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Abstract—The state-dependent K-User Broadcast Channel
(BC) with memoryless state feedback is investigated. We pro-
pose a novel transmission scheme and derive its corresponding
achievable rate region which has the advantage of being simple
and thus easy to evaluate. In particular, it is first shown that this
scheme achieves the capacity of the Symmetric Erasure BC with
an arbitrary size of input alphabet. Then, we further study the
Fading Gaussian BC and derive a symmetric achievable rate.
Besides achieving the optimal degrees of freedom, numerical
results show that the proposed scheme attains higher rates than
the previous schemes at finite SNR.

I. INTRODUCTION

It is well known that feedback can enlarge the capacity
region in communication networks, including the Broadcast
Channel (BC) [1], [2]. The role of feedback in such channels
can be understood as an enabler for cooperation between users.
However, as many problems in network information theory,
the capacity of the general BC with feedback is still open,
even for two-user case. In fact, for the K-user BC case,
less is known. Nevertheless, due to its practical importance
in wireless networks, a large amount of recent works have
been focused on such channels where considerable progresses
have been made, e.g., linear schemes using state feedback in
Erasure BC (EBC) [3], [4] and in Fading Gaussian BC (GBC)
[5].

The capacity region of the EBC was fully determined in the
three-user case and partially characterized for K > 3 cases,
across independent works [3], [4]. The main idea behind the
schemes proposed in [3], [4] is fundamentally the same: first
send out the uncoded packets, and then transmit adequate “lin-
ear combinations” of the lost but overheard packets according
to the state feedback. Given sufficient linearly independent
combinations at each receiver, the desired packets are always
decodable. However, the schemes in [3], [4] only works for
a packet alphabet of size 2q with q ∈ N and 2q ≥ K.
This is to guarantee the existence of a desired number of
linearly independent vectors in the corresponding vector space.
As a consequence, the capacity region is still open for other
alphabet sizes.

In a parallel line of works on the GBC, the optimal Degrees
of Freedom (DoF) region was shown to be achieved by the
proposed MAT scheme in [5] for the K-user MISO (multiple-
input-single-output) case when the number of transmit anten-
nas is larger than K. The MAT scheme works similarly as the
schemes in [3], [4]: first send out the signal uncoded and then

the linear combinations of overheard signal, so that enough
equations are available to each user. Since the MAT scheme
in [5] has a fixed structure built on a dimension counting
argument, the DoF optimality at high SNR may not ensure its
efficiency in finite SNR due to its insensitivity to such parame-
ters. In an independent work [6], Shayevitz and Wigger studied
the two-user broadcast channel with generalized feedback and
proposed an achievable rate region based on double binning
and block Markov coding. Later on, Kim et al. showed that,
in the two-user setting, the Shayevitz-Wigger scheme actually
includes the MAT scheme as a special case in [7]. Finite SNR
performance of the MAT scheme has also been investigated
in [8] for the two-user case and in [9] for the K-user case.

In this work, we focus on the K-user (K > 2) case and
investigate a class of state-dependent BCs with state feedback
which includes both the EBC and the Fading GBC as special
cases. The main contributions are the following. First, we
propose a non-linear scheme based on distributed compression
and derive the corresponding rate region that is simple to
evaluate. It is worth mentioning that our goal here is not
to derive a general rate region that includes all the known
regions (e.g., the two-user Shayevitz-Wigger region). Instead,
we are interested in schemes with relatively simple structure in
order to have a numerically tractable rate region. To that end,
we make some reasonable choices such as excluding binning
at the transmitter (since the instantaneous state is unknown, we
know that binning has limited benefit in GBC.). Then, we show
that the proposed scheme achieves the symmetric capacity of
a Symmetric EBC for any input alphabet size. Further, for the
Symmetric Fading GBC, we derive an achievable symmetric
rate as a maximization over K positive values. Analytical
results show that the proposed scheme achieves the optimal
DoF under the same setting as in [5], whereas a numerical
example of the three-user symmetric rate reveals a superior
performance over existing schemes in the literature.

The rest of the paper is organized as follows. We describe
the system model in Section II and provide the main results in
Section III. The novel scheme is presented in Section IV. An
example on the Fading Gaussian BC is given in Section V.
Finally, Section VI concludes the paper. Some of the technical
details are relegated to the appendix.

