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research paper

An 850 nm SiGe/Si HPT with a 4.12 GHz
maximum optical transition frequency and
0.805A/W responsivity
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A 10 × 10 mm2 SiGe heterojunction bipolar photo-transistor (HPT) is fabricated using a commercial technological process of
80 GHz SiGe bipolar transistors (HBT). Its technology and structure are first briefly described. Its optimal opto-microwave
dynamic performance is then analyzed versus voltage biasing conditions for opto-microwave continuous wave measurements.
The optimal biasing points are then chosen in order to maximize the optical transition frequency (fTopt) and the opto-
microwave responsivity of the HPT. An opto-microwave scanning near-field optical microscopy (OM-SNOM) is performed
using these optimum bias conditions to localize the region of the SiGe HPT with highest frequency response. The
OM-SNOM results are key to extract the optical coupling of the probe to the HPT (of 32.3%) and thus the absolute respon-
sivity of the HPT. The effect of the substrate is also observed as it limits the extraction of the intrinsic HPT performance. A
maximum optical transition frequency of 4.12 GHz and an absolute low frequency opto-microwave responsivity of 0.805A/W
are extracted at 850 nm.

Keywords: Microwave photonics, Si-based devices and IC technologies

I . I N T R O D U C T I O N

Short distance communications encourage the development
of optoelectronic components on Silicon. In particular
ultra-low-cost silicon based optoelectronics is highly desir-
able for Radio-over-Fiber applications within buildings and
houses [1]. SiGe phototransistors are potential candidates
for light detection that were proposed for the first time in
2003 [2, 3] to be integrated in the standard SiGe heterojunc-
tion bipolar transistor (HBT) technology. Since then, several
laboratories have integrated such devices in various SiGe
BiCMOS industrial technological process such as TSMC [4],
IBM [5] and AMS [6]. Microwave phototransistors have the
advantage to combine a PIN photodiode with an HBT, thus
lowering the output impedance and making easier the
match to the other components of the electronic circuits.
Indeed, it avoids the need of a transimpedance amplifier as
previously studied based on InP/InGaAs heterojunction
bipolar photo-transistor (HPTs) [7, 8] and are recently with
SiGe HPTs as well [6, 9, 10].

There is a continuous need to verify the ability of the
phototransistor integration in newer commercial SiGe techno-
logical process offering faster operating frequencies but also to
improve the performance of the HPT without modification of
the technology vertical stack of layers. Based on different
technological approaches, the performances of SiGe HPTs
were studied by numerous publications as shown in Table 1.
In [4] and [5], the HPTs frequency response is measured
through their time domain optical impulse response at
850 nm via fast Fourier transform (FFT). A cutoff frequency
as high as 5.3 GHz was demonstrated. In [3, 11] and [12]
the frequency response is extracted directly from opto-
microwave continuous wave measurements. It is noticeable
that the two methods applied on similar technologies, i.e. [5,
11], provide very different results and may be related to the
non-discrimination of the various mechanisms involved in
the phototransistor using time domain measurements. In
this paper, we will focus on opto-microwave measurements
that we trust to be more accurate.

SiGe HPTs have been used for digital optical receiver cir-
cuits [13], photo oscillators [14] and more recently a transmis-
sion of a 60 GHz WiFi signal operating at 3 Gbps [15]. They
provide a novel approach in order to combine high speed
HBTs with low cost microwave phototransistors directly in
SiGe bipolar and BiCMOS technologies. To optimize the
speed of the phototransistor, [16] identified the fastest and
slowest illuminated regions of the structure based on physical
simulations. References [17, 18] investigated their opto
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electric compact circuit modeling. M. D. Rosales et al. [19]
verified through an opto-microwave scanning near-field
optical microscopy (OM-SNOM) that the distance between
the base, emitter, and collector contacts and the optical
window influences the dynamic characteristics of the photo-
transistor. However, no optimization of the phototransistor
speed has been performed in terms of the optical probe pos-
ition over the device and DC biasing conditions, simultan-
eously. Moreover, there is no information about the optical
transition frequency ( fTopt) of SiGe HPTs.

