eint.
Finally, adding the two obtained relations, we get:

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = S(m) − R̃(m), (55)

where:

T
(m)
1 =

N−1∑

n=0

δt
∑

K∈M

|K|

δt

[
ρn+1
K en+1

K − ρnK enK
]
ϕn+1
K ,

T
(m)
2 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[
ρnσ′ enσ′ unσ′ − ρnσ e

n
σ u

n
σ

]
ϕn+1
K ,

T
(m)
3 =

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

pnK (unσ′ − unσ) ϕ
n+1
K ,

T̃
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈Eint

|Dσ|

δt

[
ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)
2
]
ϕn+1
σ ,

T̃
(m)
2 =

1

2

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

[
Fn
L (unL)

2 − Fn
K (unK)2

]
ϕn+1
σ ,

T̃
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )un+1
σ ϕn+1

σ ,
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S(m) =

N−1∑

n=0

δt
∑

K∈M

Sn
K ϕn+1

K , R̃(m) =

N−1∑

n=0

δt
∑

σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantities Sn
K and Rn+1

σ are given by Equation (48) and (the 1D version of) Equation (18) respectively.

Reordering the sums in T
(m)
1 yields:

T
(m)
1 = −

N−1∑

n=0

δt
∑

K∈M

|K| ρnK enK
ϕn+1
K − ϕn

K

δt
−

∑

K∈M

|K| ρ0K e0K ϕ0
K ,

so that:

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) e(m)
ðtϕM dxdt−

∫

Ω

(ρ(m))0(x) (e(m))0(x) ϕM(x, 0) dx.

The boundedness of ρ0, e0 and the definition (47a) of the initial conditions for the scheme ensures that the
sequences ((ρ(m))0)m∈N and ((e(m))0)m∈N converge to ρ0 and e0 respectively in Lr(Ω) for r ≥ 1. Since, by
assumption, the sequence of discrete solutions and of the interpolate time derivatives converge in Lr

(
Ω× (0, T )

)

for r ≥ 1, we thus obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ē ∂tϕdxdt−

∫

Ω

ρ0(x) e0(x) ϕ(x, 0) dx.

Reordering the sums in T
(m)
2 , we get:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

ρnσ e
n
σ u

n
σ (ϕn+1

L − ϕn+1
K ).

Using the fact that hσ = |Dσ|, this relation reads:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

|Dσ| ρ
n
σ e

n
σ u

n
σ

ϕn+1
L − ϕn+1

K

hσ
,

thus T
(m)
2 = T

(m)
2 + R

(m)
2 with:

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

[

|DK,σ| ρ
n
K enK + |DL,σ| ρ

n
L e

n
L

]

unσ
ϕn+1
L − ϕn+1

K

hσ
,

R
(m)
2 = −

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈E

[

|Dσ| ρ
n
σ e

n
σ − |DK,σ| ρ

n
K enK − |DL,σ| ρ

n
L e

n
L

]

unσ
ϕn+1
L − ϕn+1

K

hσ
.

The first expression reads:

T
(m)
2 = −

∫ T

0

∫

Ω

ρ(m) e(m) u(m)
ðxϕM dxdt,

and thus, thanks to the convergence assumptions:

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ē ū ∂xϕdxdt.

Let us choose σ in such a way that ρnσ = ρnK and enσ = enK (in other words, we choose to call K the upwind cell
to σ instead of the left cell, which we denote by σ = K → L). We thus get, with Cϕ = ‖∂xϕ‖L∞(Ω×(0,T )):

|R
(m)
2 | ≤ Cϕ

N−1∑

n=0

δt
∑

σ=K→L∈E

|DL,σ|
∣
∣
∣ρnK enK − ρnL e

n
L

∣
∣
∣ |unσ|.
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Applying the identity 2 (ab − cd) = (a − c)(b + d) + (a + c)(b − d), which holds for any {a, b, c, d} ⊂ R, to the
quantity ρnK enK − ρnL e

n
L, we obtain:

|R
(m)
2 | ≤ Cϕ h(m) ‖u(m)‖L∞(Ω×(0,T ))

[

‖ρ(m)‖T,x,BV ‖e(m)‖L∞(Ω×(0,T )) + ‖ρ(m)‖L∞(Ω×(0,T )) ‖e
(m)‖T,x,BV

]

,

and thus |R
(m)
2 | tends to zero when m tends to +∞.

For the term T̃
(m)
1 , the definition (9) of ρDσ

and a reordering in the summation yield:

T̃
(m)
1 = −

1

2

N−1∑

n=0

δt
∑

σ=K|L∈E

[

|DK,σ| ρ
n
K + |DL,σ| ρ

n
L

]

(unσ)
2 ϕn+1

K − ϕn
K

δt

−
1

2

∑

σ=K|L∈E

[

|DK,σ| ρ
0
K + |DL,σ| ρ

0
L

]

(u0σ)
2 ϕ0

K ,

so that, by similar arguments as for the term T
(m)
1 , we get:

lim
m→+∞

T̃
(m)
1 = −

∫ T

0

∫

Ω

1

2
ρ̄ ū2 ∂tϕdxdt−

∫

Ω

1

2
ρ0(x) u0(x)

2 ϕ(x, 0) dx.

