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Abstract—Homotopic grayscale thinning leads to
over-connected skeleton when applied on noisy images.
To avoid this phenomenon, the parametric thinning
relaxes the initial constraint by lowering low contrast
crests, peaks and ends, according to a parameter re-
lated to the noise and contrast of the image and under
the constraint of ascendant gray level processing. Even
if the statistical control of this parameter leads to
a local adjustment and to a standardization of the
thinning parameter, this method still produces spuri-
ous branches. In fact, the lowering criterion for peak
and end notions becomes unadapted while the image
dynamic changes during the thinning process. To avoid
this phenomenon, we propose to revise and unify these
lowering criteria. Consequently, we update the statis-
tical test design by taking into account the gray level
of the treated pixels to better fit to lowerable pixels
definition. Results of our contribution are compared to
the initial parametric thinning.

Keywords: Thinning, mathematical morphology, ho-
motopy, hypothesis test.

Introduction

Skeletonization is an image transformation that aims to
represent objects by their medial axis lines while preserv-
ing image topology. It results in a one-pixel thin line called
skeleton. The main approaches of skeletonization are based
either on mathematical morphology or on differential ge-
ometry. Despite the medial axis accuracy of the latter
detectors [1], [2], the complex setting of their parameters
and especially their inability to preserve the connectedness
of objects (homotopy of skeleton) limits their applicability
to regular object lines with few junctions. Concerning
the morphology based skeletonization category, a focus on
the thinning methodologies is noticed for their topology
preservation property. Therefore, the homotopic thinning
has been widely investigated in the early 90’s by [3], [4],
pointing out the role of this category of methods in feature
extraction as an important step of pattern recognition
applications. One can cite their usefulness for character
recognition application [5], [6], [7] in binary context and in
the fields of road extraction [8], [9], biomedical imaging [10]
and biometrics [11], [12] in grayscale one.

As it was initially implemented for binary images, the
thinning was extended to grayscale images by [13], [14],
[15] through the use of the cross-sectional topology. In-

stead of successively peeling border pixels until reaching
object medial axis, grayscale thinning consists in sequen-
tial lowering of gray values starting from background
pixels until reaching object highest crest lines representing
the skeleton. The ensuing improvement of the grayscale
thinning was the consideration of noisy image context. To
do so, the authors of [16] propose to relax the topology
preservation constraint by involving in the lowering con-
dition topological notions of peak, end and crest pixels
which are controlled by a parameter denoted λ. Therefore,
the efficiency of the lowering requires an accurate setting
of the parameter λ which is so far, manually set.

In [17], the authors showed that the lowering step of each
thinning topological notion can be assimilated to a statis-
tical hypothesis test based on order statistics. Thanks to
this framework, they replaced the manually set parameter
by a standardized confidence levels of the used statistical
tests for the lowering decision in the three configurations.
The introduction of statistical tests allows good control of
the lowering of the crests without sufficiently removing
insignificant peaks and ends. In fact, these pixels are
mostly treated at late stages of the thinning. This induces
large changes in the dynamic of the image making the
lowering decision not adapted to the current skeletonized
image.

The present work aims to propose a revision of the
lowering criterion for peak and endpoint decisions. This
new scheme permits us not only to eliminate more ef-
ficiently these pixels, but also to implement a common
statistical strategy for the lowering decision of the three
thinning notions. In addition, we revise the statistical test
by taking into account the cross section information in the
test design.

In a first section, we present the parametric thinning
framework. In the second, we unify the lowering criterion
of the three topological notions by updating the lowering
criterion for peak and end pixels. The third section is
devoted to the revision of statistical control of the thinning
parameter proposed by [17]. We end up presenting results
on synthetic images to assess our contribution.



I. Parametric thinning framework

The grayscale thinning framework is extended from the
binary thinning one by using the cross-sectional topology
introduced in [13], [14], [15]. The principle of grayscale
thinning is to identify lowerable pixels, iteratively lowered
by setting them to the gray value of their respective closest
dark neighbor. The cross-section binarizes the 8-nearest
neighbors of each pixel x (N8(x)) and splits them into
two subsets. By denoting I(x) the gray intensity of pixel
x, the two subsets are defined as follows:

• The set of darker 8-neighbors of x N<
8 (x) = {y ∈

N8(x), I(y) < I(x)} which is involved in the lowering
step of thinning algorithm,

• The set of higher 8-neighbors of x N≥
8 (x) = {y ∈

N8(x), I(y) ≥ I(x)}. The spatial configuration of this
set is used to decide if x is lowerable.