This paper investigates the maximum optical transition fre-
quency of a SiGe HPT fabricated in an 80 GHz SiGe2RF
Telefunken GmbH SiGe Bipolar technological process. The
optimum biasing points are analyzed to maximize the fTopt

and an OM-SNOM over the surface of the HPT is done at
optimal DC bias to determine the most sensitive as well as
the fastest regions of the HPT.

I I . S I G E / S I H P T S T R U C T U R E
U N D E R T E S T

The SiGe HPT was fabricated using the existing SiGe Telefunken
technological process for RF bipolar transistors used in wireless
communication, which consists in double HBTs based on polysi-
licon. The minimum emitter size on the layout is of 0.8 ×
1.4 mm2 for vertical NPN HBT transistors which provides
actual size after processing of 0.5 × 1.1 mm2 due to lateral
spacers. This technology exhibits electrical fT up to 80 GHz and
fmax up to 90 GHz. This enables circuits working above 10 GHz
and potentially up to 60 GHz in some configurations [20]. The
general scheme of the HBT cross-section is shown in Fig. 1.

The process parameters of the standard SiGe2RF HBT
technology are not modified to design the phototransistors.
This ensures compatibility with the technological process
and potential integration of complete opto-electric radio fre-
quency (OE-RF) circuits.

The basic HPT structure is designed by extending simultan-
eously the emitter, base, and collector layers of the reference
HBT [9]. The optical window is set by designing the metal
layer of the emitter contact away from the central region. To
improve the optical penetration, the superficial silicon oxide
and nitride layers at the defined optical window are removed
by using a reactive-ion etching (RIE) step available in the
process design kit for pads definition. A cross-section of the
phototransistor structure is given in Fig. 2. The light path goes
through the polysilicon of the emitter before entering the Si
emitter, SiGe base, and Si collector regions. This HPT is essential-
ly one large HBT whose emitter metallization was removed on
the top. The optical opening size of the phototransistor emitter
is 10 × 10 mm2. The total emitter size is 11.3 × 9.2 mm2 and
the total collector dimension is 16.5 × 10.6 mm2. The base

Table 1. SiGe HPT performance state from publications.

Process
technology

References DC resposibility
(A/W)

Cutoff
frequency

TSMC [4] 0.43∗ 3 GHz (pulse)
Atmel [3] 1.49† 0.4 GHz (OM)
IBM [5] N/A∗ 5.3 GHz (pulse)
AMS [11] 0.93∗ 0.14 GHz (OM)
IBM [12] 2.4∗ 0.518 GHz (OM)

Pulsed: extracted from the impulse response also called FFT transformation.
OM: extracted from opto-microwave continuous wave measurements.
∗At 850 nm optical wavelength.
†At 940 nm optical wavelength.

Fig. 1. Schematic cross-section of SiGe2RF technology from Telefunken.

Fig. 2. Simplified schematic cross-section of an extended Emitter Base Collector HPT.
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profile is a�40–80 nm thin abrupt SiGe layer with Ge content in
the range of 20–25% and with high p-doping in the range of
1019 cm23 as inferred from static measurements and physical
simulation comparison with earlier 50 GHz SiGe HBT gener-
ation [3, 16]. The collector is typically 300–400 nm thick and
low doped. A p+ guard ring which is connected to the ground
is surrounding the substrate region and creates a homojunction
at the interface with the substrate.

I I I . M E A S U R E M E N T B E N C H S E T U P

Figure 3 shows the on-wafer test setup used to measure the
HPT opto-microwave performances. It makes use of an
8753ES 40 GHz vector network analyzer (VNA) from
Agilent. Port 1 of the VNA directly modulates a 10 Gbps
850 nm multimode vertical cavity surface emitting laser
(VCSEL) from Philips ULM photonics. We prefer to use a
multimode light source to characterize our device for greater
ease and availability but also as it is better consistent with
the practical conditions of use of the HPT in home area
network (HAN) applications where multimode sources and
multimode fibers are largely deployed at 850 nm [1]. The dir-
ectly modulated optical signal is connected to a 90/10 optical

splitter. The 10% output of the optical power feeds a power
meter for monitoring, while the 90% output is injected into
the phototransistor through a focusing lensed fiber vertically
placed above the HPT optical window. The VCSEL is biased
so as to provide a 2.38 mW optical beam at the end of the
lensed fiber. The optical probe is mounted on a three axes nano-
positioner used to optimize the optical coupling to the HPT.