Let us now turn to the term T̃
(m)
2 . Reordering the sums, we get:

T̃
(m)
2 = −

1

2

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

Fn
K (unK)2 (ϕn+1

σ′ − ϕn+1
σ ),

and, by definition of the mass flux at the dual edges:

T̃
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

(ρnσu
n
σ + ρnσ′unσ′) (unK)2 (ϕn+1

σ′ − ϕn+1
σ ),

where we recall that unK is equal to either unσ or unσ′ , depending on the sign of Fn
K . Let us write T̃

(m)
2 =

T̃
(m)
2 + R̃

(m)
2 , with:

T̃
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

ρnK
[
(unσ)

3 + (unσ′)3
]
(ϕn+1

σ′ − ϕn+1
σ ).

We have:

T̃
(m)
2 = −

∫ T

0

∫

Ω

1

2
ρ(m) (u(m))3 ðxϕE dxdt,

and hence:

lim
m→+∞

T̃
(m)
2 = −

∫ T

0

∫

Ω

1

2
ρ̄ ū3 ∂xϕdxdt.

The remainder term reads:

R̃
(m)
2 = −

1

4

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

[

(ρnσu
n
σ + ρnσ′unσ′) (unK)2 − ρnK

(

(unσ)
3 + (unσ′)3

)]

(ϕn+1
σ′ − ϕn+1

σ ).

Using the notation K = σ → σ′ in the above summation in order to have unK = unσ, we obtain, with ε = ±1:

R̃
(m)
2 = −

ε

4

N−1∑

n=0

δt
∑

K=σ→σ′∈M

[

(ρnσu
n
σ + ρnσ′unσ′) (unσ)

2 − ρnK

(

(unσ)
3 + (unσ′)3

)]

(ϕn+1
σ′ − ϕn+1

σ ).

For 0 ≤ n ≤ N − 1 and K ∈ M, we have:

(ρnσu
n
σ + ρnσ′unσ′) (unσ)

2 − ρnK

(

(unσ)
3 + (unσ′)3

)

=

(ρnσ − ρnK) (unσ)
3 + (ρnσ′ − ρnK)unσ′ (unσ)

2 + ρnK unσ′ (unσ + unσ′) (unσ − unσ′),
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Since, in this expression, ρnσ and ρnσ′ are the density either in K or in a neighbouring cell of K, we get:

|R̃
(m)
2 | ≤ Cϕ h(m)

[

‖u(m)‖
3

L∞(Ω×(0,T )) ‖ρ‖T,x,BV + ‖ρ(m)‖L∞(Ω×(0,T )) ‖u
(m)‖

2

L∞(Ω×(0,T )) ‖u
(m)‖T,x,BV

]

,

where the real number Cϕ only depends on ϕ. Hence |R̃
(m)
2 | tends to zero when m tends to +∞.

We now turn to T
(m)
3 and T̃

(m)
3 . By a change in the notation of the time exponents, using the fact that ϕσ

vanishes at the last time step(s), we get:

T̃
(m)
3 =

N−1∑

n=1

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK)unσ ϕ
n
σ = T̃

(m)
3 + R̃

(m)
3 ,

with:

T̃
(m)
3 =

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK)unσ ϕ
n+1
σ ,

R̃
(m)
3 = −δt

∑

σ=
−−→
K|L∈Eint

(p0L − p0K)u0σ ϕ
0
σ +

N−1∑

n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK)unσ (ϕn
σ − ϕn+1

σ ).

We have, thanks to the regularity of ϕ:

|R̃
(m)
3 | ≤ Cϕ δt(m)

[

‖(u(m))0‖L∞(Ω) ‖(p
(m))0‖BV(Ω) + ‖u(m)‖L∞(Ω×(0,T )) ‖p

(m)‖T,x,BV

]

.

Therefore, invoking the regularity of the initial conditions, this term tends to zero when m tends to +∞. We
now have for the other terms, reordering the summations:

T
(m)
3 + T̃

(m)
3 = −

N−1∑

n=0

δt
∑

K=[
−−→
σσ′]∈M

pnK unσ (ϕ
n+1
K − ϕn+1

σ ) + pnK unσ′ (ϕn+1
σ′ − ϕn+1

K )

= −

∫ T

0

∫

Ω

p(m) u(m)
ðxϕM,E dxdt.

Since ðxϕM,E converges to ∂xϕ in Lr(Ω× (0, T )) for any r ≥ 1, we get:

lim
m→+∞

(T
(m)
3 + T̃

(m)
3 ) = −

∫ T

0

∫

Ω

p̄ ū ∂xϕdxdt.

It now remains to check that limm→+∞(S(m) − R̃(m)) = 0. Let us write this quantity as S(m) − R̃(m) =

R
(m)
1 + R

(m)
2 where, using that,∀K ∈ M, S0

K = 0:

R
(m)
1 =

N−1∑

n=0

δt
[ ∑

K∈M

Sn+1
K ϕn+1

K −
∑

σ∈E

Rn+1
σ ϕn+1

σ

]
,

R
(m)
2 =

N−1∑

n=1

δt
∑

K∈M

Sn
K (ϕn+1

K − ϕn
K).
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First, we prove that limm→+∞ R
(m)
1 = 0. Gathering and reordering the sums, we obtain R

(m)
1 = R

(m)
1,1 +R

(m)
1,2 +

R
(m)
1,3 with

R
(m)
1,1 =

1

2

N−1∑

n=0

δt
∑

σ=K|L∈E

[ |DK,σ|

δt
ρn+1
K (un+1

σ − unσ)
2(ϕn+1

K − ϕn+1
σ )

+
|DL,σ|

δt
ρn+1
L (un+1

σ − unσ)
2(ϕn+1

L − ϕn+1
σ )

]

,

R
(m)
1,2 =

1

2

N−1∑

n=0

δt
∑

K=[σ′→σ]∈M

|Fn
K | (unσ − unσ′)2 (ϕn+1

K − ϕn+1
σ ),

R
(m)
1,3 =

N−1∑

n=0

δt
∑

K=[σ′→σ]∈M

|Fn
K | (unσ′ − unσ) (u

n+1
σ − unσ) (ϕ

n+1
K − ϕn+1

σ ).