Notation: First, for random quantities, we use upper case
letters, e.g., X , for scalars, upper case letters with bold and
non-italic fonts, e.g., VVV, for vectors, and upper case letter with
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Fig. 1. Broadcast channel with strictly causal state feedback.

bold and sans serif fonts, e.g., MMM, for matrices. Deterministic
quantities are denoted with italic letters, e.g., a scalar x,
a vector vvv, and a matrix MMM . Logarithms are in base 2.
Calligraphic letters are used for sets. In particular, we use I
and J for some subsets of users with implicit size constraints
|I| = i and |J | = j, respectively. The constraints are made
explicit when necessary. U is also used as subset of users but
without size constraint. We let K , {1, . . . ,K} be the set of
all users. Hence, {VI}I ≡ {VI : I ⊆ K, |I| = i}, {VU}U ≡
{VU : U ⊆ K}, and {VI}I⊂J ≡ {VI : I ⊂ J , |I| = i}.

II. SYSTEM MODEL

We consider a memoryless state-dependent K-user BC
through which the source communicates, in n slots, K inde-
pendent messages to the K receivers, respectively. The channel
can be described by the joint probability mass function (pmf),

p(yyy1, . . . , yyyK |xxx,sss)p(sss) =

n∏
i=1

p(y1i, . . . , yKi|xi, si)p(si) (1)

where xxx ∈ Xn, yyyk ∈ Ynk , and sss ∈ Sn are the sequences of
the channel input, the k-th channel output, and the channel
state, respectively. The channel state is known instantaneously
to the receivers but only strictly causally to the source, e.g.,
via feedback. The channel model is shown in Fig. 1.

Let Mk ∈Mk , [1 : 2nRk ] be the message for user k, k ∈
K. We say that the rate tuple (R1, . . . , RK) is achievable if
there exist a sequence of encoding functions {ft : M1×· · ·×
MK×St−1 → X}nt=1 and K decoding functions {gk : Ynk ×
Sn →Mk}Kk=1, such that maxk Pr

(
gk(Y nk , S

n) 6= Mk

)
→ 0

when n → ∞. The symmetric rate Rsym is achievable if the
rate tuple (Rsym, . . . , Rsym) is achievable. In particular, we are
interested in the following two specific channels.

A. Erasure Broadcast Channel

The Erasure Broadcast Channel is a state-dependent deter-
ministic channel which is defined at each slot by

Yk =

{
X, Sk = 1

e, Sk = 0
(2)

which is completely characterized by the set of probabilities
of the state realization

δU , Pr(SU = 000, SŪ = 111), U ⊆ {1, . . . ,K} (3)

with
∑
U δU = 1. Throughout the paper, we use SU = 000 (resp.

SU = 111) to mean that Sk = 0 (resp. Sk = 1), ∀ k ∈ U .

When the erasures across users are independent and identically
distributed (i.i.d.), we have:

δU = δ|U|(1− δ)K−|U|, U ⊆ {1, . . . ,K} (4)

where δ ∈ [0, 1] is the erasure probability for each user. We
focus on the i.i.d. case in this paper.

B. Fading Gaussian Broadcast Channel
The Fading Gaussian BC is a state-dependent AWGN

channel, which is defined at each slot by

YYYk = HHHkXXX + ZZZk, k = 1, . . . ,K (5)

where ZZZk ∼ CN (000, σ2Inr,k), XXX ∈ Cnt×1, YYYk ∈ Cnr,k×1,
and HHHk ∈ Cnr,k×nt , with nt, nr,k being antenna number at
transmitter and receiver k, respectively. We identify the state
Sk with the channel matrix HHHk. Similarly as for SU , we use
HHHU to denote a matrix from a vertical concatenation of all
the matrices {HHHk}k∈U , same notation applies for YYYU and ZZZU .
Hence, it follows that YYYU = HHHUXXX+ZZZU . The channel is subject
to the input power constraint 1

n

∑n
i=1 ‖xxxi‖2 ≤ P for any

input sequence xxx1, . . . ,xxxn. The Signal-to-Noise Ratio (SNR)
is defined as snr , P

ntσ2 . Unless indicated otherwise, we
assume that the channel matrices are independent across users.

III. MAIN RESULTS

We first introduce the following random variables (RVs).
• X(j), {Y (j)

k }k, S(j), and Q(j) are the input, output,
state, and time sharing RVs, respectively, for phases
j = 1, . . . ,K, with pmf

K∏
j=1

p(y
(j)
1 , . . . , y

(j)
K |x

(j), s(j))p(s(j))p(q(j)). (6)

• (Ŷi�J , Vi�J ), i < j and |J | = j, are the side informa-
tion intended for users in J from phase i, and the signal
that carries such information, respectively, with pmf

K∏
j=1

j−1∏
i=0

∏
J
p(vi�J )p(ŷi�J | {vI}I⊂J , s(i), q(i)), (7)

where we define vU , {vk�U : k < |U|} and VU ,
{Vk�U : k < |U|} for brevity. And the input at phase j,
j = 1, . . . ,K, is generated with the pmf

K∏
j=1

p(x(j) | {vJ }J , q(j)). (8)

The main result of this paper is stated below.

