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Abstract—Few evaluation protocols were suggested
to assess quality of skeletonization methods of grayscale
images. Most of these protocols employ criteria and
images both devoted to target application. No com-
mon image databases are available and the valida-
tion of skeleton structural properties under grayscale
object variability suffers from a lack of standardized
procedures. These properties are namely the preser-
vation of geometry, topology and extremities respec-
tively related to skeleton location and morphological
quality. In this paper, we propose an evaluation pro-
tocol for skeletonization applied to grayscale curvi-
linear structures that focuses on skeleton structural
properties, regardless of application specificities. We
first identify challenging situations for skeletonizing
grayscale images and then, construct a synthetic image
database of objects with varying contrast, curvature
and width. Secondly, we focus on criteria that reflect
skeleton structural properties to assess its quality and
noise robustness. We apply the proposed protocol on
skeletonization methods within differential geometry
framework that highlights good skeleton location and
morphological thinning category that promotes skele-
ton connectivity. Experimental results indicate that
the proposed protocol is able to describe the behavior
of the criteria regarding the structural rendering of
skeletonization methods.

Keywords: grayscale image, skeletonization, evalua-
tion, homotopy, geometry preservation

Introduction

An ideal skeleton has a one-pixel width and is supposed
to preserve the geometry and topology (homotopy) of
the initial object whereas it should be robust to noise.
The first skeletonization methods were proposed in the
binary context [1], [2], [3], [4]. They have been applied
to grayscale images after a binarization. This prepro-
cessing is questionable as it leads to a loss in informa-
tion. This drawback has motivated the development of
skeletonization methods specially dedicated to grayscale
images based either on differential geometry [5], [6] or on
mathematical morphology [7], [8]. Each category promotes
a prior skeleton property according to target application.
In fact, differential methods are interested in good location
and smoothness of the crest lines as required in airborne
imaging [5], [9], while morphological methods pay more
attention to the connectivity of skeletons required in bio-

metric applications [10], in the characterization of bone
microarchitecture [11] for biomedical imaging and shape
recognition field [12].
Due to the diversity of methods, a need to assess quan-
titatively skeletonization has arisen. Several evaluation
protocols have been proposed for binary methods to vali-
date skeleton structural properties that are homotopy [13],
[14], geometry preservation [14], [15], [4], [16], [13] and
skeleton robustness to distortions like noise [2], [17], [4]
and rotation [17]. On the one hand, these protocols uses
either synthetic images of simple curvilinear structures
with contour disruptions built by the authors [15], [16], [2],
or images from shape recognition databases [14], [18], [17].
Even if authors are standardizing assessment using known
image databases, they are constrained to create reference
skeletons, unavailable for images from these databases.
On the other hand, the reported protocols use evaluation
criteria based mainly on good detection rate between
reference and resulting skeleton in binary context.
Concerning grayscale skeletonization evaluation, and to
the best of our knowledge, very few protocols are available.
These protocols concern road extraction application [19],
[20] and are namely applied to assess good location and
thus, geometry preservation property. The reference skele-
tons are constructed in this case by experts and the
evaluation criteria correspond to statistic indicators of
good location of resulting skeleton relatively to the ground
truth ones. Consequently, the existing protocols do not val-
idate simultaneously all skeleton structural properties but
focus only on application requirements related to geometry
preservation while neglecting properties like robustness to
noise and preservation of homotopy and extremities. More-
over, no existing grayscale image databases with reference
skeletons is available to assess objectively skeleton quality.
In this work, we propose an evaluation protocol for skele-
tonization devoted to grayscale images with known refer-
ence skeletons and using most relevant quality measures
in order to assess the skeleton structural properties. The
proposed evaluation protocol follows the general scheme
proposed by [15] for binary skeletons. It focuses on the
design of test images from reference skeletons and on
the adequate measure for each skeleton property to be
tested. Our contribution consists in objectively assessing



the preservation of geometry, topology and extremities
properties under various distortions.
This paper is organized as follows. Section I is devoted
to the generation of gray synthetic images reproducing
challenging situations for skeletonization of gray curvilin-
ear structures. In Section II, the properties and measures
to be used in the assessment are described. Finally, in
Section III, the evaluation is conducted on differential ge-
ometry based method [5] and two morphological thinning
methods [7], [21]. The results are provided and discussed
as well as the relevance of the chosen criteria.