We thus obtain:

|R
(m)
1,1 | ≤ h(m) Cϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖L∞(Ω×(0,T )) ‖u
(m)‖T,t,BV,

and

|R
(m)
1,2 |+ |R

(m)
1,3 | ≤ h(m) Cϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖
2

L∞(Ω×(0,T )) ‖u
(m)‖T,x,BV,

so all these terms tend to zero. The fact that |R
(m)
2 | behaves as δt(m) may be proven by similar arguments.

Gathering the limits of all terms concludes the proof.
�

Remark 4.3 (On BV-stability assumptions).
The proof of theorems 3.5 and 4.2 shows that the scheme is consistent under a BV-stability assumption that is
much weaker than (52)-(53), namely:

lim
m→+∞

(h(m) + δt(m))
[

‖ρ(m)‖T,x,BV + ‖p(m)‖T,x,BV + ‖e(m)‖T,x,BV + ‖u(m)‖T,x,BV + ‖u(m)‖T,t,BV

]

= 0.

Remark 4.4 (Convergence to the entropy weak solution). An entropy function for the incompressible Euler
equations with the perfect gas EOS may be defined as:

∣
∣
∣
∣
∣
∣

η : R∗
+ × R∗

+ → R

(ρ, e) 7→ η(ρ, e) =
1

ρ
(φ(ρ) + ρψ(e))

where for s > 0, φ(s) = s ln(s) and ψ(s) =
1

1− γ
ln(s). Under the assumptions of Theorem 4.2, assuming the

additional time BV estimates on the approximate densities and internal energies:

‖ρ(m)‖T,t,BV ≤ C, ‖e(m)‖T,t,BV ≤ C, ∀m ∈ N,

and provided that the following stronger CFL condition holds:

lim
m→+∞

δt(m)

min
K∈M(m)

hK
= 0,

it can be shown that the limit of approximate solutions (up to a subsequence) is an entropy weak solution, in
the sense that it also satisfies a weak entropy inequality, which reads

∀ϕ ∈ C∞
c

(
Ω× [0, T ),R+

)
, −

∫ T

0

∫

Ω

[

ρ η(ρ, e) ∂tϕ+ ρ u η(ρ, e) ∂xϕ
]

dxdt−

∫

Ω

η(ρ0(x), e0(x))ϕ(x, 0) dx ≤ 0.

The proof of this result may be found in [22, Chapter 4] (see also [16]), where the general multi-dimensional
case and higher order schemes are also studied.
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Figure 2. Shallow water eq., first Riemann problem – h = 0.001, δt = h/12 – Density at t = 0.025.

Figure 3. Shallow water eq., first Riemann problem – h = 0.001, δt = h/12 –Velocity at t = 0.025.

5. Numerical results

5.1. The isentropic Euler equations

We assess in this section the behaviour of the scheme on various test cases. For all these tests, we chose
p = ρ2 for the equation of state, so the solved system turns out to be the so-called shallow water equations,
and we solve Riemann problems, i.e. 1D problems the initial conditions of which consist in two constant states
separated by a discontinuity.

5.1.1. A first Riemann problem

In this first test, the chosen left and right states are given by:

left state:

[
ρL = 1
uL = 5

]

; right state:

[
ρR = 10
uR = 7.5

]

.

The computational domain is Ω = (0, 1) and the final time is T = 0.025. The (known) analytical solution of
this problem consists, from the left to the right, in a shock wave and a rarefaction wave, both traveling to the
right, separated by constant states.

Results - The density and velocity obtained at t = 0.025 = T are shown on Figures 2 and 3 respectively; these
results have been obtained with h = 0.001 and δt = h/12 (the maximum velocity and sound speed computed
from the analytical solution being umax = 7.5 and cmax ≃ 4.5, respectively). In addition, we performed a
convergence study, successively dividing by two the space and time steps (so keeping the CFL number constant).
The difference between the computed and analytical solution at t = 0.025, measured in discrete L1(Ω) norm,
are reported in the following table:
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Figure 4. Shallow water eq., first Riemann problem modified to obtain a nearly vanishing
velocity at the intermediate state – Viscosity= 0 – h = 0.001, δt = h/12 – Density at t = 0.025.

Figure 5. Shallow water eq., first Riemann problem modified to obtain a nearly vanishing
velocity at the intermediate state – Viscosity= 0 – h = 0.001, δt = h/12 – Velocity at t = 0.025.

space step h0 = 1/250 h0/2 h0/4 h0/8 h0/16

‖ρ− ρ̄‖L1(Ω) 0.0449 0.0256 0.0135 0.00775 0.00429

‖u− ū‖L1(Ω) 0.0411 0.0233 0.0119 0.00696 0.00384

We observe an approximatively first-order convergence rate.

A problem with a vanishing velocity in the intermediate state - To complete the study, we perform
a computation of a Riemann problem obtained from the former one by subtracting a constant real number to
the left and right velocity, in such a way that the velocity on the intermediate state approximatively vanishes.
In this case, we observe spurious oscillations on the solution (see Figures 4 and 5), probably due to the fact
that the numerical diffusion in the scheme vanishes. However, adding an artificial viscosity term in the discrete
momentum balance equation, with a viscosity equal to 0.5 ρ h (so equal to the upwind viscosity which would
be associated to a velocity equal to 1) completely cures the problem (see Figures 6 and 7). This observation
strongly supports the idea to build a higher order scheme using an a posteriori fitted viscosity technique, as in
the so-called entropy viscosity method [9, 10]; this work is underway.

