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Abstract—The problem of collaborative distributed hy-
pothesis testing is investigated. In this setting, a binary
decision is required about the joint distribution of two
arbitrary dependent memoryless processes that are sam-
pled at different physical locations (nodes) in the system.
Interactive rate-limited communication is allowed between
these nodes. Defining two types of error events, the error
exponent for an error of the second type is investigated,
under a prescribed probability of error of the first type. A
general achievable error exponent, as a function of the total
available communication resources, is proposed, for the case
of two general hypotheses. The special case of testing against
independence is revisited for which it is shown that optimality
can be attained, as a special case of the general achievable
exponent, provided the constraint over the error probability
of the first type goes to zero.

I. INTRODUCTION

The field of hypothesis testing (HT) is composed of
problems where a statistician is required to declare the
joint probability distribution of a random process based
on observed samples that are available at the decision end.
When binary HT is concerned the choice of the statistician
is between two probability distributions (or hypotheses),
referred to as H0 and H1. The performance of the test
depends on the probabilities of two error events: An error
of the first type, with probability αn, occurs when H1 is
declared while H0 is the true hypothesis; while an error
of the second type, with probability βn, is defined to be
the opposite event. Typically, the trade-off between these
probabilities is investigated through the exponential rate
of decay with n (sample length) by which βn vanishes to
0, while αn is constrained to be below a given ε > 0.

The optimal exponential rate of decay for βn(ε) in the
case of single-variable HT is given by Stein’s Lemma [1]
to be:

θn(ε) , − lim
n→∞

1

n
log β?n(ε) = D(P0,X‖P1,X) , (1)

where D(·‖·) is the Kullback-Leiber (KL) divergence, and
P0,X , P1,X are the distributions implied by hypotheses H0

and H1, respectively. As a matter of fact, in this case
the optimal error-exponent D(P0,X‖P1,X) for β?n is not
dependent on the specific constraint imposed over αn ≤ ε.

When dealing with distributed HT scenarios with con-
straints due to communication between the different lo-
cations in the system, the problem naturally requires an
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Fig. 1: Two-node detection model with a bidirectional
error-free communication link.

interdisciplinary approach between information-theoretic
and statistical tools. In [2], [3], a two-node system is
considered, much like the one depicted in Fig. 1, where
only unidirectional communication is permitted, from node
A to node B. Here, node A observes n i.i.d. realizations of
a random variable (RV) X , while node B has access to n
i.i.d. realizations of the RV Y . After receiving information
from node A about its observations, node B declares its
decision based on the received message as well as its
own observations. While optimal results remain allusive
for the general case, an interesting achievable scheme
was proposed in [3] which is based on a type-by-type
analysis [4].

Recent results in [5], [6] build upon the seminal
works [2], [3]. Random binning is proposed as a method of
improving on previous achievable schemes. This approach,
which was first identified in [7], turns out to be in general
beneficial. Indeed, [8] investigates the case of testing
against conditional independence where under H1 the
observations X and Y are assumed to be statistically
independent given some side information Z, and shows
that in this case binning is optimal. The joint problem of
detection and source reconstruction, where after making a
decision node B is required to also reconstruct the source
from A (subject to an average fidelity criterion), was also
studied in [6], [9].

In this paper, we allow both nodes to communicate with
each other, under a constraint over the total amount of in-
formation passed through the error-free link, which is now
assumed to be bidirectional. We then study the exponent-
rate region for the case of two general hypotheses (not
necessarily testing against independence) and derive a
general achievable region that assume multiple rounds of
communication before making the decision. It is worth
mentioning that a similar scenario was first studied in [10]
for the case of testing against independence, where it was



assumed that P1,XY (x, y) = P0,X(x)P0,Y (y), i.e., the
alternative hypothesis H1 implies a product distribution.
The exponent-rate region was derived assuming that only
one round of communication was allowed.

The remainder of this paper is organized as follows.
In section II the system model is presented. Section III
presents our main result, namely an achievable error
exponent for the interactive case with general hypotheses.
This result is then proved in Section IV, before the case
of testing against independence is revisited in Section V.
Concluding remarks are discussed in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

A. Notation

Random variables are denoted by upper-case letters,
while lower-case letters denote their realizations. Vectors
are denoted by bold-face letters, with their length as a
superscript. Sets, including alphabets of RVs, are denoted
by calligraphic letters. PX ∈ P(X ) denotes a probability
distribution over the RV X , out of the set of all possible
probability distributions over X . We consider only RVs on
finite alphabets.