A tilted mirror is used to monitor the height of the optical
probe above the optical window of the HPT through the
microscope as shown in Fig. 4. This distance is set at 50 mm
from the surface to align the optical window within the
beam waist of the lensed fiber.

The optical probe scans a 60 × 60 mm2 surface above the
HPT including the 10 × 10 mm2 optical window with a
2 mm step (+20 nm). For each position, S-parameters of
the optical link are measured in the (50–20 GHz) frequency
range using the VNA. This characterization provides a com-
plete OM-SNOM view of the HPT under test.

The HPT is mounted in a common emitter configuration
topology with two 100 mm-pitch GSG pads in order to
perform on wafer microwave measurements. The base is
biased through an external bias tee loaded with 50 V which
is the standard normalization load in microwave applications.
This 50 V value is also important as well for intrinsic HPT

Fig. 4. (a) Top view of the fiber probe spot illuminating the phototransistor, with RF probes at the extremities of GSG access lines; (b) side view through the tilted
mirror of the fiber probe illuminating the phototransistor.

Fig. 3. On wafer opto-microwave measurement bench setup.
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characterization according to [21, 22] on InP/InGaAs. The
collector is connected to the port 2 of the VNA and biased
through the internal bias tee of the VNA. An Agilent B1500
semiconductor parametric analyzer is used to monitor and
to generate the biasing levels required for the HPT.

A proper de-embedding technique is required to extract
the behavior of the HPT from the pads, interconnections,
and probes effects. There are three techniques suited for an
on-probe opto-microwave de-embedding: adapter removal,
T-matrix approach, and ghost removal technique [21, 23].

The adapter removal technique is applied to study a
device-under-test (DUT) composed of the VCSEL, the
lensed fiber, the SiGe HPT under test, and the RF probes.

The ghost removal sets the DUT to include the VCSEL,
the fiber, and the SiGe HPT until only its pad. The meas-
urement of the SiGe HPT with this technique requires four
measurement steps and then a two steps post-processing.
The DUT in the T-matrix system is composed of the
VCSEL, the fiber, the SiGe HPT, and its GSG probes. It
requires three measurement steps according to [21, 23],
the first one being a short-open-load-thru (SOLT) calibra-
tion at the K-connector’s probe planes, and the second one
being the extraction of the probe characteristics through a
SOLT GSG calibration substrate. The third step consists of
the measurement of the full DUT. We preferred to use the
T-matrix technique as it involves less measurement steps,
procedures that are mathematically easier to implement
and a lower number of connector-level calibrations [21].

Figure 5(a) shows the microscopic picture of the photo-
transistor where the ground (left and right) and signal (up
and down) lines are clearly visible. The base contact is taken
from the top side, the collector contact from the bottom
side, and the emitter contact is connected at its left and
right side to the ground. The layout is accordingly sketched
in Fig. 5(b) which defines the optical probe coordinates with
its origin given at the center of the HPT optical window.

I V . E X P E R I M E N T A L R E S U L T S

The S-parameters measurement allows determining the opto-
microwave properties of the phototransistor. The opto-microwave

gain of the phototransistor, known as the 50 V responsivity of
the HPT, can be extracted from the transmission parameter
(S21) [2, 22]. The optical transition frequency ( fTopt) is
defined as the frequency at which the 50 V opto-microwave
gain of the HPT mode is equal to the 50 V low frequency
gain of the PD mode (Vbe ¼ 0 V). Thus, fTopt is extracted
from these two S-parameter mode measurements.

It is important to determine the best region for optical
coupling in order to optimize both the speed and the respon-
sivity of the device. It is also important to optimize its DC
biasing level accordingly. Performing an OM-SNOM at
various DC biasing conditions could be an ideal way of char-
acterizing the HPT structure. However, due to the limitation
of computer memory and measurement time, we prefer to
perform OM-SNOM once the biasing conditions have been
optimized.