When we subtract once again a constant to the velocity at both left and right state, and so the velocity at
the intermediate becomes negative, we recover a wiggle-free solution without adding any viscosity (Figures 8
and 9).

On a naive scheme - We also test the “naive” explicit scheme obtained by evaluating all the terms, except
of course the time-derivative one, at time tn. In the one dimensional setting and with the same notations as in
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Figure 6. Shallow water eq., first Riemann problem modified to obtain a nearly vanishing
velocity at the intermediate state – Viscosity= 0.5 ρ h – h = 0.001, δt = h/12 – Density at
t = 0.025.

Figure 7. Shallow water eq., first Riemann problem modified to obtain a nearly vanishing
velocity at the intermediate state – Viscosity= 0.5 ρ h – h = 0.001, δt = h/12 – Velocity at
t = 0.025.

Figure 8. Shallow water eq., first Riemann problem modified to obtain a negative velocity at
the intermediate state – h = 0.001, δt = h/12 – Density at t = 0.025.

Section 3.3, this scheme thus reads:

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn
σ′ − Fn

σ = 0, (56a)
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Figure 9. Shallow water eq., first Riemann problem modified to obtain a negative velocity at
the intermediate state – h = 0.001, δt = h/12 – Velocity at t = 0.025.

Figure 10. Shallow water eq., first Riemann problem – ρ u p scheme – h = 0.001, δt =
h/12 – Density at t = 0.025.

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ − ρnDσ

unσ) + Fn
Lu

n
L − Fn

Ku
n
K + pnL − pnK = 0, (56b)

∀K ∈ M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ . (56c)

Hereafter and on the figure captions, this scheme is referred to as the ”ρ u p scheme” (since the pressure
is updated after the computation of the velocity rather than after the computation of the density).

The computed density and velocity at time T = 0.025 are plotted on figures 10 and 11 respectively. From
these results, it appears clearly that the ρ u p scheme generates discontinuities in the rarefaction wave,
and further experiments show that this phenomenon is not cured by a decrease of the time and space steps;
this seems to be connected to the fact that, for this variant, we cannot prove that the limits of converging
sequences satisfy the entropy condition (in fact, they probably do not). When trying to do so, in our proof
and from a purely technical point of view, the trouble comes from the fact that the pressure gradient term
which appears in the kinetic energy balance reads un+1

∇pn and it seems difficult to make the counterpart (i.e.
pndiv(un+1)) appear, with the corresponding time levels, in the elastic potential balance, starting from a mass
balance with a convection term written with u

n; hence a dicretization of the momentum balance equation with
an updated pressure gradient term ∇pn+1, and thus the inversion of steps in the algorithm, to get the actual
scheme proposed in this paper.

5.1.2. Problems involving vacuum zones in the flow

The objective of the two tests presented in this section is to check that the time step does not have to be
drastically reduced in the presence of vacuum. Both are Riemann problems, posed on Ω = (0, 1).
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Figure 11. Shallow water eq., first Riemann problem – ρ u p scheme – h = 0.001, δt =
h/12 – Velocity at t = 0.025.

Figure 12. Shallow water eq., Riemann problem with vacuum at the right state – h =
0.001, δt = h/8 – Density at t = 0.05.

We first begin with a case where the vacuum is initially present, at the right initial state:

left state:

[
ρL = 1
uL = 1

]

; right state:

[
ρR = 0
uR = 0

]

.

In the computer code, ρR is fixed as ρR = 10−20, to prevent divisions by zero due to imprudent programming.
The results obtained at t = 0.05 are plotted on Figure 12 (density) and Figure 13 (velocity); they have been
obtained with h = 0.001 and a constant time step equal to δt = h/8, which seems to be near to the stability
limit (the maximum velocity and sound speed computed from the analytical solution being given by umax ≃ 3.8
and cmax ≃ 1.4, respectively). We observe that the accuracy of the velocity computation is rather poor near to
the vacuum front; we however check on Figure 14 that the scheme converges to the right solution. Moreover,
Figure 15 shows that the quantity ρ u (which is, in this case, the quantity of physical interest) is in fact obtained
with a reasonable accuracy with the coarsest meshes of this study.

We now turn to a case where the chosen left and right states are given by:

left state:

[
ρL = 1
uL = −8

]

; right state:

[
ρR = 1
uR = 8

]

.

In this case, the solution consists in an intermediate state corresponding to vacuum connected to the left and
right initial states by rarefaction waves. The computed density and velocity at t = 0.03, with h = 0.001 and
δt = h/12 (while, in the analytical solution, umax = 8 and cmax ≃ 1.4), are plotted on Figures 16 and 17
respectively. Once again, the behaviour of the scheme is satisfactory.
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Figure 13. Shallow water eq., Riemann problem with vacuum at the right state – h =
0.001, δt = h/8 – Velocity at t = 0.05.

Figure 14. Shallow water eq., Riemann problem with vacuum at the right state – h = h0 =
0.001 to h = h0/16, δt = h/8 – Velocity at t = 0.05.

Figure 15. Shallow water eq., Riemann problem with vacuum at the right state – h = h0 =
0.001 to h = h0/16, δt = h/8 – Mass flow rate at t = 0.05.

