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A Comprehensive Model of Audiovisual Perception: Both
Percept and Temporal Dynamics
Patricia Besson*, Christophe Bourdin, Lionel Bringoux

Institute of Movement Sciences, CNRS - Université de la Méditerranée, Marseille, France

Abstract

The sparse information captured by the sensory systems is used by the brain to apprehend the environment, for example,
to spatially locate the source of audiovisual stimuli. This is an ill-posed inverse problem whose inherent uncertainty can be
solved by jointly processing the information, as well as introducing constraints during this process, on the way this
multisensory information is handled. This process and its result - the percept - depend on the contextual conditions
perception takes place in. To date, perception has been investigated and modeled on the basis of either one of two of its
dimensions: the percept or the temporal dynamics of the process. Here, we extend our previously proposed audiovisual
perception model to predict both these dimensions to capture the phenomenon as a whole. Starting from a behavioral
analysis, we use a data-driven approach to elicit a Bayesian network which infers the different percepts and dynamics of the
process. Context-specific independence analyses enable us to use the model’s structure to directly explore how different
contexts affect the way subjects handle the same available information. Hence, we establish that, while the percepts yielded
by a unisensory stimulus or by the non-fusion of multisensory stimuli may be similar, they result from different processes, as
shown by their differing temporal dynamics. Moreover, our model predicts the impact of bottom-up (stimulus driven)
factors as well as of top-down factors (induced by instruction manipulation) on both the perception process and the
percept itself.
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Introduction

Human beings need to efficiently collect information from their

environment in order to make decisions about which action to

perform next and to evaluate their actions’ impact on this

environment. They access this information through the perception

process. This process can be understood as an inverse problem,

where the cause (the physical source) must be identified from the

observed stimuli. This problem is ill-posed since only partial and

noisy information is conveyed by the senses [1,2]. To arrive at a

stable solution (a percept), some constraints based on high-level

knowledge are used and modulate the way the information is used.

Joint processing of the information collected by the different senses

also constrains the perception problem, as it can help solve some

ambiguities. Hence, perception can be seen as a system where

complex processing of the sensory information is performed,

working from the received stimuli (system inputs) to the percept

itself (system output).

Several studies have addressed the question of understanding

and modeling multisensory perception. Some focused on modeling

how different input conditions (different spatio-temporal properties

of the stimuli, or multisensory versus unisensory presentation of

the information) yield different spatial [3–6] or temporal [7]

percepts. Others investigated the impact of these different input

conditions on the perception process itself from a temporal

perspective, through the analysis of reaction times in detection

tasks [8,9] or in localization tasks [10]. The former studies aim at

an understanding of how the outputs of the perception system are

impacted by different contexts, whereas the latter aim at

investigating the perception process itself - in particular, its

dynamics. Though the results of these separate analyses suggest

that the types of sensory stimulus or the mode of presentation

impact both the perception process and its final output, no single

model accounts for these two elements, and thus for the whole

multisensory perception process.

In this paper, we propose a generative model of the perception

process involved in a spatial localization task, in varying contexts,

i.e., for different types of sensory stimulus (acoustic or visual) and

for different modes of presentation (unisensory or multisensory).

Our objective is not only to investigate and model the impact of

these different contexts on the percepts (i.e. the outputs of the

process), as in our previous work [11,12], but to extend this to a

comprehensive model accounting for the process itself. To this

end, our new model embeds a temporal mark (the decision time)

which characterizes the process dynamics. This comprehensive

model therefore constitutes the added-value of the present paper

with respect to both the state of the art and our previous work.

As far as the spatial percept - or output - is concerned, cross-

modal biases occur when there is multisensory information. Most

of the existing models resort to a Bayesian formalism to infer the

output of the perception system [2,13]. Indeed, Bayesian inference

affords a principled and flexible statistical approach to inverse

problems. It is particularly appropriate to model the perception

process - which is inherently uncertain - since the constraints can
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be embedded straightforwardly in the form of prior probability

distributions. Thus, the prior - on the way the information is

handled - is assumed to be uniform in the classical maximum

likelihood model (MLE) [5,6], which explains the integration of

multisensory information as a means for the brain to increase the

reliability of the sensory estimates [5]. Indeed, as mentioned,

multiple sources of information may help constrain the inverse

problem by alleviating some ambiguities [1]. However, for stimuli

showing specific physical properties, the multisensory biases may

be very weak, or the information even segregated [2,4,11,14].