For a given vector of realizations x, Qx represents its
empirical distribution, or type. The set of all vectors x̃ ∈
Xn that share the type Qx is denoted by T (Qx). The set of
all δ-typical sequences of length n for the RV X ∼ PX(x)
is denoted by T n[X]δ , where δ-typicality refers to strong
typicality (see e.g., [3], [11]). X(n) is used to refer to the
type variable of a vector x, i.e., a variable whose distribu-
tion is defined by the empirical distribution of x. We use
H(PX) = H(X) = E[− logPX(x)] to denote the entropy
of X , I(X;Y ) to denote the mutual information between
X and Y , and D(PX‖QX) =

∑
x∈X PX(x) log PX(x)

QX(x)
to denote the KL-divergence between two probability
distributions in P(X ). X −
− Y −
− Z is used to denote
that the RVs X,Y and Z form a Markov chain. Finally,
logarithms and exponents are assumed to be of base 2.

B. System Model

We consider a two-node system, as depicted in Fig. 1.
Node A observes n realizations of a RV X , while node
B sees n realizations of Y . The two RVs are jointly dis-
tributed according to one of two possible probability dis-
tributions, P0,XY (x, y) = PXY (x, y) and P1,XY (x, y) =
PX̄Ȳ (x, y), referred to as hypothesis 0 (H0) and hy-
pothesis 1 (H1), respectively. We further assume that the
marginal distribution of each of the RVs is identical under
each of the hypotheses, i.e., P0,X(x) = P1,X(x) and
P0,Y (y) = P1,Y (y), where Pi,X(x) =

∑
y∈Y Pi,XY (x, y)

is the marginal distribution of X under hypothesis i, and
Pi,Y is defined in the same manner. In addition, X and
Y are assumed to be jointly independent and identically
distributed (i.i.d) in time, under each of the possible
hypotheses.

Node A and node B are connected by a bidirectional
link with rate R

[
bits

symbol

]
. Thus, if each node sees n

realizations, it is assumed that 2nR bits can be passed on
the link. The link is assumed to be perfect, and thus does
not introduce errors, as long as the rate limit is respected.
In addition, it is assumed that the channel is oblivious

to the direction in which it is used. The purpose of the
participants is to declare which of the two hypotheses is
the correct one. It is assumed, however, that the location at
which the decision is made is unimportant. Notice that this
assumption is not restrictive, as the decision can always be
transmitted at no cost (zero rate). We take the conventional
definition in literature of the two possible error events
discussed above (see e.g., [2], [3], [6], [10]):

αn = Pr(H1|XY ∼ P0,XY ) ,

βn = Pr(H0|XY ∼ P1,XY ) .
(2)

In the remainder of this paper, we study the exponential
rate with which βn vanishes to 0, under a fixed constraint
over the probability of error of the first type, αn ≤ ε,
ε > 0.

III. MAIN RESULT

We now present our main result, followed by an outline
of the proof in the next section. We choose to concen-
trate in this paper on the case where only one round
of communication is allowed between the nodes, with
node A starting the interaction. The case where any finite
number of communication rounds is allowed, as well as a
comprehensive proof for both cases, can be found in [11].

Proposition 1 (Achievable error exponent with one round
of communication). Define the following sets of auxiliary
RVs over finite alphabets:

S (R) , {(UV ) : I(U ;X) + I(V ;Y |U) ≤ R,
U −
−X −
− Y, V −
− (U, Y )−
−X} ,

(3)

L (U, V ) , {(Ũ Ṽ X̃Ỹ ) :PŨṼ X̃(u, v, x) = PUVX(u, v, x),

PŨṼ Ỹ (u, v, y) = PUV Y (u, v, y),

∀(u, v, x, y) ∈ U × V × X × Y} .
(4)

An achievable error exponent for the error probability of
the second type, when the error probability of the first type
is subject to satisfy αn ≤ ε, is given by:

− lim
n→∞

1

n
log βn ≥

max
U,V ∈S (R)

min
ŨṼ X̃Ỹ ∈L (U,V )

D(PŨṼ X̃Ỹ ‖PŪV̄ X̄Ȳ ) .