5.2. The full Euler equations

5.2.1. Riemann Problems

We first assess in this section the behaviour of the scheme on a Riemann problem referred to as Test 3
in [23, Chapter 4], which is stiff enough to evidence consistency and stability properties of the scheme. The left
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Figure 16. Shallow water eq., Riemann problem with vacuum appearance – h = 0.001, δt =
h/12 – Density at t = 0.03.

Figure 17. Shallow water eq., Riemann problem with vacuum appearance – h = 0.001, δt =
h/12 – Mass flow rate at t = 0.03.

and right states are given by:

left state:





ρL = 1
uL = 0

pL = 1000



 ; right state:





ρR = 1
uR = 0

pR = 0.001



 .

The computational domain is Ω = (0, 1) and the final time is T = 0.012. The (known) analytical solution of
this type of problem consists in two genuinely nonlinear waves (i.e. rarefaction or shock waves) separated by a
contact discontinuity. For the initial data chosen in this section, the left wave is a rarefaction wave, traveling
to the left, and the right wave is a shock wave, traveling to the right.

The density, pressure, internal energy and velocity obtained at t = 0.012 = T with h = 0.001 and δt = h/100
(as the maximal celerity of waves is close to 60) are shown on Figures 18, 19, 20 and 21 respectively. We observe
that the scheme is rather diffusive especially for contact discontinuities for which the beneficial compressive effect
of the shocks does not apply. More accurate variants may certainly be derived, using for instance MUSCL-like
techniques; this work is underway.

We also observe that the scheme keeps the velocity and pressure constant through the contact discontinuity;
this may be checked directly from the expression of the discrete balance equations (precisely speaking, one may
prove that, if pn and un are constant, so are pn+1 and un+1).

In addition, we perform a convergence study, successively dividing by two the space and time steps (so
keeping the CFL number constant). The differences between the computed and analytical solution at t = 0.025,
measured in discrete L1(Ω) norm, are reported in the following table.
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Figure 18. Euler equations, Riemann problem 3 of [23, Chapter 4] – h = 0.001 and δt = h/100
– Density at t = 0.012.

Figure 19. Euler equations, Riemann problem 3 of [23, Chapter 4] – h = 0.001 and δt = h/100
– Pressure at t = 0.012.

Figure 20. Euler equations, Riemann problem 3 of [23, Chapter 4] – h = 0.001 and δt = h/100
– Internal energy at t = 0.012.

space step h0 = 0.001 h0/2 h0/4 h0/8 h0/16

‖ρ− ρ̄‖L1(Ω) 0.0651 0.0455 0.0310 0.0217 0.0153

‖p− p̄‖L1(Ω) 1.87 1.05 0.530 0.284 0.164

‖u− ū‖L1(Ω) 0.0967 0.0536 0.0258 0.0134 0.00795
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Figure 21. Euler equations, Riemann problem 3 of [23, Chapter 4] – h = 0.001 and δt = h/100
– Velocity at t = 0.012.

Figure 22. Euler equations, Riemann problem 3 of [23, Chapter 4] – Scheme without corrective
terms – h = 0.001 and δt = h/100 – Density at t = 0.012.

We measure a convergence rate which is slightly lower to 1 for the variables which are constant through the
contact discontinuity (i.e. p and u), and equal to 1/2 for ρ.

Finally, we test the behaviour of the scheme obtained when setting to zero the corrective terms in the internal
energy balance. The density obtained with h = 0.001 and δt = h/100 is reported on Figure 22. From this result
and from further numerical experiments with more and more refined meshes, it seems that the scheme converge,
but to a limit which is not a weak solution to the Euler system: indeed, the Rankine-Hugoniot condition applied
to the total energy balance, with the states obtained numerically, yields a right shock velocity slightly greater
than the analytical solution one, while the same shock velocity obtained numerically is clearly lower.

Importance of the order of the equations in the decoupling – We also test the “naive” explicit scheme
obtained by evaluating all the terms, except in time-derivative one, at time tn. In the one dimensional setting
and with the same notations as in Section 4.2, this scheme thus reads:

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K − ρnK) + Fn
σ′ − Fn

σ = 0, (57a)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|

δt
(ρn+1

Dσ
un+1
σ − ρnDσ

unσ) + Fn
Lu

n
L − Fn

Ku
n
K + pnL − pnK = 0, (57b)

∀K = [
−→
σσ′] ∈ M,

|K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) + Fn

σ′enσ′ − Fn
σ e

n
σ + pnK(un+1

σ′ − un+1
σ ) = Sn+1

K , (57c)
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Figure 23. Euler equations, Riemann problem 3 of [23, Chapter 4] – ρ u e p scheme –
h = 0.001 and δt = h/100 – Pressure at t = 0.012.

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K . (57d)

Hereafter and on the figure captions, this scheme is referred to by the ρ u e p scheme (according to the
order of update of the unknowns). Note that we are able, for this scheme also, to prove a consistency result
similar to Theorem 4.2.

The computed pressure at time T = 0.012 is plotted on figures 23. From this result, it appears clearly that,
as in the isentropic case, the ρ u e p scheme generates discontinuities in the rarefaction wave, and further
experiments show that this phenomenon is not cured by a reduction of the time and space step.