Therefore, generalizations of the MLE model have recently been

proposed, where non-uniform a priori are used, so that the two

possible means of processing multisensory information (integration

or segregation) are taken into account by the model

[3,4,7,11,14,15]. As specifically shown in our earlier work [11],

the subjects exploited the available audiovisual information in

different ways, depending on the type of sensory stimulus they

were asked to locate (acoustic or visual). They integrated the

audiovisual information when asked to locate the acoustic

stimulus, whereas locating the visual stimulus was conditionally

independent of the acoustic information. This confirms that, while

multisensory information constrains the inverse problem, some

higher-level constraints also play a part in the perception process.

The Bayesian network (BN) we built earlier modeled the

relationship structures connected with these two modes of

multisensory information processing, as well as their dependence

on the type of sensory stimulus, and ultimately inferred a spatial

percept [11,12].

The dynamics of the perception process have been widely

explored, especially through analysis of reaction time. It has been

established that multisensory information speeds up reaction times

(multisensory enhancement) in both detection and localization

tasks [10,16,17]. Brain level investigations using electroencepha-

lography by humans [10,16,18] or animals [19] support the view

that early stages of the perception process are involved, while late

response stages are not significantly affected [10]. The reaction

time to a primary stimulus can be shortened if an accessory -

possibly irrelevant spatially - stimulus is presented at approxi-

mately the same time (intersensory facilitation of reaction time

[20]). To the best of our knowledge, no behavioral model has been

proposed as a support to the study of the dynamics of the

perception process.

The generative model of the audiovisual perception process we

present here yields both the percept from a spatial localization task

and a temporal feature of the process dynamics. Our comprehen-

sive model straightforwardly supports the statistical data analysis

we first perform. In keeping with our earlier model [11,12], we

employ Bayesian networks and we focus on making the structure

of the variable’s statistical relationships emerge from the data

throughout the model elicitation process. To this end, we use the

information theoretic framework proposed in [11]. The structure

of the relationships stresses the possible invariants attached to the

perception process [21]. As such, it conveys more interesting

information about the causal links between the subject’s percept

and the environment than the quantitative strengths of these links

do. The model we propose is more general than the MLE model

and is relevant to different contexts. First, the type of sensory

stimulus to be located is either acoustic or visual. Secondly, both

unisensory and multisensory information processes are studied, in

the latter case producing cross-modal biases of varying strengths.

The paper starts with a brief reminder of our experimental

protocol in [11] combining audiovisual perception with a spatial

localization task. Both the subjects’ spatial percepts and their

decision times are then investigated. Then the relationships among

variables are systematically analyzed and the model is elicited step

by step. Finally, the results of the behavioral and of the Bayesian

network analyses are discussed.

Analysis

Behavioral analysis
Experimental protocol. The procedure is briefly outlined

here, the interested reader being referred to [11] for a more

detailed description.

Ten subjects, seven males and three females (mean age

31:3+8:0) participated in the experiment. They were all right-

handed with normal hearing and normal or corrected-to-normal

vision. Informed written consent was obtained from all partici-

pants. Since only non-invasive behavioral measurements were

carried out, the study was approved by the Institute of Movement

Science Laboratory Review Board. The experiment was conduct-

ed in accordance with the Declaration of Helsinki.

The subjects were seated in complete darkness, in front of a

curved screen. This screen bore nine red LEDs at equal distance

and aligned in the azimuthal eye plane; it had a mobile buzzer

above it. Two sessions, acoustic and visual, were performed in

alternative order on two groups, each composed of half the

subjects. In the acoustic perception task, a 35-ms-long acoustic

stimulus (primary stimulus) was emitted at each trial, sometimes

together with a visual stimulus (secondary stimulus), sometimes alone.

The subjects were asked to report where they heard the sound. In

the visual perception task, the primary and secondary stimuli are

the visual and acoustic stimuli respectively. The subjects were

asked to report where they saw the flash. The primary stimulus

occurs randomly at +10 deg, +5 deg or 0 deg, and the secondary

stimulus, when used, at 0 deg (coincident stimuli), +5 deg or +10

deg (non-coincident stimuli) from the primary stimulus position.

Hence, possible positions for the secondary stimulus are

f0,+5,+10,+15,+20g.
To report the perceived location of the main stimulus, the

subjects used a rotating pointer linked to a potentiometer. The

subjects held the tip end and moved it from the right stop position

of the pointer (the neutral position, located at 40 deg) to the

perceived position. They remained in this position for about one

second before coming back to the neutral position. They were free

to move the pointer at the speed they wished.