We first perform the opto-microwave measurement of the
HPT by setting the optical probe at a given position of the
optical window (seeking the maximum gain as much as pos-
sible) in order to fix the DC bias. Preliminary results of fTopt

as a function of the base voltage at various collector-emitter
voltages are extracted and shown in Fig. 6. For this optical

Fig. 5. (a) Top view of the phototransistor; (b) layout of the phototransistor and optical probe coordinate axes centered at the HPT optical window center.

Fig. 6. Optical transition frequency as a function of Vbe and Vce at
non-optimal position of the optical probe.
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probe position, a maximum fTopt of 2.2 GHz is obtained at
Vbe ¼ 0.857 and Vce ¼ 2 V. The low frequency responsivity
at 50 MHz versus Vbe and Vce is then given in Fig. 7. A
high responsivity is achieved above Vbe ¼ 0.837 V when
Vce ¼ 1 and 2 V, and at Vbe ¼ 0.857 V when Vce ¼ 2.5
and 3 V.

The experimental OM-SNOM of the HPT is then per-
formed both in the photodiode mode and in the phototransis-
tor mode at the optimum biasing conditions in terms of fTopt

deduced from the previous result: at a fixed collector-emitter
voltage of 2 V and a fixed base-emitter voltage of 0.857 V in
phototransistor mode, and 2 V Vce and short circuited base
emitter in the photodiode mode. Figure 8 shows the
OM-SNOM view of the 50 V low frequency opto-microwave
gain (at 50 MHz), i.e. 50 V responsivity. The optical beam is
assumed to have a Gaussian profile along x- and y-axes.

The resulting opto-microwave response is thus the correl-
ation between the optical window and the Gaussian profile of
the beam. The Erf function is then used to model this gain and
to fit with the measurement [19]. However, since the substrate

Fig. 7. Responsivity at 50 MHz as a function of Vbe and Vce at non-optimal
position of the optical probe.

Fig. 8. OM-SNOM view of the 50 V opto-microwave gain at 50 MHz in
phototransistor mode, with the HPT layout superimposed, at Vce ¼ 2 V and
Vbe ¼ 0.857 V.

Fig. 9. Slice of the OM-SNOM view of the base current versus x position at
y ¼ 0 m with measurement results (diamonds) and adjusted model (circles)
at Vce ¼ 2 V and Vbe ¼ 0.857 V.

Fig. 10. Slice of opto-microwave responsivity at 50 MHz as a function of x
position (y ¼ 0 m) at Vce ¼ 2 and 3 V (Vbe ¼ 0.857 V). Bold lines are
measured values. Light and dotted lines are Erf models.

Fig. 11. OM-SNOM view of the optical transition frequency at Vbe ¼ 0.857
and Vce ¼ 2 V, with the HPT layout superimposed.
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photodiode created by the n+ sub-collector and the p+
ground ring (shown in Fig. 1) is photosensitive at 850 nm,
fitting the Erf model with respect to the low frequency respon-
sivity is not the right way to extract the optical beam para-
meters. Indeed, we prefer to fit the model with respect to
the base current of the HPT measured in the phototransistor
mode as it is independent from the substrate photocurrent.
The comparison of the so-extracted model and the measure-
ments is given in Fig. 9. It can be noticed that the photocurrent
induced in the base is opposite to the dark current and create a
negative sign of Ib at the peak injection.

The OM-SNOM view of the gain is symmetrical along x-
and y-axes as shown in Fig. 8. This is also illustrated on the

x-axis cross-section given in Fig. 10. From the adjusted
model, we estimate that the power shape of the beam is circu-
lar with a full width half maximum diameter of 28 mm. This
beam size is larger than the HPT window size. An optical
coupling rate of 32.3% between the lensed fiber and the
HPT window is then deduced.

The dynamic behavior of the phototransistor over the
surface of the structure is analyzed through the optical transi-
tion frequency fTopt. Figure 11 shows the OM-SNOM view of
fTopt as a function of the lensed fiber position. The 50 V opto-
microwave gain at the peak detection position is plotted in
Fig. 12 for both photodiode and phototransistor modes. The
opto-microwave cutoff frequency in phototransistor mode,
f-3dB,hpt, is measured to be 0.42 GHz. The measured fTopt

curve is symmetrical with respect to the x- and y-axes and
has a peak at the center of the optical window, x ¼ y ¼
0 mm. Its peak value is 4.12 GHz.