Theorem 1. For some K-tuple (α1, . . . , αK) ∈ RK+ with∑
k αk = 1, and some pmf as described in (7) and (8), a

rate tuple (R1, . . . , RK) is achievable for the K-user BC with
state feedback if

Rk ≤ α1I(Vk;Y
(1)
k , {Ŷ1�U}U3k |S(1), Q(1)), (9)

0 ≤ min
i,j,k,J :
i<j,k∈J

{
αjI(Vi�J ;Y

(j)
k , {Ŷj�U}U⊃J |S(j), Q(j))

− αiI({VI}I⊂J ; Ŷi�J |Y (i)
k , S(i), Q(i))

}
. (10)



Proof. The proof is relegated to Section IV.

A. Symmetric Capacity of the Erasure Broadcast Channel

Corollary 1. The symmetric capacity of the i.i.d. EBC can
be achieved with the proposed scheme for any input alphabet
size, namely,

Csym =

(
K∑
k=1

1

1− δk

)−1

log |X |. (11)

Proof. The converse proof is provided in [3], [4]. To prove
the achievability, we apply the following auxiliary RVs to the
achievable rate region in Theorem 1.

• Time-sharing RVs Q(j) , (Q
(j)
1 , Q

(j)
2 ) ∈ Q(j) where

Q(j) ,

{
{(q1, q2) : q1 = 0, q2 ∈ [1 : K]}, j = 1

{(q1, q2) : q1 ∈ [1 : j − 1], q2 = J }, j ≥ 2

with |Q(1)| = K and |Q(j)| = (j−1)
(
K
j

)
, for j ≥ 2. We

let

p(q(j)) = p(q
(j)
1 )

(
K

j

)−1

, if q(j) ∈ Q(j) (12)

and 0 otherwise.
• Uniform V ’s in X : for any i < j and J , we set Vi�J =
X , and

p(vi�J ) = |X |−1, if vi�J ∈ X (13)

and 0 otherwise.
• Input as deterministic function of V and Q:

X(j) = V
Q

(j)
1 �Q(j)

2
. (14)

• Side information Ŷ as deterministic function of
(X,S,Q): for any i < j and J ,

Ŷi�J = X(i), (15)

if there exists I such that Q(i)
2 = I, SJ\I = 111, SK\J =

000, and SI 6= 111, and Ŷi�J = 0 otherwise.
The computation of the symmetric capacity is quite involved.
A sketch of proof is provided in the Appendix.

The intuition behind the setting of the RV Ŷi�J is the
following. When a signal X(i) intended for a user group I
is sent, if some of the users in I do not receive the signal
and some other users (denoted by J \ I) overhear it, then
this signal becomes a side information for user group J and
will be compressed and transmitted in phase j. This idea is
inspired by the schemes in [3], [4]. The main difference is that
here we only care about what side information to be shared
among users in which user group, but do not deal with how.
With the linear schemes in [3], [4], however, one has to decide
how to combine different side information based on what each
user already has and needs. In our scheme, these details are
treated with the tools from distributed compression.

B. Symmetric Rate and DoF of Fading Gaussian BC

Corollary 2. For the Symmetric Fading GBC, the proposed
scheme achieves the following symmetric rate:

Rsym = max
βi≥0

K +

K∑
j=2

(
K

j

) j∏
t=2

∑
l≤t bl,t

at

−1

a1 (16)

where, for t = 1, . . . ,K,

at , E log det
(
I + snrHHHHT ΛΛΛtHHHT

)
(17)

bl,t , E log det

(
I +

snr

βt
HHHl(I + snrHHHH1 HHH1)−1HHHHl

)
(18)

with T , {1}∪{t+1, . . . ,K}, ΛΛΛt , diag
{
Inr , β

−1
t I(K−t)nr

}
.

Proof. We use the following auxiliary RVs.

• Time sharing RVs Q(j) , (Q
(j)
1 , Q

(j)
2 ) ∈ Q(j) with

p(q(j)) =

(
K

j

)−1

, if q(j)
1 = j − 1, q

(j)
2 = J (19)

and 0 otherwise.
• Gaussian distributed V ’s: for any i = j − 1 and J , we

let Vi�J ∼ CN (000, Pnt
Int).