For the first grayscale thinning algorithm, J. Serra [13]
defined a lowerable pixel x as simple for the cross-section
as explained hereafter:

Definition 1: A simple pixel x verifies the following two
conditions:

(i) At least one of the 4-nearest neighbors of a pixel x
belongs to N<

8 (x),
(ii) N≥

8 (x) forms a unique 8-connected component.

The condition (i) states simply that x is a border object
and condition (ii) that removing x doesn’t change the
object connectedness. In order to prohibit the lowering
of pixels in branche’s extremity, the endpoint pixels are
blocked in gray thinning as proposed by A. Rosenfeld
in [18] for binary images. G. Bertrand [19] and M. Couprie
[16] defined the endpoint notion in grayscale image as
follows:

Definition 2: An object pixel x is an endpoint if it
has only one 8-neighbor belonging to the foreground:
|N≥

8 (x)| = 1.
Therefore, the lowerable pixels are simple pixels that
are not endpoint. However, this definition of lowerable
does not take into account isolated pixels. To treat these
pixels, the last topological notion of peak is added to the
lowerable pixels set of classical thinning. It was defined as
follows [19], [16]:

Definition 3: An object pixel x is peak if it has no 8-
neighbor belonging to the foreground: |N≥

8 (x)| = 0.
The Algorithm 1 details this thinning process.

Algorithm 1 Thinning algorithm for grayscale image

Require: I(x) grayscale value of pixel x in image I
1: repeat

2: Compose the list L of lowerable pixels in I
3: for Pixel x in L do

4: if x is still lowerable at this step then

5: I(x)← max {I(y), y ∈ N<
8 (x)}

6: end if

7: end for

8: until L is empty

The ensuing improvement of the classical thinning
framework is the consideration of noise in grayscale im-
ages. In fact, the thinning of noisy images generates
non-significant crests, extremities and isolated pixels and
results in over-connected and inexploitable skeletons.

Consequently, the authors of [16] relaxed the strong con-
straint of preserving connectedness when a local contrast is
below a global parameter λ. The main idea of this method
called λ-Skeleton is to revise lowerable pixels set by:

1) adding the topological configuration of crest pixels,
2) introducing λ-lowerable pixels as insignificant peaks,

crests and endpoints. They are all controlled by
the global parameter λ and involved in the lowering
process in parallel to simple pixels still belonging to
lowerable set.

Related to this idea, definitions of λ-crest, λ-end and λ-
peak are detailed in the following.

Definition 4: Pixel x is λ-crest if it fulfills the following
two conditions:

(i) At least 2 connected components (K ≥ 2) in N<
8 (x)

are 4-connected and 4-adjacent to x;
(ii) For these K connected components, named Ck (k =

1, ..,K), at least (K − 1) are at minor distance from
I(x):

d1(x, Ck) = ( I(x)−min{I(Ck)} ) ≤ λ.

Condition (i) in the λ-crest Definition 4, states that pixel x
lies locally on a crest surrounded by K darker components.
Condition (ii) states that no more than one darker compo-
nent is at a distance exceeding λ, thus that the crest pixel
may be assimilated to the local background represented
by the other (K− 1) dark components. It is worth noting
that 4-connectedness and 4-adjacency conditions limit K
to 2 ≤ K ≤ 4, as illustrated in Figure 1.
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Fig. 1. In each one of the configurations, x is λ-crest for K = 2 (left),
K = 3 (middle) and K = 4 (right).

Definition 5: Pixel x is λ-end (resp. λ-peak) if x is end
(resp. peak) pixel and:

d2(x, C) = ( I(x) −max{I(C)} ) ≤ λ

where C is the unique 8-connected component of the lower
8-neighborhood of the pixel x N<

8 (x).
These λ-dependant configurations are merged in the single
λ-lowerable notion of definition 6.

Definition 6: Pixel x is λ-lowerable if it satisfies one of
the following conditions:

(i) x is λ-crest (ii) x is λ-end (iii) x is λ-peak.



An overall graph of lowering cases for the λ-thinning is
presented in Figure 2, where we differentiate λ-dependant
configurations (λ-lowerable) from topology preserving
simple pixels (lowerable). As mentioned in Algorithm 2,
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Fig. 2. Description of λ-lowerable pixel [17]: end denotes a non-
endpoint pixel.

the λ-Skeleton treats pixels in an ascendant order of
intensity to avoid trespassing object crest lines and dis-
connecting them. In the appendix of [16], the authors
explain that a sorting step on the list of λ-lowerable pixels
needs to be performed before thinning so that object crest
disconnections are avoided as much as possible. In fact, low
crests are located not only in the background, but also in
the foreground. Their processing in the first iterations may
reduce their local contrast to neighbors and melt them
with the insignificant crests in the upcoming iterations.