(5)

The strategy that leads to this achievable region is
inspired by the one proposed in [10] for the case of testing
against independence, while analysis relies on a type-by-
type approach, as was done in [3] for the case of general
hypotheses with unidirectional communication. Note that
the constraint over the rate in expression (3) implies that
the total available rate can be divided freely between the
messages. It is clear, that by choosing I(U ;X) = R,
V = φ, this result includes the unidirectional case in [3].

IV. PROOF OUTLINE

We now give an outline to the proof of Proposition 1.
We start by describing the codebook construction, as well
as encoding and decoding strategies. This is followed by
an analysis of the probability of error.



A. Codebook Construction

Without loss of generality, we assume that node A is the
first to communicate. Let the conditional probability distri-
bution PUV |XY (u, v|x, y) = PU |X(u|x)× PV |UY (v|u, y)
be the one that attains the maximum in Proposition 1.
Let PU (u) =

∑
x∈X PU |X(u|x)PX(x) and PV |U (v|u) =∑

y∈Y PV |UY (v|u, y)PY (y). Based on these RVs, define
I(U ;X) + ε(δ) = RU and I(V ;Y |U) + ε(δ′) = RV ,
with ε(δ) → 0 as δ → 0. By definition of the set
S (R), it is clear that RU + RV ≤ R + ε(δ) + ε(δ′).
Randomly and independently draw 2nRU sequences from
U , each according to the PD

∏n
i=1 PU (ui). Index these

sequences u(mU ) with mU ∈ [1,MU = 2nRU ]. As
a second step, for each word in the codebook of U ,
build a codebook Cu(mU ) by randomly and independently
drawing 2nRV sequences from V , each according to the
PD

∏n
i=1 PV |U (vi|ui(mU )). Index them by v(mU ,mV )

with mV ∈ [1,MV = 2nRV ].

B. Encoding and Decoding Strategies

Given a sequence x, node A searches in the codebook
of U for an index mU such that (u(mU ),x) ∈ T n[UX]δ . If
no such index is found, node A declares H1. If more than
one sequence is found, node A chooses one at random.
Node A then sends the chosen index mU to node B, using
a portion RU of the available sum-rate. Upon receiving
the index mU , node B checks if (u(mU ),y) ∈ T n[UY ]δ′ .
If not, node B declares H1. If the received sequence
u and the observed sequence at node B, y, are jointly
typical, node B looks in the specific codebook constructed
for message u(mU ), Cu(mU ), for an index mV such that
(u(mU ),v(mU ,mV ),y) ∈ T n[UV Y ]δ′ . If such an index is
not found, node B declares H1. If node B finds more
than one such index, it chooses one of them at random.
Node B then sends the chosen index mV back to node
A. Upon reception of the index mV , node A checks if
(u(mU ),v(mU ,mV ),x) ∈ T n[UVX]δ′′ . If so, it declares
H0, else it declares H1. δ, δ′ and δ′′ are connected to
each other through the generalized Markov lemma (see
e.g., [6]). It is important to emphasize that δ′(δ) → 0
when δ → 0, and δ′′(δ′)→ 0 when δ′ → 0.

C. Analysis of αn
The analysis of αn is identical to the one proposed in

[10], for the case of testing against independence. For sake
of clarity, we give here a short summary of this analysis.
Assuming that the distribution that controls X and Y is
P0,XY , and denoting the chosen indices at nodes A and
B by mU and mV , respectively, the error probability of
the first type can be expressed as follows:

αn ≡ Pr(E1 ∪ E2 ∪ E3)

≤ Pr(E1) + Pr(Ec1 ∩ E2) + Pr(Ec1 ∩ Ec2 ∩ E3) ,
(6)

where E1, E2 and E3 represent the following error events:

E1 ≡
{

(Un(mU ),Xn) /∈ T[UX]δ,∀mU ∈ [1,MU ]
}
,

E2 ≡
{

(Vn(mU ,mV ),Un(mU ),Yn) /∈ T[V UY ]δ′ ,

∀mV ∈ [1,MV ] and the specific mU sent from node A
}

E3 ≡
{

(Vn(mU ,mV ),Un(mU ),Xn) /∈ T[V UX]δ′′ ,

for the specific mU and mV previously chosen
}
.