I. Synthetic images generation

Since we intend to validate skeleton structural proper-
ties that consist in the preservation of geometry, topol-
ogy and extremities, we need to focus on the challeng-
ing grayscale objects configurations that can defy skele-
tonization. Line crossing, width variation, high curvature,
free branches, variable contrast and presence of noise
are the main distortions that may affect grayscale curvi-
linear structures. We propose an automatic procedure
for building a database consisting of images that reflect
these distortions. To this end, a two-stage procedure is
considered. More precisely, we first generate a variety of
skeletons from three binary reference skeletons presenting
structural specificities: lines with high curvature, intersec-
tions and free branches. Secondly, by using mathematical
morphological and filtering tools, we generate distorted
versions of images containing these skeletons with various
topographic reliefs.
The first objective is to design images to validate the
detection of closed lines with high curvature. In this
respect, we choose an initial binary image containing a
reference skeleton SR representing a ring (without end)
wich contains two concentric circular skeletons S∗

R1
and

S∗

R2
with respectively radii R1 and R2 (R1 < R2). To S∗

R1

(resp. S∗

R2
), we apply a dilation δρ1

(resp. δρ2
) with a ball

as structuring element of radius ρ1 (resp. ρ2). Then, we
average the image using a convolution circular kernel frf

of
radius size rf . In the resulting smooth image, the average
difference D between the object level and the background
is used to quantify the contrast variation between the
object and the background. We can adjust this contrast
at will by multiplying the gray levels by a factor C ∈

[0, 1]. Finally, a Gaussian noise nσ of variance σ2 is added
to obtain the synthetic noisy image IR:

IR = C
([

δρ1
(S∗

R1
) + δρ1

(S∗

R2
)
]

∗ frf

)

+ nσ. (1)

The leftmost column in Figure 1 illustrates the generation
of the test images with R1 = 74 and R2 = 145. The em-
ployed dilations correspond to binary disks of respectively
radii ρ1 = 4 and ρ2 = 9 and the size of the kernel is rf = 9.
A high contrast in IR is achieved thanks to a multiplicative
factor C = 0.8 which allows us to have D = 81 (gray levels
within [0, 255]).
Similarly, we generate the network image IN of Figure 1

S∗

R
S∗

N
S∗

∩

D = 81 D = 46 D = 65

IR (σ = 5) IN (σ = 8.5) I∩ (σ = 12.5)

Fig. 1. First line: binary reference skeletons S∗

R
, S∗

N
and S∗

I
. Second

line: smooth gray images with an average contrast D between fore-
ground and background. Third line: Image affected by an additive
Gaussian noise on the gray images of second line with IR: 326 × 326,
IN: 150 × 121, I∩: 100 × 100.

from the reference skeleton S∗

N
. We use this image to test

the ability of skeletonization methods to preserve con-
nectivity and free extremities and to detect low-contrast
lines (D = 46). The gray network is obtained after a
binary dilation with a disk of radius ρ = 1 followed by
an averaging with a filter of kernel radius rf = 7.
To study the ability of the skeletonization to detect in-
terconnected lines even if their widths vary, we construct
an image I∩ displayed in Figure 1 which is a simple
intersection of lines with different widths.
For all the generated images, we use a uniform background
gray level (set to 25 in Figure 1) to avoid any truncation
of the added noise values on the original images when
simulating distortions.

II. Evaluation criteria and measures

A. Review of existing criteria and measures

Table I summarizes the criteria and measures reported
in the literature to assess skeleton properties. The two
most important ones are skeleton morphological and lo-
cation quality.
For the first criterion, Hausdorff and Dubuisson distances
are frequently used to assess geometry preservation prop-
erty under noise degradation and image rotation [2], [17].
However, these distances do not reflect the type of dissim-
ilarity between the modified skeleton S and the reference
one S∗. For instance, they do not provide any information
about missing or extra branches. Other authors used the
Area operator which consists in counting skeleton pixels



TABLE I
Binary skeletonization evaluation: from skeleton property to applied measures.