5.2.2. A two-dimensional problem

We now turn to a two-dimensional problem, consisting in the interaction of a shock wave with an obstacle.
The initial data is (ρ,u, p) = (ρL,uL, pL) (resp. (ρ,u, p) = (ρR,uR, pR)) for x1 ≤ 0.7 (resp. x1 > 0.7), with:





ρL
uL

pL



 =





8
8.25 (1, 0)t

116.5



 ,





ρR
uR

pR



 =





1.4
(0, 0)t

1



 ,

Without any obstacle, this initial condition would yield a pure shock wave travelling to the left at the speed
v = 10; since the speed of sound in the right state is c = 1, this wave is often referred to in the literature as a
”Mach= 10 shock wave”. The obstacle is the square (1, 3)× (−1, 1). Thanks to the symmetry with respect to
the axis x2 = 0, the chosen computational domain is Ω = (−1, 6)× (0, 4). The final time is t = 0.5 (so that in
the absence of an obstacle, the shock line would be defined by x1 = 5.7 at the final time).

We present two computations. The first one is a uniform 1400× 800 grid from which the cells corresponding
to the interior of the obstacle have been removed, leading to a total number of cells close to 106; the time step is
equal to 10−4. For the second one, the mesh is built from a 10000×5700 grid, for a total number of cells close to
53 106, and a time step equal to 10−5. In both cases, the MAC scheme is used for the space discretization, and
the numerical viscosity is set to ρ h. Both computations are performed in parallel (the CALIF3S software uses
PETSc primitives), with a multi-domain technique: the domain is split into subdomains (using the open-access
software METIS), and each subdomain is treated by a processor. The second computation involves 120 Intel
Xeon X5660 2.8GHz processors on an InfiniBand Linux cluster, for about 190 hours of restitution time (for
50000 time steps, so that each time step takes about 13.7 seconds; note that the software is designed for general
meshes, and thus is by construction not optimized for structured grid). We observe here the beneficial effects of
the simplicity of the convective flux construction; indeed, solving a Riemann problem at each interface would
lead to a much more CPU time-consuming algorithm.

The obtained density at t = 0.5 is shown on Figure 24. One observes a strong reflection upstream the
obstacle; behind this reflection, a shock-to-shock interaction occurs, which does not seem to generate an irregular
reflection. As expected, the second computation shows much more details, especially in the wake of the obstacle.
A closer view of this zone is provided on Figure 25

Finally, we also test the algorithm on unstructured meshings, using the RT discretization. The initial
condition is the same, the obstacle is now a disk centered on (2, 0)t and of radius equal to 1, Ω = (0, 5)× (0, 3.3)
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Figure 24. Euler equations, shock-square interaction – Density at t = 0.5 – Results obtained
with 1 106 (top) and 53 106 cells (bottom). For this last computation, only a part of the
subdomains (about one half of the 120 subdomains) are drawn.

and the final time is t = 0.4. The number of primal cells is close to 11 106 (so each velocity component is
approximated on about 22 106 dual cells), and the time step is 5 10−6. The numerical viscosity is set to 2 ρ h.
The density fields obtained at time t = 0.2 and t = 0.4 are shown on Figure 26.

Finally, note that other 2D and 3D experiments have been conducted and may be found in the more numerical
paper [8].

6. Conclusion

In this paper we presented a decoupled scheme based on staggered meshes for the isentropic and full Euler
equations. This algorithm uses a very simple first-order upwinding strategy which consists, equation by equation,
to implement an upwind discretization with respect to the material velocity of the convection term. The pressure
gradient is defined as the transpose of the natural velocity divergence, and is thus centered. In the case of the full
Euler equations, the scheme solves the internal energy balance instead of the total energy balance, to ensure the
positivity of the internal energy by the above-mentionned upwinding technique; because of the staggered nature
of the scheme, the total energy balance is only recovered at the limit of vanishing time and space steps, thanks
to the addition of corrective source terms in the discrete internal energy balance. Under CFL-like conditions
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Figure 25. Euler equations, shock-square interaction – Density at t = 0.5 – Results obtained
with 53 106 cells, in the area where shock-to-shock interaction occurs, behind the obstacle.

which based on the material velocity only (by opposition to the celerity of waves which constrains classical
hyperbolic schemes), this scheme preserves the positivity of the density, the pressure and, for Euler equations,
of the internal energy (in other words, the scheme preserves the convex set of admissible states). Finally, the
scheme has been shown to be consistent for 1D problems, in the sense that, if a sequence of numerical solutions
obtained with more and more refined meshes (and, accordingly, smaller and smaller time steps) converges, then
the limit is a weak solution to the continuous problem.

These theoretical results may be extended in two directions: first, in the full Euler case, the limits of
convergent sequences may be shown to be entropy solutions; second, the scheme may be shown to be consistent
in the multi-dimensional case. This is the object of a paper that will soon be submitted [16]. Another point
of further investigation concerns the design of a discretization scheme that would be able to cope with non-
conforming locally refined meshes. This work is now being undertaken.

Numerical studies show that the proposed algorithm is stable, even if the largest time step before blow-up is
smaller than suggested by the above-mentioned CFL conditions. This behaviour was to be expected, since these
CFL conditions only involve the velocity (and not the celerity of the acoustic waves): indeed, were they the only
limitation, we would obtain an explicit scheme stable up to the incompressible limit. However, the mechanisms
leading to the blow-up of the scheme (or, conversely, the way to fix the time step to ensure stability) remain
to be clarified, even if one may anticipate from qualitative arguments (the scheme should allow a ”transport
of the information” at the same speed as the continuous problem) that the time step should be small enough
to avoid that the waves cross more than one cell per time step. In addition, still as expected, the scheme is
rather diffusive, especially at contact discontinuities; MUSCL-like extensions have recently been developed [22]
to cure this problem, combined with a strategy similar to the so-called entropy-viscosity technique [9, 10] to
damp spurious oscillations which are sometimes observed when the velocity is small.