The precise instructions given to the subjects were to locate the

sound in the acoustic perception task, and the light in the visual

perception task. They were informed that the acoustic stimulus

might come with a visual stimulus in the acoustic perception task,

and vice-versa in the visual perception task. Nevertheless, the

instructions clearly asked them to focus on the primary modality.

For each task (acoustic or visual), the subjects were exposed to

450 stimuli: 75 unimodal stimuli (15 stimulus occurrences per

position) and 375 bimodal stimuli. The latter include 75 spatially

coincident stimuli (15 occurrences at each of the 5 possible

primary stimulus positions) and 300 non-coincident stimuli (60 per

primary stimulus position, 15 per secondary position). The whole

data set thus comprises 4500 output values corresponding to the

10 subjects’ responses to each input stimulus.

Output of the perception process. The perception process

outputs are the subjects’ spatial localizations of the primary

stimuli. These were presented in [11], and we will only recall

briefly some of the main results here. Our objective being to study

and model multisensory perception, variations in the subjects’

spatial responses that are unrelated to the percept itself must be

removed as far as possible. Thus, a bias is observed in the subjects’

answers, which is not significantly different between the acoustic

Temporal Dynamics in Perception Modeling
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and visual tasks for a given subject (for unisensory inputs), whereas

it is between subjects. These inter-subject differences are then

related to the sensorimotor component rather than to multisensory

perception itself. They are smoothed by removing the mean of

each subject’s responses to unisensory stimuli, as was done in [11].

As a result, the normalized subjects’ spatial localization - adopted

hereunder - can be assumed to be an approximate observation of

the subjects’ spatial percept.

The mean and standard deviations of the system outputs (values

indicated by the subjects) for primary stimuli occurring in the

subjects’ median plane (0 deg) are shown in Fig. 1. Confirming the

visual dominance reported for spatial localization tasks [22], the

subjects were more accurate and less variable (i.e. more precise) in

the visual than in the acoustic perception task (averaged standard

deviations equal to 7.5 deg and 2.8 deg respectively). Adding a

spatially coincident secondary stimulus improved the precision of

localization in the acoustic perception task (standard deviation

equal to 5.8 deg), whereas it slightly decreased this precision in the

visual perception task (standard deviation equal to 3.2 deg).

Generally speaking, the subjects’ localizations of the primary

stimuli were strongly impacted by the secondary stimuli in the

acoustic perception task, contrary to what happened in the visual

perception task (for non-coincident stimuli, the standard deviations

were 9.5 deg in the acoustic localization task, against 3.0 deg in the

visual localization task).

Dynamics of the perception process. We now extend the

analysis performed on our data set to take into account two

temporal features, movement and decision times, both of them

potentially related to the dynamics of the perception process.

Movement onset is defined as the time when the pointer velocity

exceeds 1.5 deg/s. Conversely, movement end is considered to be

when it fell below 1.5 deg/s. This cutoff was chosen after careful

data inspection and is comparable to values found in the literature

(e.g., [23] after tangential velocity conversion). Decision time,

which we distinguish from reaction time since there was no time

constraint in our experiment, separates the presentation of the

stimulus from movement onset. A statistical analysis of these

features is now performed in order to establish whether one of

them can be discarded.

A 2 tasks (visual vs acoustic)63 modes of presentation

(unisensory vs bisensory non-coincident vs bisensory coincident)

Analysis of Variance (ANOVA) was conducted on the mean

movement times recorded for target localization. It revealed

neither significant main effects (Task: p = 0.934; Mode of

presentation: p = 0.119) nor interactions between the two factors

(p = 0.443). In other words, neither the nature of the stimuli, nor

the uni- vs multisensory mode of presentation has any significant

impact on movement time.

Since movement time is heavily dependent on motor charac-

teristics, it is not surprising that it does not explicitly convey the

dynamics of the perception process. Therefore, we normalized the

movement time by the distance to be traveled in order to minimize

this bias. A 2 tasks (visual vs acoustic)63 modes of presentation

(unisensory vs bisensory non-coincident vs bisensory coincident)

ANOVA was performed on the mean movement time/distance to

be traveled. As for movement time, this variable revealed neither

significant main effects (Task: p = 0.946; Mode of presentation:

p = 0.176) nor interactions between the two factors (p = 0.520).