S
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Skeleton property Name of skeleton qual-

ity

Associated measures

Preservation of geometry
Location quality:
Similarity to medial axis

Counting pixels (Area operator): [22]
No explicit formula: [15]
Counting pixels (Area): [4]
Ratio based on euclidian distance between real and reference skeleton
pixels: [14]
Hausdorff distance: [16], [2]
Hausdorff & Dubuisson distances: [17]
Qualitative (observation) [18]

Preservation of topology and
extremities

Mophological quality
Number of branches and nodes: [14]
Number of connected components: [13]
Number of spurious branches based on orientation + length inferior
to object half-width [13]

Reconstruction Counting pixels (Area): [14]
Unitary thickness Counting pixels (Area): [4]

Computational speed Computation time Mean computation time for all database characters for each method:
[14]

and calculating ratio between S and S∗ [22], [4], [16], [13].
This operator is also involved in the buffer width measure
based on statistical indicators of true/false detection. The
buffer width method is particularly widespread for assess-
ing road detection methods [20]. Its advantage is the use
of indicators that enable to interpret possible dissimilarity
between S and S∗ using a buffer zone.
Concerning homotopy, few protocols have investigated
this property. A counting of connected components and
extremities are the main employed measures to describe
the skeleton ability to preserve connectivity and manage
spurious branches.
In conclusion to this review of properties, we note that
statistical indicators of buffer width are relevant for geome-
try preservation property since they enable us to interpret
the skeleton quality regarding the deviation of branches
in S compared to S∗. A straightforward way to evaluate
objectively skeleton morphological quality (homotopy and
extremity preservation) is a counting of its connected
components and extremities [14], [13].

B. Buffer method for geometry preservation property

The benefit of using the buffer method is mainly related
to its indicators based on statistic indicators of good/bad
detection. First, a dilation using disk structuring element
of radius ρ is applied to the reference S∗ or the extracted
skeleton S to calculate respectively the matched extraction
or matched reference with tolerated displacement. Second,
the three indicators are calculated: (T P ) which is the
number of successfully matched extraction, (FP ) as the
number of wrongly extracted skeleton pixels and (FN)
which corresponds to the number of missing reference in
the detection. These ratios are illustrated in Figure 2 for
a simple straight line and calculated according to the
following formula:

T P = S∩δρ(S∗), FP = S∩δρ(S∗), FN = S∗
∩δρ(S).

Finally, the completeness Cp and correctness Cr measures
are defined to evaluate the geometrical accuracy of the real

skeleton compared to the reference one:

Cp = T P/(T P + FN), Cr = T P/(T P + FP ).

In order to get meaningful values of Cp and Cr, the radius

TP

FP

Buffer width

extracted line (S)

reference line (S∗)

FN

extracted line(S)

reference line (S∗)

matched extraction

matched reference

Fig. 2. Matched reference and extraction for the buffer method on
a simple straight line skeleton [20].

ρ of the structuring element should not be greater than
half-width of the curvilinear structures. Consequently, we
choose for each image the smallest radius ρ of binary dila-
tion according to the synthetic images generation process
if more than one disk was used. Therefore, for the network
image IN, buffer width corresponds to ρ = 1, while ρ = 5
for the rings image IR and ρ = 3 for the intersection I∩.
An example of the buffer method operating is given in
Figure 3 and shows the results of the Cp and Cr cal-
culation. In this example, we illustrate true positive T P ,
false negative FN and false positive FP measures. When
the obtained skeleton is shortened by the skeletonization
method, this affects the completeness Cp indicator, while
apparition of extra branches or a significant deviation from
the reference induces a decrease of Cr.



FP

FN
dilation of S∗

dilation of S

(a): Cr = 97.29% (b): Cp = 97.81%

Fig. 3. Operating buffer method for the calculus of Cp and Cr.