(7)

Analyzing each of the probabilities in (6) separately,
Pr(E1) tends to 0 as n → ∞ by the covering lemma
[12], if RU ≥ I(U ;X) + ε(δ), with ε(δ) → 0 as δ → 0.
Pr(Ec1 ∩ E2) → 0 when n → ∞ by the conditional
typicality lemma [12], in addition to the covering lemma,
if RV ≥ I(V ;Y |U) + ε(δ′). Finally, the third term in
(6) can be shown to tend to zero through the use of the
Markov lemma (see e.g., [6, Lemma 5]), along with the
fact that

PXn(x) = exp
{
−n
(
H(X(n)) +D(X(n)‖PX)

)}
, (8)

where X(n) is the type variable (or empirical distribution)
of the vector x. Thus, as all three components tend to zero
with large n, we may conclude that αn ≤ ε for an arbitrary
desired constraint ε > 0 and n large enough.

D. Analysis of βn

The probability of error of the second type is defined
to be βn ≡ Pr(H0|XY ∼ P1,XY ). Thus, we assume
that P1,XY controls the distribution of the observed RVs
throughout this analysis. We follow a similar approach to
the one used in [3]. As the region proposed in Proposi-
tion 1 calls for a maximization over S (R), it is enough
to show that min

L (U,V )
D(PŨṼ X̃Ỹ ‖PŪV̄ X̄Ȳ ) is an achievable

error exponent for any choice of (U, V ) ∈ S (R).
For a given pair of sequences (x,y) with type variables

(X(n)Y (n)), we count all possible events that lead to an
error. We notice first, that given a pair of vectors (x,y)
the probability that these vectors will be the result of n
draws, according to the distribution implied by H1, can
be calculated through [3, Lemma 3] to be:

Pr{X̄Ȳ = (x,y)}

= exp
[
−n
(
H(X(n)Y (n)) +D(X(n)Y (n)‖X̄Ȳ )

)]
,

(9)
where X(n)Y (n) are the type variables of the realizations
(x,y). For each pair of codewords in the codebooks ui
and vj , we define the set:

Si,j(x) ≡ {ui} × {vj} × Gi × {x} , (10)

where Gi is the set of all vectors y that, given the
received message ui, will result in the message vj being
transmitted back to node A. Denoting by Ki,j(x) the
number of elements (ui,vj ,x,y) ∈ Si,j(x) whose type
variables coincide with (U (n)V (n)X(n)Y (n)), this term
can be bounded by:

Ki,j(x) ≤ exp
[
nH(Y (n)|U (n)V (n)X(n))

]
. (11)

Letting K(U (n)V (n)X(n)Y (n)) to denote the number of
all elements:

(u,v,x,y) ∈ Sn ≡
MU⋃
i=1

MV⋃
j=1

⋃
x∈T n

[X|uivj ]δ′′

Si,j(x) (12)



that have U (n)V (n)X(n)Y (n) as their type variable. It is
not difficult to check that (12) can be bounded as:

K(U (n)V (n)X(n)Y (n))

≤
MU∑
i=1

MV∑
j=1

exp
[
nH(Y (n)|U (n)V (n)X(n))

]
|T n[X|ujvi]δ′′ |

≤ exp
[
n
(
H(Y (n)|U (n)V (n)X(n))

+I(U ;X) + I(V ;Y |U) +H(X|UV ) + µn)
]
,

(13)
where MU and MV are the sizes of the codebooks of both
massages, which are dictated by the respective rates. The
first and second additional terms in the final expression
come from the size of the codebooks and the third is a
bound over the size of the delta-typical set. µn is a function
of δ, δ′, δ′′ that complies with µn → 0 when n→∞. The
probability of error of the second type can thus be bounded
by:

βn ≤
∑

exp
[
−n
(
k(U (n)V (n)X(n)Y (n))− µn

)]
,

(14)
where the function k(U (n)V (n)X(n)Y (n)) defined as

k(U (n)V (n)X(n)Y (n))

= H(X(n)Y (n)) +D(X(n)Y (n)‖X̄Ȳ )

−H(Y (n)|U (n)V (n)X(n))−H(X|UV )

− I(U ;X)− I(V ;Y |U) ,

(15)

and the sum is taken over all possible type-variables
U (n)V (n)X(n)Y (n) of elements (u,v,x,y) in Sn.