Since the proposed scheme uses very simple numerical fluxes, it is well suited to large multi-dimensional
parallel computing applications, and such studies are now starting at IRSN. Still for the same reasons (and, in
particular, because the construction of the discretization does not require the solution of the Riemann problem),
it seems that the presented approach offers natural extensions to more complex problems, such as reacting flows;
this is under development at IRSN, for applications to explosion hazards.
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Figure 26. Euler equations, shock-disk interaction – Density at t = 0.2 (top) and t = 0.4
(bottom).
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Appendix A. Some results concerning explicit finite volume convection

operators

The convection operator appearing in the mass balance equation reads, in the continuous problem, ρ →
C(ρ) = ∂tρ+ div(ρu), where u stands for a given velocity field, which is not assumed to satisfy any divergence
constraint. We recall [13, Appendix A] that if ψ is a regular function from (0,+∞) to R; then:

ψ′(ρ) C(ρ) = ∂t
(
ψ(ρ)

)
+ div

(
ψ(ρ)u

)
+
(
ρψ′(ρ)− ψ(ρ)

)
divu. (58)

This computation is of course completely formal and only valid for regular functions ρ and u. The following
lemma states a discrete analogue to (58) for the decoupled scheme studied in this paper (see. [13, Appendix A]
for an implicit scheme).

Lemma A.1. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp. R3), and let E(P ) be the set of
its edges (resp. faces). Let ψ be a twice continuously differentiable function defined over (0,+∞). Let ρ∗P > 0,
ρP > 0, δt > 0; consider three families (ρ∗η)η∈E(P ) ⊂ R+ \ {0}, (V ∗

η )η∈E(P ) ⊂ R and (F ∗
η )η∈E(P ) ⊂ R such that

∀η ∈ E(P ), F ∗
η = ρ∗η V

∗
η .

Let RP,δt be defined by:

RP,δt =
[ |P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

F ∗
η

]

ψ′(ρP )

−
|P |

δt
[ψ(ρP )− ψ(ρ∗P )] +

∑

η∈E(P )

ψ(ρ∗η)V
∗
η + [ρ∗Pψ

′(ρ∗P )− ψ(ρ∗P )]
∑

η∈E(P )

V ∗
η .

Then this quantity may be expressed as follows:

RP,δt =
1

2

|P |

δt
(ρP − ρ∗P )

2 ψ′′(ρ
(1)
P )−

1

2

∑

η∈E(P )

V ∗
η (ρ∗P − ρ∗η)

2 ψ′′(ρ∗η) +
∑

η∈E(P )

V ∗
η ρ

∗
η (ρP − ρ∗P )ψ

′′(ρ
(2)
P ),

where ρ
(1)
P , ρ

(2)
P ∈ |[ρP , ρ

∗
P ]| and ∀η ∈ E(P ), ρ∗η ∈ |[ρ∗P , ρ

∗
η]|. We recall that, for a, b ∈ R, we denote by |[a, b]| the

interval |[a, b]| = {θa+ (1− θ)b, θ ∈ [0, 1]}.

Proof. By the definition of F ∗
η , we have:

[ |P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

F ∗
η

]
ψ′(ρP ) =

|P |

δt
(ρP − ρ∗P )ψ

′(ρP )

+
∑

η∈E(P )

ρ∗ηV
∗
η ψ

′(ρ∗P ) +
∑

η∈E(P )

ρ∗ηV
∗
η

[
ψ′(ρP )− ψ′(ρ∗P )

]
. (59)

By Taylor expansions of ψ, there exist two real numbers ρ
(1)
P and ρ

(2)
P ∈ |[ρ∗P , ρP ]| and a family of real numbers

(ρ∗η)η∈E(P ) satisfying, ∀η ∈ E(P ), ρ∗η ∈ |[ρ∗P , ρ
∗
η]|, and such that:

(ρP − ρ∗P )ψ
′(ρP ) = ψ(ρP )− ψ(ρ∗P ) +

1

2
(ρP − ρ∗P )

2 ψ′′(ρ
(1)
P ),

ρ∗ηψ
′(ρ∗P ) = ψ(ρ∗η) + [ρ∗Pψ

′(ρ∗P )− ψ(ρ∗P )]−
1

2
(ρ∗η − ρ∗P )

2 ψ′′(ρ∗η),

ψ′(ρP )− ψ′(ρ∗P ) = (ρP − ρ∗P )ψ
′′(ρ

(2)
P ).

Substituting in (59) yields the result we are seeking. �

We now turn to the convection operator appearing in the momentum balance equation, which reads, in the
continuous setting, z → Cρ(z) = ∂t(ρz) + div(ρzu), where ρ (resp. u) stands for a given scalar (resp. vector)
field; we wish to obtain some property of Cρ under the assumption that ρ and u satisfy the mass balance
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equation, i.e. ∂tρ+ div(ρu) = 0. Formally, using twice the mass balance yields:

ψ′(z) Cρ(z) = ψ′(z)
[
∂t(ρ z) + div(ρ z u)

]
= ψ′(z)ρ

[
∂tz + u ·∇z

]

= ρ
[
∂tψ(z) + u ·∇ψ(z)

]
= ∂t

(
ρψ(z)

)
+ div

(
ρψ(z)u

)
.

Taking for z a component of the velocity field, this relation is the central argument used to derive the kinetic
energy balance. The following lemma states a discrete counterpart of this identity, for a finite volume first-order
explicit convection operator.