C. Counting endpoints, connected components of the back-

ground and foreground for homotopy property

By definition, homotopy preserves the background and
foreground connectivity. Therefore, counting the number
of connected components for both background and fore-
ground is a direct measure of this property. We add to
this measure the number of skeleton ends to identify
spurious branches rarely considered in the existing eval-
uation protocols [13]. At the first glance, the emergence
of spurious branches could be reflected by Cr. However,
spurious branches small lengths often hide them when
dilating the reference skeleton to calculate FP and then
Cr indicator. Since the complementary connectivity be-
tween the background and the object must be selected
to meet the requirement of Jordan theorem, we choose 8-
connectivity for the foreground (object) and 4-connectivity
for the background when counting their respective number
of connected components. The homotopy is objectively
measured by the following normalized differences BCC,
OCC and E:

BCC =
Nb BCC(S∗) − Nb BCC(S)

Nb BCC(S∗)
,

OCC =
Nb OCC(S∗) − Nb OCC(S)

Nb OCC(S∗)
,

E =
Nb E(S∗) − Nb E(S)

Nb E(S∗)

where Nb BCC denotes the number of background com-
ponents, Nb OCC is the number of object components
and, Nb E is number of skeleton ends. The ideal values
for BCC, OCC and E are around zero, negative ratios
correspond to the emergence of extra and insignificant
information while positive values correspond to missing
information in the real skeleton. These measures may
diverge, as in the case where the number of ends of
S is much larger than that of S∗. Hence, large values
(respectively small) are clipped to 5 (respectively -5).
These measures can be combined in a single performance
score integrating the different quality measures for the
assessment of skeletonization as proposed by [13]. For
instance, the global performance score could be a weighted
average of BCC, OCC and E, the weights being adjusted
according to their importance for the target application.

III. Implementation of the evaluation protocol

A. Choice of tested skeletonization methods

We have retained the most representative and known
methods of the class of differential skeletonization and the
class of morphological thinning for which source codes are
available. The Differential Line Detector (DLD) [5] is a
representative method of the first class. It results from a
sub-pixel skeleton and is applied particularly to satellite
images for the detection of roads. The λ-Skeleton of [7]
implemented in Pink library and Statistically Controlled
Thinning (SCCT) of [21] represent the retained methods
of the second category. These thinning methods focus on
the connectivity of skeleton, while DLD is interested in
the good detection of ribbon-like structures. We detail in
Table II the required parameters setting of each method
and indicate how dependent they are on user intervention.
We note according to Table II that DLD requires three

TABLE II
Parameters setting for the skeletonization methods.

Method Parameters Setting

DLD Gaussian kernel stan-
dard deviation

σDLD ∼
√

3.w with w
object line width

Hysteresis thresholds:
high = f(w, h) with h
image contrast
low ∈
[0.2high, 0.5high]

Pink Contrast parameter λ: manually set
SCCT Test significance level α ∈ [10−6, 10−2]

Noise standard devia-
tion

σ

parameters to be set, the first is related to the half-width
w of object lines and therefore selects the range of lines
to be detected by the method. The other two parameters
are hysteresis thresholds also dependent on w and on
image contrast h. The SCCT implementation takes two
parameters. The first is related to noise standard deviation
of the image, and the second the test significance level
α. The λ-Skeleton of Pink library admits a unique global
parameter manually set which allows to filter non sig-
nificant skeleton information. We evaluate the λ-Skeleton
performance using two options: eliminating all peaks and
ends (Pink1) or maintaining extremities (Pink2).

B. Results

A set of N = 60 synthetic images is produced by varying
the standard-deviation σ of the additive white Gaussian
noise nσ within [2.5, 12.5] by a step of 0.5. From these
images, the skeletons are extracted with the three retained
methods. Some of the resulting skeletons are displayed
in Figure 4 whereas the average measures of Cp, Cr,
OCC, BCC and E are presented in Table III. We suggest
to evaluate the global performance of the skeletonization
methods by using the following global score P :

P = 1− [((1−Cp)+(1−Cr)+(OCC∗)+(BCC∗)+E∗]/5



σ = 5 DLD SCCT Pink1 Pink2

σ = 12.5 DLD SCCT Pink1 Pink2

σ = 12.5 DLD SCCT Pink1 Pink2

Fig. 4. Skeletonization methods results on IR, IN and I∩.

where OCC∗, BCC∗ and E∗ are the normalized versions
(in [0, 1]) of the indicators. This score is an average
value of Cp, Cr, OCC, BCC and E measured for each
method. We choose to calculate this global score using
the average values of each indicator for the three images
and the considered noise levels. Table III summarizes
the mean indicators of Cp, Cr, OCC, BCC and E and
the corresponding score P . We first discuss the results

TABLE III
Average indicators values for each method.