Through considerations of type counting (i.e., the num-
ber of possible types grows polynomially, and not expo-
nentially, in n) and continuity similar to the ones in [3],
the sum in (14) can be replaced by a maximum operator
over the set L (U, V ) in Proposition 1. Considering the
error exponent itself, we can thus conclude that

− lim
n→∞

1

n
log βn ≥ min

L (U,V )
k(Ũ , Ṽ , X̃, Ỹ ) , (16)

with

k(Ũ , Ṽ , X̃, Ỹ ) = H(X̃Ỹ ) +D(X̃Ỹ ‖X̄Ȳ )

−H(Ỹ |Ũ Ṽ X̃)−H(X̃|Ũ Ṽ )− I(Ũ ; X̃)− I(Ṽ ; Ỹ |Ũ) .
(17)

Analyzing this expression, it can be shown that

k(Ũ , Ṽ , X̃, Ỹ ) = D(PŨX̃Ỹ ‖PŪX̄Ȳ ) + I(X̃; Ṽ |Ũ Ỹ )

= D(PŨṼ X̃Ỹ ‖PŪV̄ X̄Ȳ ) ,
(18)

which completes the proof.

V. REVISITING THE CASE OF TESTING AGAINST
INDEPENDENCE

We now revisit the case of testing against independence,
which was studied in [10]. In this case, it is assumed
that under hypothesis 1, the RVs X and Y are distributed
according to a product distribution:{

H0 : P0,XY (x, y) = PXY (x, y) ,

H1 : P1,XY (x, y) = PX̄Ȳ (x, y) = PX(x)PY (y) .
(19)

The optimal error exponent for an error of the second type
in this case, when the constraint over the error of the first
type is very small, ε→ 0, is given by [10] to be

− lim
n→∞

1

n
log β?n(ε) = max

(U,V )∈S (R)
I(U ;Y )+I(V ;X|U) ,

(20)
where S (R) is defined as in Proposition 1. While the
achievability proof in [10] inspired our approach taken
in this paper for the case of general hypotheses, unfortu-
nately, the auxiliary RVs identified in the converse proof
do not match the required Markov chains (3) (see [13] for
further details). In order to overcome this issue, we next
provide a converse proof by carefully selecting those RVs.

First, we show that this result is contained by the
achievable region of Proposition 1, when testing against
independence is considered. We then discuss the main
steps in the proof of the converse part, which can be found
in [11].

A. Proof of Achievability

In order to prove the achievability of the region in (20)
through the general region in Proposition 1, it is convenient
to start by integrating the expression given in (18) for
k(Ũ , Ṽ , X̃, Ỹ ) into (16):

− lim
n→∞

1

n
log βn

≥ max
S (R)

min
L (U,V )

[
D(PŨX̃Ỹ ‖PŪX̄Ȳ ) + I(X̃; Ṽ |Ũ Ỹ )

]
.

(21)
We analyze each of these components separately:

D(PŨX̃Ỹ ‖PŪX̄Ȳ )

(a)
= D(PŨỸ ‖PŪȲ ) +D(PX̃|ŨỸ ‖PX̄|ŪȲ |PŨỸ )

(b)
= I(U ;Y ) +D(PX̃|ŨỸ ‖PX̄|Ū |PŨỸ )

(c)
= I(U ;Y ) +D(PX̃|ŨỸ ‖PX̃|Ũ |PŨỸ ) ,

(22)

where (a) is due to the chain rule,
D(PX̃|ŨỸ ‖PX̄|ŪȲ |PŨỸ ) is the conditional KL-
divergence; (b) stems from the assumption of testing
against independence, as well as the Markov chain
Ū −
− X̄ −
− Ȳ and the fact that PŨỸ = PUY ; and
(c) is due to the fact that PŪX̄ = PUX = PŨX̃ . This
is true because of the definition of the set L (U, V ), in
addition to the fact that the marginal distribution of X ,
PX(x) is identical for both hypotheses, and the encoding
at node A is done without prior knowledge of the true
hypothesis (thus PŪ |X̄(u|x) = PU |X(u|x)). By using
similar considerations it is straight-forward to show that