Lemma A.2. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp. R3) and let E(P ) be the set of
its edges (resp. faces). Let ρ∗P > 0, ρP > 0, δt > 0, and (F ∗

η )η∈E(P ) ⊂ R be such that

|P |

δt
(ρP − ρ∗P ) +

∑

η∈E(P )

F ∗
η = 0. (60)

Let ψ be a twice continuously differentiable function defined over (0,+∞). For u∗P ∈ R, uP ∈ R and (u∗η)η∈E(P ) ⊂
R let us define:

RP,δt =
[ |P |

δt

(
ρP uP − ρ∗P u

∗
P

)
+

∑

η∈E(P )

F ∗
η u∗η

]

ψ′(uP )−
[ |P |

δt

[
ρP ψ(uP )− ρ∗P ψ(u

∗
P )

]
+

∑

η∈E(P )

F ∗
η ψ(u∗η)

]

.

Then:

(i) the remainder term RP,δt reads:

RP,δt =
1

2

|P |

δt
ρP (uP − u∗P )

2ψ′′(u
(1)
P )−

1

2

∑

η∈E(P )

F ∗
η (u∗η − u∗P )

2ψ′′(u∗η)

+
∑

η∈E(P )

F ∗
η (u∗η − u∗P ) (uP − u∗P ) ψ

′′(u
(2)
P ) (61)

with u
(1)
P , u

(2)
P ∈ |[uP , u

∗
P ]|, and ∀η ∈ E(P ), u∗η ∈ |[u∗P , u

∗
η]|.

(ii) If we suppose that the function ψ is convex and that u∗η = u∗P as soon as F ∗
η ≥ 0, then RP,δt is

non-negative under the CFL condition:

δt ≤
|P | ρP ψ

′′
P

∑

η∈E(P )(F
∗
η )

− (ψ
′′
P )

2/ψ′′
η

, (62)

where ψ′′
P
= min

s∈|[uP ,u∗

P
]|
ψ′′(s), ψ

′′
P = max

s∈|[uP ,u∗

P
]|
ψ′′(s) and ψ′′

η
= min

s∈|[u∗

P
,u∗

η]|
ψ′′(s).

For ψ(s) = s2/2 (and therefore ψ′′(s) = 1, ∀s ∈ (0,+∞)), this CFL condition simply reads:

δt ≤
|P | ρP

∑

η∈E(P )(F
∗
η )

−
. (63)

Proof. Let TP be defined by:

TP =
[ |P |

δt

(
ρP uP − ρ∗P u

∗
P

)
+

∑

η∈E(P )

F ∗
η u∗η

]

ψ′(uP ).

Using equation (60) multiplied by u∗P , we obtain:

TP =
[ |P |

δt
ρP

(
uP − u∗P

)
+

∑

η∈E(P )

F ∗
η (u∗η − u∗P )

]

ψ′(uP ).

We now define the remainder terms rP and (r∗η)η∈E(P ) by:

rP = (uP − u∗P ) ψ
′(uP )−

[
ψ(uP )− ψ(u∗P )

]
, r∗η = (u∗P − u∗η) ψ

′(u∗P )−
[
ψ(u∗P )− ψ(u∗η)

]
.
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With these notations, we get:

TP =
|P |

δt
ρP

[
ψ(uP )− ψ(u∗P )

]
+

∑

η∈E(P )

F ∗
η

[
ψ(u∗η)− ψ(u∗P )

]

+
|P |

δt
ρP rP −

∑

η∈E(P )

F ∗
η r∗η +

∑

η∈E(P )

F ∗
η (u∗η − u∗P )

(
ψ′(uP )− ψ′(u∗P )

)
.

Using once again equation (60), this time multiplied by ψ(u∗P ), we obtain:

TP =
|P |

δt

[
ρPψ(uP )− ρ∗Pψ(u

∗
P )

]
+

∑

η∈E(P )

F ∗
η ψ(u

∗
η)

+
|P |

δt
ρP rP −

∑

η∈E(P )

F ∗
η r∗η +

∑

η∈E(P )

F ∗
η (u∗η − u∗P )

(
ψ′(uP )− ψ′(u∗P )

)
.

The expression (61) of the remainder term RP,δt follow by remarking that, by a Taylor expansion, there exist

u
(1)
P , u

(2)
P ∈ |[uP , u

∗
P ]|, and ∀η ∈ E(P ), u∗η ∈ |[u∗P , u

∗
η]| such that:

rP =
1

2
ψ′′(u

(1)
P ) (uP − u∗P )

2, r∗η =
1

2
ψ′′(u∗η) (u

∗
η − u∗p)

2

and

ψ′(uP )− ψ′(u∗P ) = ψ′′(u
(2)
P ) (uP − u∗P ).

If ψ is convex, rP is non-negative. If, in addition, u∗P − u∗η vanishes ∀η ∈ E(P ) when F ∗
η is non-negative, −r∗η is

non-negative. By Young’s inequality, the last term in RP,δt may be bounded as follows:

∣
∣
∣

∑

η∈E(P )

(F ∗
η )

− (u∗η − u∗P ) (uP − u∗P ) ψ
′′(u

(2)
P )

∣
∣
∣

≤
ψ′′(u

(2)
P )2

2

[ ∑

η∈E(P )

(F ∗
η )

− 1

ψ′′(u∗η)

]

(uP − u∗P )
2 +

1

2

∑

η∈E(P )

(F ∗
η )

− (u∗η − u∗P )
2 ψ′′(u∗η),

so this term may be absorbed in the first two ones under the CFL condition (62). �
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