Algorithm 2 λ− thinning algorithm for grayscale image

Require: I(x) grayscale value of pixel x in image I
1: repeat

2: Compose the list L of λ-lowerable or lowerable
pixels in I

3: Sort the list L in an increasing order of intensity
4: Extract from L the pixels with minimal values to

form L
′

5: for Pixel x in L
′ do

6: if x is still λ-lowerable or lowerable at this step
then

7: I(x)← max {I(y), y ∈ N<
8 (x)}

8: end if

9: end for

10: until L is empty

Two main changes are noted between the classic gray
thinning and the parametric thinning of Algorithm 2. The
first is the use of homotopy changing configurations in
the lowering process so that noisy pixels are filtered. The
second is the ascendant treatment of the image gray levels
to limit object disconnection induced by the treatment of
non-homotopic configurations.

II. Update of thinning strategy for the

lowering of peak and endpoint

According to Definitions 4 and 5, we note a difference in
the choice of distance between I(x) and the darker com-
ponent of x neighborhood. The Definition 4 (of λ-crest)
is based on the distance d1 between the gray level I(x)
and the darkest gray level of the neighboring component
C, while the brightest level in C is chosen based on the
distance d2 between C and the central pixel in case of λ-
end and λ-peak configurations.
The latter choice permits to better adapt the lowering
decision to the gray ordered treatment of the paramet-
ric thinning procedure that mostly lowers peaks and
endpoints at the final iterations. This is due to the fact
that peaks and endpoints have higher gray values than
crest lines as shown in Figure 3. At the late stages of
the processing, the distance d1 used for λ-crest is no
longer adapted to λ-end and λ-peak configurations, since
the darker neighbors used for this distance will inevitably
be treated first. This results in a change of the low
neighborhood gray values and in an unsuitable increase
of the distance d1. Hence, the lowering of λ-end and λ-
peak configurations may rarely be verified. Therefore, the
choice of d2 of Definition 5 that compares the tested pixel
to its highest darker neighbor might limit the impact of
previous iterations on the local gray level dynamic. This
close dark neighbor is less likely to be affected by previous
peelings and thus d2 appears to be more adapted to λ-end
and λ-peak. Since we choose not to change the treatment
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Fig. 3. First line: λ-Skeleton result on synthetic image with white
Gaussian noise of σnoise = 5 in jet color map. Second line: Order
treatment of λ-dependent configurations through successive lowering
instructions for synthetic image.



order of the parametric thinning, we have to assume the
change of the image dynamic during the thinning process.
To overcome the dynamic change issue for the upcoming
peelings, we first propose to use the initial image I0

gray levels in order to decide to lower λ-peak and λ-
end pixels. Second, we estimate the height of peak and
endpoint from their respective local dark neighborhood
by using a distance inspired from the λ-crest Definition 4.
Consequently, the revised definition of λ-peak and λ-end
is:

Definition 7: Pixel x is λ-peak (resp. λ-end) if x is peak
(resp. end) according to the N<

8 (x) configuration and:

d(x, C) = (I0(x) −min(I0(C))) ≤ λ (1)

where C is the unique 8-connected component in N<
8 (x)

obtained from the current image I and I0(C) is composed
of initial gray values of C.

This revision unifies the criterion for all λ-dependent con-
figurations. In this new context, we update in Section III
the hypothesis test framework for the lowering decision in
order to set the parameter λ to an appropriate threshold.

III. Hypothesis test of unified lowering decision

Statistical tests to manage the lowering decision were
presented in [17]. Based on the unique significance level
α, the thinning setting became locally adjusted and thus
less user dependent than initial globally and manually
chosen λ. In the unified context of the proposed lowering,
we update in this section the unique statistical test by
taking into account the gray level of the treated pixels
to better fit the definitions of λ-lowerable pixels. The
first subsection develops the statistical test related to
peak and endpoint lowering decision. The next subsection
details the transposition of this test in the case of λ-crest
configuration.