D(PŨX̃Ỹ ‖PŪX̄Ȳ ) = I(U ;Y ) + I(X̃; Ỹ |Ũ) . (23)

As for the second term in (21), we express it as follows:

I(Ṽ ; X̃|Ũ Ỹ ) = I(Ṽ Ỹ ; X̃|Ũ)− I(X̃; Ỹ |Ũ)

≥ I(Ṽ ; X̃|Ũ)− I(X̃; Ỹ |Ũ) .
(24)



This allows us to conclude through (21) that

− lim
n→∞

1

n
log βn

≥ max
(U,V )∈S (R)

min
ŨṼ X̃Ỹ ∈L (U,V )

[
I(U ;Y ) + I(Ṽ ; X̃|Ũ)

]
= max

(U,V )∈S (R)
[I(U ;Y ) + I(V ;X|U)] ,

(25)
where the final equality is due to the fact that in the set
L (U, V ), PŨṼ X̃(u, v, x) = PUVX(u, v, x). This com-
pletes the proof of achievability through the result for
general hypotheses.

B. Proof of Converse

Starting from the multi-letter characterization of the
exponent, which constitutes an upper bound to the error
exponent of the second type when the constraint over the
error probability of first type vanishes to zero, it follows
that:

− lim
n→∞

log βn ≤ I(IA;Y n) + I(IB ;X
n|IA)

=

n∑
i=1

[
I(IA;Yi|Y n

i+1) + I(IB ;Xi|IAXi−1)
]

=

n∑
i=1

[
I(IAY

n
i+1;Yi) + I(IBY

n
i+1;Xi|IAXi−1)

−I(Y n
i+1;Xi|IAIBXi−1)

]
=

n∑
i=1

[
I(IAX

i−1Y n
i+1;Yi)− I(Xi−1;Yi|IAY n

i+1)

+I(Y n
i+1;Xi|IAXi−1) + I(IB ;Xi|IAXi−1Y n

i+1)

−I(Y n
i+1;Xi|IAIBXi−1)

]
=

n∑
i=1

[
I(Ûi;Yi) + I(Vi;Xi|Ûi)− I(Y n

i+1;Xi|IAIBXi−1)
]
.

(26)
Here, the final equality is due to the Csiszàr Sum Iden-
tity [12, Chapter 2], and by setting the auxiliary RVs:{

Ûi ≡ (IA, X
i−1, Y ni+1) ,

Vi ≡ IB ,
(27)

for all i = [1 : n]. Note that under this definition both
required Markov chains in (3) are verified (see e.g., [13]
for further details). By introducing a time-sharing RV Q
and letting U ≡ (ÛQ, Q), this bound can be rewritten as:

− lim
n→∞

1

n
log βn ≤

[
I(ÛQ;YQ|Q) + I(VQ;XQ|ÛQ, Q)

]
− 1

n

n∑
i=1

I(Y ni+1;Xi|IAIBXi−1)

≡ I(U ;Y ) + I(V ;X|U)− t ,
(28)

with t ≥ 0. It can be shown in a similar manner that

R ≥ I(U ;X) + I(V ;Y |U)− t . (29)

All that is left is to show that the combination of the
constraints in (28) and (29) is equivalent to the region

− lim
n→∞

1

n
log βn ≤ I(U ;Y ) + I(V ;X|U) ,

R ≥ I(U ;X) + I(V ;Y |U) ,
(30)

which can be done through Fourier-Motzkin elimina-
tion [14], as both regions are convex. Thus, the converse
part of the proof is complete.

VI. CONCLUDING REMARKS

We investigated the problem of collaborative distributed
hypothesis testing with general hypotheses. While concen-
trating on the case of a single round of communication
in this paper, broadening results to multiple rounds is
straight-forward, and can be found in an extended version
of this work [11]. A new achievable exponent-rate region
for the case of general hypotheses was proposed. The
case of testing against independence was then revisited.
It was shown that the proposed achievable region is in
fact optimal for this case, by first showing that it achieves
the previously known result, and then revising the proof
of the converse part.
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