Finally, a 2 tasks (visual vs acoustic)63 modes of presentation

(unisensory vs bisensory non-coincident vs bisensory coincident)

ANOVA was conducted on the mean decision time. Contrary to

the two previous temporal indicators, it revealed a significant main

effect of the task (F(1,9) = 8.983, p = 0.015) and of the mode of

presentation (F(2,18) = 26.571, p = 0.000). As illustrated in Fig. 2,

while visual stimuli are located more rapidly than acoustic stimuli,

the mean decision time appears significantly shorter in bisensory

Figure 1. Means and standard deviations of the values indicated by the subjects when locating the median (0 deg) acoustic and
visual stimuli in the unisensory, coincident and non-coincident cases. The values of the possible secondary stimuli are given as distances
from the primary stimulus positions.
doi:10.1371/journal.pone.0023811.g001
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than in unisensory presentations (Newmann-Keuls tests: unisen-

sory vs bisensory coincident or non-coincident pv0:001; no

difference between bisensory coincident and bisensory non-

coincident).

To further explore the impact of the stimulus location, a 2 tasks

(visual vs acoustic)65 primary spatial locations ANOVA was

conducted. In addition to the main task effect observed above

(F(1,9) = 7.654, p = 0.022), the statistical analysis yielded a

significant main effect of the primary stimulus location

(F(4,36) = 5.502, p = 0.001). However, data inspection and post

hoc tests showed that this effect was due to only one single target,

whose eccentricity was maximal (S1~10 deg). Apart from this

point, no obvious influence was found on decision time (Newman-

Keuls tests showed no significant difference for other locations).

The interaction between the two factors was not significant.

The influence of the secondary stimulus location was also

investigated by a 2 tasks (visual vs. acoustic)69 secondary spatial

locations ANOVA. As previously, it revealed a main task effect

(F(1,9) = 8.316, p = 0.018), but also a main effect of the secondary

target location (F(8,72) = 5.966, p = 0.000) and a significant

interaction between the two factors (F(8,72) = 2.822, p = 0.009).

Post hoc tests and visual inspection of the data (see Fig. 3) confirm

that decision times are longer in the acoustic than in the visual

task, that no effect of the secondary stimulus location is found in

the visual task (i.e., no secondary acoustic influence on decision

time), and that effect of the secondary stimulus location in the

acoustic task is marginal and mostly due to the most eccentric S2

position (S2 = 20 deg).

The first stage of our approach required us to identify the

relevant variables to be embedded. As far as the percept itself was

concerned, the choice was relatively straightforward. The

normalized spatial positions indicated by the subjects approxi-

mately represent the percepts (since the task is spatial localization).

Three temporal features, the subjects’ movement times normalized

or not by the distance to be traveled, and the subjects’ decision

times, were investigated in order to decide which better

characterize the perception process. The statistical analysis we

carried out showed that, unlike their movement times, the subjects’

decision times were far more dependent on the sensory nature and

on the mode of presentation of the stimuli than on their position.

Therefore, decision time is deemed the temporal variable best

characterizing the perception process.

Bayesian network analysis
Statistical formulations. We have chosen to follow a

probabilistic approach relying on Bayesian networks to model

audiovisual perception, as there is an inherent uncertainty in the

way the environment is perceived and processed by our sensory

system. Specifically, a step-by-step elicitation of the model using

BNs provides means of investigating the relationships among the

variables involved in the perception process. To this end, we will

use the information theoretic framework we proposed in [11].

Thus, we must cast the problem in a statistical framework to start

with.

The primary and secondary stimuli are modeled by two random

variables (rvs) S1 and S2 enumerating the possible stimulus

positions, f0,+5,+10g and f0,+5,+10,+15,+20,90g respec-

tively. The last S2 range value is arbitrarily assigned to the

secondary stimulus in the unimodal case. The model yields two

rvs, ŜS1 and t. ŜS1 denotes the perceived primary stimulus

localization and takes on values in the continuous range

½{40,40�, bounded by the physical limitations of the pointer.

The second rv t models the subjects’ decision time. t is defined on

Rz. We also introduce two binomial rvs, N and B. N models the

type of primary sensory stimulus. It is set to 0 in the acoustic

perception task, and to 1 in the visual perception task. B equals 0 if

the inputs are unisensory, 1 if they are bisensory.