Methods Cp Cr OCC BCC E P

DLD 1.00 1.00 -1.81 0.11 -0.15 0.92
SCCT 0.97 0.98 0.01 0.03 0.17 0.98
Pink1 0.86 1.00 0 0 0.19 0.96
Pink2 1.00 0.81 -3.89 0.003 -5.00 0.61

according to geometry preservation criteria. The measures
of Cp, Cr in Table III are maximal for DLD. In fact, as
illustrated in Figure 4, the DLD skeleton is smooth for the
3 images and its quality is not affected neither by contrast
changes, additive noise nor high curvature. Skeleton lines
are correctly positioned on center lines and this is due
to the smoothing step performed before the crest points
detection process. For Pink library implementation of the
λ-Skeleton, we note lower performance of the method (for
both options Pink1 and Pink2) compared to SCCT. In
fact, the first option (removing all ends and peaks) impacts
the completeness Cp of the skeleton. The second option
affects the correctness Cr of the skeleton since spurious
branches are detected. Secondly, we focus on skeleton

morphological quality linked to homotopy preservation
(OCC, BCC, E). According to these indicators, SCCT
appears to meet a tradeoff between correctly detecting the
connected components of the background/foreground, and
preserving the significant extremities. On the one hand,
DLD indicators for object and background connectivity
are the less accurate compared to Pink1 results and to
SCCT ones. This is explained by the fact that differential
methods do not put constraints on homotopy and assume
that all the object lines have similar widths. On the other
hand, results based on Pink2 diverges from the expected
results concerning the extremities preservation measure E.
We find out that the SCCT method is stable accord-
ing to both geometry and homotopy indicators. If the
global evaluation score P is decomposed, we notice that
for SCCT, the average spatial positioning is correct, the
homotopy indicators are close to zero whereas Pink and
DLD. This method results are less impacted by disrup-
tions, high curvatures, changing line widths, contrast and
free extremities.
We may conclude according to the evaluation results that
completeness Cp and correctness Cr initially introduced
to assess geometry preservation property (skeleton posi-
tioning quality) provide also information on the persis-
tence of spurious branches that affect particularly thin-
ning methodologies. In addition, topological definitions
of connected components and skeleton extremities make
the calculus of connectivity rates BCC, OCC and E
straightforward and thus, ensure a relevant evaluation of
skeleton morphological quality.



Conclusion

A review of evaluation protocols of skeletonization
methods led us to conclude that the assessment of gray
skeletonization methods has been little addressed in ex-
isting works. Inspired by existing binary protocols, we
design a new one focusing on methods applied to grayscale
images and assessing skeleton qualities. We propose to
conduct the evaluation according to objective indicators
that can reflect structural properties of skeletonization:
preservation of geometry, topology and extremities.
We generate synthetic grayscale images database including
real images distortions to test one at a time, the ability
of skeletonization methods to adapt to low/high contrast,
high curvature, presence of free branches, line crossings
and varying widths and noise since we noticed a depen-
dency of the methods setting to these distortions.
According to evaluation results, we may conclude on the
quality of the relevant chosen measures to validate skeleton
structural properties. It is worth noting that the evalua-
tion protocol scheme adopted in this work is applicable to
binary images under the unique constraint of considering
binary images and corresponding distortions.
The relevance of the skeleton quality measures used in the
proposed evaluation protocol enables to conclude to the
applicability of studied skeletonization methods in certain
fields of application. In fact, the importance of specific
skeleton properties may be discussed depending on the
area of applications. If a smooth skeleton is required with
no real need to preserve connectivity (images with no
intersections), the differential methods are well adapted
to such applications. This explains the interest given to
this category of methods in the field of road detection. On
the other hand, for applications like biometric matching
process or trabecular bone structure characterization, the
skeleton connectivity is a first priority since it is employed
to compute features such as number of nodes, extremities
and segments. Therefore, thinning approaches are well
adapted to such contexts.
The proposed evaluation protocol can be used to adjust
and interpret the required parameters for the tested meth-
ods. Indeed, we note that the manual setting of λ-Skeleton
parameter is intimately linked to the intensity of noise
on images, while the α parameter of SCCT or h of DLD
depends on the contrast.
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