V . D I S C U S S I O N

The measured opto-microwave gain is well fitted with an Erf
function in the 25 mm , x , 5 mm range as shown in the
cross-section given in Fig. 10. This indicates that the opto-
microwave gain is actually only affected by the coupling
ratio in this specific region. At the center of the optical
window, a raw 0.26A/W (resp. 0.241A/W) responsivity is
measured when Vce ¼ 3 V (resp. 2 V). Taking into account
the 32.3% coupling ratio of the lensed fiber to the HPT, an
absolute responsivity of 0.805A/W is then extracted when
Vce ¼ 3 V. We also observe an optical gain of 20 dB as
shown in Fig. 12 compared with a DC current gain (b) of
300. It indicates that we benefit from the phototransistor
internal amplification property beyond its equivalent photo-
diode mode operation. An application of this device was
shown in [15] with a 3 Gbps data transmission.

The Erf function model does not fit well for |x| . 5 mm. In
this case the measured gain is higher than what is predicted
from the model curve. This region presents a very low fTopt,
as can be seen in Fig. 13, with no specific dependency of the
responsivity on the position when moving the fiber across
the optical window. This can be explained by the contribution
of the Si substrate which absorbs light at 850 nm.

A maximum fTopt of 4.12 and 3.5 GHz is measured at
the peak position when Vce ¼ 2 and 3 V, respectively.
According to Fig. 13, the fTopt curve versus the fiber position
follows the same Erf function variation as the opto-microwave
gain. At both extremities, its value is very low and could be
attributed to the substrate detection. This indicates that fTopt

follows the coupling efficiency variation law into the HPT
and is then mostly limited by the substrate effect on the photo-
diode mode. Table 2 provides a summary of the SiGe HPT
performances at 850 nm.

Fig. 13. Slice of optical transition frequency at x ¼ 0 m.

Table 2. SiGe HPT Performances.

Vce (V) Vbe (V) Relative responsibility (A/W)∗ Coupling ratio (%) Absolute resposibility (A/W)∗ f23dB (MHz) fTopt (GHz)

2 V 0.857 V 0.241 32.3 0.743 420 4.12
3 V 0.857 V 0.26 32.3 0.805 350 3.51

∗At 50 MHz.

Fig. 12. Opto-microwave gain of the photodiode and phototransistor modes
at x ¼ 0 and y ¼ 0 m (peak position of fTopt) at Vbe ¼ 0.857 and Vce ¼ 2 V.
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V I . C O N C L U S I O N

This paper presents a SiGe HPT of 10 × 10 mm2 optical
window developed in an existing 80 GHz SiGe HBT technol-
ogy without modifying the vertical stacks and layers. The
optimal DC biasing has been extracted in order to maximize
the 50 V opto-microwave gain and the optical transition fre-
quency fTopt of the device. An OM-SNOM characterization
has been conducted to understand the behavior of the SiGe
HPT. A detailed description of the experimental bench
setup was provided and use of a direct modulated optical
signal to avoid discrepant measurements as seen with SiGe
HPTs in the literature. For an optimum DC bias of Vce ¼ 2
and Vbe ¼ 0.857 V, an fTopt of 4.12 GHz, a 3 dB cutoff fre-
quency of 420 MHz in HPT mode and an absolute responsiv-
ity of 0.805A/W at 50 MHz have been experimentally
demonstrated. This phototransistor can be used in further
opto-microwave applications where the operating frequency
could lie in the 1–10 GHz range where integration to Si inte-
grated circuits and cost are the main issues.
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degree/Diplôme d’ingénieur in Micro-
electronic from ENSEIRB, Bordeaux,
France, and the DEA degree in Electron-
ic and Telecommunications from the
University of Bordeaux 1, France, both
in 1997. He received his Ph.D. degree
in the Opto-Microwave field from
CNAM, Paris, in 2001. He then joined
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