The rv probability density functions (pdfs) are estimated using

histograms. The bin width to estimate the pdfs of the input signals

S1 and S2 is set to five, and one bin is centered on each possible

value of the ground truth (so that there are five bins in total for the

Figure 2. Decision time as a function of context (type of sensory stimulus and mode of presentation).
doi:10.1371/journal.pone.0023811.g002
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primary stimuli, and ten bins for the secondary stimuli). This way,

the ground truth pdfs are uniform. Moreover, any possible

inaccuracy pertaining to the experimental design is taken into

account. The range of ŜS1 is covered by 15 bins: thirteen bins of

width 5 are centered on f0,+5,+10,::,+30g and two larger bins

cover the bounding ranges ½{40,{32:5� and ½32:5,z40�, where

the data is very sparse (hence a trade-off is maintained between the

pdf estimate accuracy and overfitting). Obviously, the binomial

pdfs of N and B are estimated using two bin histograms, the bins

being centered on 0 and 1. Finally, a histogram with 0.2 width bins

centered on f0:1,0:3:::,1:7g estimates the pdf of t. A 10th bin of no

fixed width contains the few possibly remaining values of t. The

histograms of t and ŜS1 are provided in Figs. 10 and 11.

Model elicitation. First, the mutual information (MI)

normalized by the joint entropy (so that direct comparisons can

be performed) is estimated between pairwise rvs and compared to

E thresholds, to decide whether the values stand for dependent or

independent variables. These thresholds allow for taking into

account some possible approximations in the pdf estimates.

Independent rvs are built by generating uniform pdfs on each

rv’s range. The MI values obtained with these artificial rvs give us

the E values. Then, conditional information (CMI) is computed to

identify any third rv independences (see [11] for a detailed

presentation of the method).

MI analysis yields the undirected structure presented in Fig. 4.

As expected, S1 and S2 are independent of N (the position of the

stimuli are the same in the acoustic and visual perception tasks).

Obviously, S2 is largely dependent on B (I(S2,B)~0:454) whereas

S1 and B are totally independent. t shows greatest dependence on

N (I(t,N)~0:089), meaning that decision time is heavily affected

by the type of primary sensory stimulus, as established in the data

analysis section. t also depends strongly on B (I(t,B)~0:031):

adding an accessory stimulus to the localization task impacts the

decision time. Though weaker, the dependence between t and the

stimulus positions, S1 and S2, or the subject’s stimulus localization

ŜS1 cannot be disregarded (the MI values are above their respective

E thresholds). In particular, the MI with S2 is only half as weak as

I(t,B) (I(t,S2~0:017)).

Figure 3. Decision time as a function of the secondary stimulus positions.
doi:10.1371/journal.pone.0023811.g003

Figure 4. Undirected graphical model based on MI analysis. The
shaded nodes are the model outputs. The MI values for to each edge
are indicated with the corresponding E (thresholding) values (in
brackets).
doi:10.1371/journal.pone.0023811.g004
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We now proceed to the CMI analysis, to identify potential third

rv dependence. In pure machine learning problems, this step

allows the inference computational cost to be decreased. In the

present case, it reveals the causal relationships (in the causally

sufficient senses as stated by Neapolitan in [24]) between

environmental properties and the subjects’ percepts. We observe

that some CMI values are below their respective E threshold

values. An analysis of the information flow through the network

(using the d-separation theorem [25]) leads to the partially directed

acyclic graph [26] M shown in Fig. 5. This analysis establishes

that t is conditionally independent of S1 or ŜS1. Contrary to what

might be expected at first glance, t is also independent of B given

S2 (I(t,BjS2)vE). Actually, B and S2 are largely redundant: they

both follow Dirac distributions for unimodal inputs, but differ for

bimodal inputs, where only B still follows a Dirac distribution.

Thus, S2, like B, contains information about the existence or the

absence of an accessory stimulus. But, contrary to B, it also

provides clues to the location of the information. Note that

I(t,S2jB) is also very small (0.004, which is equal to E) so that S2

and t are not far from being conditionally independent given B. As

a result, we can conclude that t is primarily related to the mode of

presentation (uni- or bisensory) of the incoming sensory informa-

tion, although the position of the information is also a factor. Also,

the model confirms the statement made in the previous section:

decision time is conditionally independent of the primary input

position S1, contrary to the percept ŜS1, thus it primarily

characterizes the perception process and not the pointing

movement.

The probabilistic law described by M is:

PM~P(ŜS1,t,N,S1,S2,B)