A. Hypothesis test for the lowering of peak and endpoint

According to the criterion of equation 1 in Definition 7,
deciding that x is a lowerable peak (resp. end) is tanta-
mount to saying that x belongs to the unique connected
component C consisting in N<

8 (x). Thereby, I0(x) is
seen as a further observation of the sample composed of
initial gray levels of the connected component C, where
n = |C ∪{x}| is the size of the sample XC = (X1, . . . , Xn)
and I0(x) is its maximum value.
As stated in [17], this criterion can be used as a decision
rule of a statistical test where the null hypothesis (H0)
refers to the fact that the central pixel x is a λ-lowerable
peak (resp. endpoint) and its alternative hypothesis (H1)
meaning that x is a significant peak (resp. endpoint)
and has to be maintained. The authors transpose the
lowering criterion of peak and endpoint to reach a test
statistic designed as the range one. Therefore, by assuming
that each variable Xi of the sample XC under the null

hypothesis (H0) is Xi ∼ N (µ, σ), ∀i = 1 . . . n and for a
given test level α, the authors accept H1 when:

X(n) −X(1) > λ = στn(α)

with X(1) = min
i=1...n

Xi and X(n) = max
i=1...n

Xi

and where τn(α) is the α quantile of the range distribution
of a Gaussian sample N (0, 1). So, the threshold value λ
can be evaluated directly from the fixed significance level
α and the size n of the connected component C (n = 9 for
peak configuration and n = 8 for endpoint configuration).

One can notice that the pixel set C is obtained consider-
ing the knowledge of the gray value of the examined pixel
x. Consequently, one can accept H1 when:

X(n) −X(1) > λ knowing X(n) = I0(x)

Noting Xi = µ + σ · Yi with Yi ∼ N (0, 1), Y(1) = min
i∈C

Yi

and Y(n) = max
i∈C

Yi and for a test level α, we can state that:

PH0

(

X(1) < I0(x) − λ | X(n) = I0(x)
)

= α⇔

PH0

(

Y(1) <
I0(x) − µ− λ

σ
|Y(n) =

I0(x) − µ

σ

)

= α (2)

Consequently, the test statistic used according to Defini-
tion 7 of lowerable peaks or ends is the minimum statistic
of the corresponding sample XC under the knowledge
of its maximum gray level (I0(x)). By using the well-
known cumulative distribution of such i.i.d sample [20],
Equation 2 becomes:

1−
(

1− F (1/σ[I0(x)− µ− λ])

F (1/σ[I0(x)− µ])

)n−1

= α

where F is the cumulative distribution function ofN (0, 1).
Therefore, we have:

(1− n−1
√

1− α)F (1/σ[I0(x)− µ]) = F (1/σ[I0(x) − µ− λ])

Let us denote τn(α) = 1/σ[I0(x) − µ − λ]. Therefore,
τn(α) is the quantile of N (0, 1) and can be expressed as
follows:

τn(α) = F −1
N (0,1)

(

(1 − n−1
√

1− α)FN (0,1)(1/σ[I0(x)− µ])
)

(3)
which leads to the determination of λ such as:

λ = I0(x)− µ− στn(α). (4)

Finally, according to the expression of λ in Equation 4, the
criterion of Equation 1 that permits to lower insignificant
peaks and ends when knowing X(n) = I0(x) becomes:

X(1) ≥ µ + στn(α) (5)



B. Hypothesis test of crest lowering decision

According to Definition 4, the criterion that permits
to lower a crest pixel x is that among his K darker
neighboring components, named Ck for k = 1 . . .K, at
least (K − 1) verify:

I(x)−min{I(Ck)} ≤ λ (6)

In the case of lowerable crests, K unitary statistical tests
can be designed similarly to that presented for peak and
endpoint. Therefore, the previously designed statistical
test is applied to each of the K connected components
using current image gray values. Thus for Ck connected
components, the determination of λ becomes:

λ = I(x) − µ− σ · τn(α) (7)

where n = |Ck| and µ is the mean of the iid sample XCk
.

The quantile τn of Equation 3 is also calculated using
the current image gray values:

τn(α) = F −1
N (0,1)

(

(1 −
n−1

√

1 − α) · FN (0,1)(1/σ[I(x) − µ])
)

(8)

where α ∈ [0, 1].
In accordance with the Definition 4, a λ-crest pixel is

lowered if at least 2 connected components of the dark
neighborhood satisfy the Equation 6.