~P(ŜS1jS1,S2,N):P(tjS2,N):P(S2jB,S1):P(S1):P(B):P(N): ð1Þ

Eq. (1) states that percept ŜS1 (output of the system) and decision

time t are conditionally independent given the context, i.e. given

the sensory nature N of the stimulus to be located, the position of

the input stimulus, S1 and S2, as well as whether or not there is a

secondary stimulus S2 (implicitly, S2 is the vector of the unisensory

or bisensory property of the available information).
Context-specific independence. Since our aim was to bring

to light specific top-down effects, depending on the context

(environmental properties), we now focus on how changes in the

environmental context modulate the structure of the variable

relationships. To this end, we take our model-based analysis a step

further by adding context-specific independence (CSI). CSI was

formalized by Boutilier et al. in [27]. It is related to the so-called

asymmetric independence used in similarity networks and

multinets [28,29]. While CMI reveals the possible structures of

the relationship among variables for all the values these variables

can take, CSI identifies dependences for different rv contextual

values, i.e., for specific values of the rvs (note that we use the term

contextual value rather than context as advocated in [27] to avoid any

confusion with the previous utilization of the word context in the

paper). Thus, CSI further generalizes Bayesian networks [30]. To

represent the graphical network resulting from CSI analysis, we

will resort to multinets, which allow CSI to be represented [31]. It

is important to remember that when a context is assigned to a rv,

the latter becomes a constant. As a result, its impact on the other

graph variables is no longer captured by the graph structure.

Instead, it is yielded by the quantitative expression of the joint

probabilities described by the local networks of the multinet.

Let us firstly assign the contextual values 0 or 1 to the rv N . We

obtain the multinet MN shown in Fig. 6, which reveals the

structure of the variable relationships connected with the acoustic

or visual localization tasks respectively. The structures of these

local networks provide two interesting results. First, there are two

different ways of handling the information as far as the percept is

concerned, depending on the sensory nature of the stimulus to be

localized. The percept is impacted by the accessory stimulus S2 in

the acoustic localization task (integration of the multisensory

information), whereas it is conditionally independent of S2 in the

visual perception task (segregation of the multisensory informa-

tion). Second, the structure of the relationships involving t remains

the same (the factors affecting the dynamics of the perception

process are the same) whatever the type of primary sensory

stimulus.

We now remove any specific contextual value on N and set B to

0 (unisensory inputs) or 1 (bisensory inputs). Analysis of the

resulting dependences leads to the multinet MB shown in Fig. 7.

Both model outputs, ŜS1 and t, still depend on the type of sensory

stimulus N, whatever the mode of presentation of the inputs.

Unsurprisingly, with unimodal inputs, percept dependence on S2
disappears, whereas it continues with bimodal inputs (let us remind

that we are considering simultaneously the acoustic and visual

localization tasks). Once the mode of presentation is fixed (B~0 or

B~1), the dependence between t and S2 vanishes, to be replaced

by a slight dependence between t and S1. This confirms the

hypothesis we put forward when we observed a conditional

independence between t and B given S2: once S2 is no longer the

vector of the mode of presentation, it only conveys (if it exists) clues

about the spatial position of the information, as does S1.

Results

While we are primarily concerned with eliciting the structure of

the generative model, in order to investigate the structure of the

implicit causal inference process attached to perception, we now

examine the relevance of our modelM, via a quantitative analysis.

Note that if our objective had been to reduce the computational

costs of inference, this quantitative analysis could have been done

with the multinetsMN orMB, the joint pdf of the multinets being

Figure 5. Graphical model M resulting from information flow
analysis based on CMI values.
doi:10.1371/journal.pone.0023811.g005

Figure 6. Local networks MN0 and MN1 of the multinet MN ,
obtained for the respective contextual values 0 or 1 of N.
doi:10.1371/journal.pone.0023811.g006
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recovered via the union-product operator [32]. It needs to be seen

whether the model is able to correctly infer the different percepts

ŜS1 as well as the different decision times t, in relation to the

multiple generated contexts.

Eq. (1) expresses the joint distribution PM for the model M in

terms of posterior and marginal distributions, whose parameters

have to be learned. The posterior distributions are a Gaussian for

ŜS1 and a Log-normal for t (i.e. taking the logarithmic values of the

decision times yields normally distributed data). The conditional

pdfs for S1 and S2 are uniform and are estimated by multinomial

distributions.

A K-fold (with K = 10) cross-validation scheme is followed to

learn the parameters and to perform the inference [33] so that no

overlaps exist between the testing and the training sets. A

maximum likelihood approach is used to learn the parameters of

the multinomial and Gaussian distributions [34] on the training

set. This training set is defined by the percepts and decision times

of NT~9 subjects randomly picked from the 10 subject set. Data

for the remaining subject forms the testing set. Once the

parameters of the pdfs have been learned, we perform inference

(estimating the system outputs given the inputs) using a Maximum

A posteriori (MAP) approach, where the MAP are defined as:

ŜS�1~arg max
ŜS1

P(ŜS1jS1,S2,N):P(S2jS1,B):P(S1):P(B):P(N), ð2Þ

t�~arg max
t

P(tjS2,N):P(S2jS1,B):P(S1):P(B):P(N): ð3Þ

Both the learning and inference stages were implemented using

the Bayes Net Toolbox for Matlab [34].

We followed the training and testing procedure 10 times, on

audiovisual uni- and bisensory data (with S1~0 deg). The

resulting mean coefficient of determination r2 is 0.91 between

the model’s MAP and the subjects’ percepts ŜS1, and 0.63 between

the model’s MAP and the subjects’ decision times t. Table 1

details the mean r2 values obtained for the different position

couples fS1,S2g. The model very well infers the subjects’ percepts

and fairly well infers the perception process dynamics attached to

different secondary stimulus locations in different sensory and

modal conditions. An example of the model’s performance, when

trained on all but the 9th subject, then tested on this excluded 9th

subject, is shown in Fig. 8, for the two contextual values of N and

for the different contextual values of S2 associated to the median

position of S1 (S1~0 deg).

It can be observed from these plots that the model fully predicts

the fusion and the non-fusion of the information that occurs in the

acoustic and visual localization tasks respectively, while still

correctly fitting the ŜS1 data in the unimodal case. It also quite

faithfully infers the different decision times for the four possible

contexts.

The lower r2 values for the decision times come certainly from

the large inherent within-subject’s variability. This impedes to get

an accurate estimate of the mean subjects’ decision time for each

stimulus couples fS1,S2g. Actually, this result could be expected

from the context-specific independence analysis we performed in

the previous of the paper. Indeed, t was shown to be conditionally

independent of B once S2 is known, because S2 not only informs

on the unisensory or bisensory property of the stimuli, but also

pertains to variability in the subjects’ answers. We ensured that this

within-subjects’ variability was not related to S1 by testing a model

where a direct link between S1 and t was present. The addition of

this link did not improve the r2 values. Increasing the number of

presentations of the same stimulus couples fS1,S2g could

theoretically solve the problem. Practically however, this would

require a longer experiment where decrease of vigilance and

increase of fatigue would certainly deteriorate the precision of the

subject’s answers.

Actually, the data analysis and the model’s structure established

that the decision times do not depend on S1 positions so that we

can remove any reference to these positions and appraise the

ability of the model to predict the subjects’ decision times for

different modes of presentation of the stimuli. This means that we

now look at the data in a similar way than what was presented on

Fig. 2. With the MAP values obtained for three specific positions of

S2 that correspond to three specific ways of presenting the

information, namely, S2~90 deg (unisensory case), S2~S1

(bisensory coincident case) and S2[fS1+5deg,S1+10degg (bi-

sensory non-coincident case), the mean coefficient of determina-

tion r2 becomes 0.92. An illustrative example of these results is

presented on Fig. 9, still for the 9th subject. Hence, when the

secondary stimulus locations stand for different ways of presenting

the information, the model is a very good predictor of the

dynamics of the perception process.

Discussion

This paper has addressed the question of understanding the

perception process associated with an audiovisual localization task

in its entirety. We do so by investigating and modeling not only the

output of the process but also its temporal dynamics. The BN

model that we propose, as a continuation and a formalization of

behavioral analysis, meets this objective. The percept and the

decision time, deemed to characterize the process dynamics, are

both inferred for different environmental properties (contexts), i.e.

for different types of sensory stimulus to be located, and for either

unisensory or multisensory modes of presentation of the

information. Our model is intended to investigate how multisen-

sory integration is modulated by context, yielding different

structural (bottom-up) and cognitive (top-down) factors.

To this end, our approach takes advantage of the compact

representation of the problem domain offered by the BN structure,

which depicts the relationships among the variables. Importantly,

we made no a priori hypothesis about the model’s structure, rather

learning it from the data, following the information theoretic

framework we proposed in [11]. To investigate the impact of

different bottom-up and top-down factors on perception, we

manipulated the context via observable variables that were then

embedded in the model. Our data-driven approach thus differs

from the ones taken in [4,7,35] where expert domain knowledge is

used to hypothesize a model structure. In these models, a hidden

variable mediates a model selection process, favoring either

integration or segregation of the multisensory information. In

Figure 7. Local networks MB0 and MB1 of the multinet MB

obtained for the respective contextual values 0 or 1 of B.
doi:10.1371/journal.pone.0023811.g007
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our model, the observable variables N and B modulate the context

and, as a result, the percept is shown to depend or not on both

stimuli. B determines whether unisensory or multisensory stimuli

are inputted (structural factor) while N models the type of sensory

stimulus to be located, i.e., it stands for instruction manipulation

and, indirectly, for intention manipulation (cognitive factor).