Finally, and in order to calculate λ at each pixel x, we
need to estimate µ and σ. Firstly, the standard deviation
σ of the sample could be assimilated to the image noise
standard deviation. Under the assumption of a station-
ary Gaussian noise, we can consider that noise standard
deviation σ is constant over the entire image and could
be empirically estimated for real images. Secondly, µ is
the mean of the sample, and varies depending on XC .
The parameter µ is estimated empirically on each XC by

XC = 1/n ·
n

∑

i=1

Xi. We calculate the mean on the initial

image for peak and endpoint configurations and on the
current image gray levels for λ-crest ones.
In the next, the proposed method is called α-Skeleton since
it relies essentially on the choice of the confidence level.

IV. Results

We propose to compare our contribution denoted α-
Skeleton to the initial method λ-Skeleton of [16] at our
disposal on the author laboratory website. To do so, we
present in a first section the synthetic images and the mea-
sures used for this assessment. In the next subsection, we
detail the parameters setting of both methods. Finally, we
implement the evaluation by assessing methods robustness
to noise and discuss the results.

A. Data and measure for the assessment

In order to test the ability of skeletonization methods to
preserve connectivity and free extremities, we generate the
network image IN of Figure 4 from the reference skeleton
S∗

N. The gray network is obtained after a binary dilation
with a disk of radius ρ = 1 followed by an averaging filter

with kernel of radius rf = 7.
We use a uniform background gray level (set to 25 in
Figure 4) to avoid any truncation of the added noise values
on the original images when simulating distortions.

S∗
N D = 46 IN (σ = 8.5)

Fig. 4. Left: binary reference skeleton S∗
N. Middle: smooth grayscale

images with an average contrast D between foreground and back-
ground. Right: Image affected by an additive Gaussian noise on the
grayscale images of second line with IN: 150 × 121.

A set of N = 20 synthetic images is produced by varying
the standard-deviation σ of the additive white Gaussian
noise nσ within [2.5, 12.5] by a step of 0.5. From these
images, the real skeletons S are extracted with the two
retained methods.
In the following, we define the measures of Cp, Cr, OCC
and E used in this assessment.
The preservation of topological characteristics of an ob-
ject is objectively measured by the following normalized
differences OCC and E:

OCC =
Nb OCC(S∗)−Nb OCC(S)

Nb OCC(S∗)
,

E =
Nb E(S∗)−Nb E(S)

Nb E(S∗)

where Nb OCC is the number of object components and,
Nb E is number of skeleton ends. The ideal values for
OCC and E are around zero, negative ratios correspond to
the emergence of extra and insignificant information while
positive values correspond to missing information in the
real skeleton. These measures may diverge, as in the case
where the number of ends of S is much larger than that
of S∗. Hence, large values (respectively small) are clipped
to 5 (respectively -5).
Besides, we calculate the completeness Cp and correctness
Cr measures of the buffer zone method [21], [22] generally
used to evaluate the geometrical accuracy of the real
skeleton compared to the reference one.

B. Implementation of the evaluation

Both methods require the setting of a parameter. In-
deed, for α-Skeleton, we need to choose the confidence
level of the test which is classically set to α = 5.10−2.
Concerning λ-Skeleton method, we propose to set its
global parameter λ using the mean value of the lowering
threshold τn(α) (as calculated by Equations 8 and 3) and
the noise standard deviation according to the formula:
λ = meanτn(α).σnoise.



σnoise = 2.5 α-Skeleton λ-Skeleton

σnoise = 5 α-Skeleton λ-Skeleton

Fig. 5. Thinning results on the network synthetic image. White
gaussian noise applied with σnoise = 2.5 and σnoise = 5.1.
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Figure 5 and 6 shows the stability of α-Skeleton com-
pared to λ-Skeleton especially regarding the elimination of
spurious branches.

V. Conclusion

Grayscale thinning is a powerful morphological tool
used to represent the essential information of an object
by successively lowering image gray levels until reaching
central crest lines. Its sensitivity to noise in grayscale
images implied the inclusion of noise related configurations
in the lowering process. These lowerable notions need to be
controlled to avoid disconnections. Due to the permanent
change of the image intensities distribution during the
thinning process, a control of the lowering decision is re-
quired by considering initial image gray values in order to
efficiently eliminate isolated peaks and spurious branches.
This revision of the lowering criteria enables us to unify the
decision of all the concerned configurations. In addition,
the design of hypothesis test for the lowering decision
conditionally controlled by the gray level of each pixel
enables us to calculate locally the adapted threshold λ
and maintain the significantly contrasted object branches.
The evaluation results exhibits the ability of α-Skeleton
to maintain object connectedness and preserve only sig-
nificant branches when applying white Gaussian noise on
synthetic images.
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