As a result, the structure of the general model M explicitly

captures some of the data analysis results: the perception process

does not only depend on certain structural properties of the

stimuli, such as their spatial position and discrepancy, but also on

other context properties that might induce top-down or bottom-up

effects, such as the instructions given or the mode of presentation

of the stimuli. To investigate this point further, we carried out a

context-specific independence analysis of the relationships among

the variables.

By assigning a contextual value to one of the variables,

independences valid in this specific context only can be revealed.

Thus, setting contextual values on N to specifically analyze the

acoustic or the visual localization task yielded the local networks

MN0 andMN1 shown in Fig. 6. Unsurprisingly, they correspond

partly to the models we proposed in [11], since ŜS1 is conditionally

independent of the secondary stimulus position S2 in the visual

localization task (N set to 1). As discussed in [11], this

mathematically establishes that, in this case, the information is

segregated at the percept level. The dominance of vision for spatial

localization certainly explains this phenomenon. But the added

value of the comprehensive modeling approach proposed here is

that it reveals that the dynamics of the perception process are still

dependent on whether the inputs are unisensory or multisensory

(through the dependence on S2), whatever the contextual value set

for N . This establishes that multisensory integration is involved in

both acoustic and visual localization tasks, even though in the

visual context, percept ŜS1 depends on the same input variables (S1

and N ) for both the multisensory and the unisensory cases.

Stated differently, the subjects receive and process multisensory

information in both the acoustic and visual localization tasks, but

they exploit this information differently depending on the sensory

context. Therefore, as clearly shown by the global model we

propose, multisensory integration phenomena (possibly reinforced

by bottom-up cross-modal attention [36,37]) constrain the inverse

problem (e.g., shorter decision times yielding the same percept

accuracy as in the unisensory case are observed in the visual

perception task). However, prior knowledge and top-down

processes (the instructions given to the subjects change their

intentional or attentional focus) modulate the way this multisen-

sory information is handled. Therefore, with multisensory inputs,

there is an integration of the information - visible in the process

dynamics - that results in a percept where this information is either

fused or not.

Modeling approaches concerned with process output alone

might miss this important result, which sheds light on the

potentially wide variations in the underlying brain processes,

depending on the bottom-up and top-down factors involved in the

Figure 8. Observed and inferred outputs ŜS1 and t for the 9th subject (training set consisting of all but this subject) when S1 occurs at
0 deg, for N~0 (left hand graph) and N~1 (right hand graph). We remind the reader that S2~90 deg stands for the unimodal case.
doi:10.1371/journal.pone.0023811.g008

Table 1. Mean coefficients of determination between the
data and the model.

S1 positions (in deg) 210 25 0 5 10

Mean r2 for t 0.59 0.69 0.61 0.66 0.57

Mean r2 for ŜS1
0.82 0.95 0.96 0.94 0.88

Mean coefficients of determination r2 between the model predictions and the
mean subjects’ decision times t and localizations ŜS1 , for different positions of
S1 and S2 (S2 taking on values {S1,S1+5,S1+10,90}).
doi:10.1371/journal.pone.0023811.t001
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task. For example, the computational models proposed in [4,7,38]

- or see [39] for a review - nicely predict the final percept

associated with multisensory inputs characterized by different

structural properties (mainly spatial congruency or discrepancy).

However, these models cannot discriminate between similar

outputs resulting from different processes. Similarly, while

Figure 9. Observed and inferred outputs t for the 9th subject (training set consisting of all but this subject), for different contexts
(type of sensory stimulus and mode of presentation).
doi:10.1371/journal.pone.0023811.g009

Figure 10. Probability density function of the subjects’ spatial localizations ŜS1.
doi:10.1371/journal.pone.0023811.g010
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electrophysiological studies do investigate multisensory perception

at the brain level, they limit their investigation to the temporal

(dynamics) dimension of the process (see e.g. [10,16,18]).

On the basis of the present work, we are convinced that a

comprehensive conceptualization of the perception process, where

the output and the dynamics of the process are both investigated

and modeled, should lead to a clearer understanding of

multisensory perception. In particular, it should provide insights

into the complex interconnections between perception and top-

down factors, such as those induced by instruction manipulation

for example. The latter may be related to intentional and

attentional phenomena which closely interlock with multisensory

integration, as discussed in [36,37,40]. Dedicated experimental

protocols and joint behavioral and electrophysiological studies

should be undertaken to investigate this point further.
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