• Input as deterministic function of V and Q:

XXX(j) = V
Q

(j)
1 �Q(j)

2
. (20)

• Side information Ŷ as noisy function of (X,S,Q), for
any i = j − 1 and J ,

ŶYYi�J = HHHJ\IXXX
(i) + ẐZZJ\I , ẐZZJ\I ∼ CN (000, βiσ

2I)

if Q(i)
2 = I, and ŶYYi�J = 0 otherwise.

A sketch of proof of (16) is provided in the Appendix.

As in the EBC case, we explain the intuition behind the
choice of the side information Ŷi�J . When a signal XXX(i) that
is intended for a user group I is transmitted, user k, outside
of the group, overhears the noisy version of the signal HHHkXXX(i)

which is useful to all users in group I. Therefore, HHHkXXX(i)

becomes side information to be shared among users in the
group J , {k} ∪ I. Since HHHkXXX

(i) can be costly to send,
only a noisy (compressed) version, namely, HHHkXXX(i) + ẐZZk is
used instead. Again, as mentioned earlier, we do not need to
explicitly deal with how to share the side information.

By setting βi = 1, ∀ i, in (16) and letting snr → ∞, we
can verify that the following optimal symmetric DoF can be
achieved in the MISO case [5],

DoFsym =

(
K∑
k=1

1

k

)−1

, (21)

when nt ≥ K and nr,1 = · · · = nr,K = 1. Details are provided
in the Appendix.



IV. DESCRIPTION OF THE PROPOSED SCHEME

We divide the n-slot transmission into K phases with phase
j of length nj and define αj , nj

n with
∑K
j=1 αj = 1. In

phase 1, K independent source messages, Mk ∈ Mk , [1 :
2nRk ], k ∈ K, are sent. In phase j, j = 2, . . . ,K, (j − 1)

(
K
j

)
messages, Mi�J ∈ Mi�J , [1 : 2njRi�J ], carrying side
information on the past phase i and intended for users in J ,
are created and transmitted.

Codebook Generation

1) Randomly generate the time sharing sequence according
to
∏K
j=1

∏nj

t=1 q
(j)
t .

2) Randomly generate 2nRk independent sequences vvvk
according to

∏n1

i=1 p(vk,i), and index them as vvvk(mk)
with mk ∈ [1 : 2nRk ], k ∈ K.

3) At the end of phase i, i = 1, . . . ,K − 1, randomly
generate 2niRi�J independent sequences ŷyyi�J and
vvvi�J , for each j > i and each |J | = j, accord-
ing to

∏ni

t=1 p(ŷi�J [t] | s(i)
t , q

(i)
t ) and

∏nj

t=1 p(vi�J [t]),
respectively, and index them as ŷyyi�J (mi�J ) and as
vvvi�J (mi�J ), respectively, with mi�J ∈ [1 : 2niRi�J ].

Encoding

1) In phase 1, the encoder selects an arbitrary xxx(1) from
the set of sequences that are jointly typical with
(vvv1(M1), · · · , vvvK(MK), qqq(1)), and then sends out xxx(1).

2) At the end of phase i, i = 1, . . . ,K−1, and for each j >
i and each |J | = j, the source searches for some Mi�J
such that (ŷyyi�J (Mi�J ), {vvvl�I}l<i,I⊂J , sss(i), qqq(i)) are
jointly typical, which has high probability if

niRi�J ≥ niI(Ŷi�J ; {VI}I⊂J |S(i), Q(i)) + niεni
.

In phase j, j = 2, . . . ,K, the source selects and
transmits an arbitrary xxx(j) from the set of sequences that
are jointly typical with

(
{vvvi�J (Mi�J )}i<j,J , qqq(j)

)
.

Decoding

We focus on user k, who performs backward decoding on
the desired messages {MU}U3k, starting from phase K.

1) At phase j, j = K, . . . , 2, and for each J 3 k and
i < j, the decoder looks for a unique M̂i�J such that(
vvvi�J (M̂i�J ), yyy

(j)
k , {ŷyyj�U (M̂j�U )}U⊃J , sss(j), qqq(j)

)
are jointly typical and simultaneously that(
ŷyyi�J (M̂i�J ), yyy

(i)
k , sss(i), qqq(i)

)
are jointly typical.

It can be shown that such M̂i�J can be found and
M̂i�J = Mi�J with high probability provided that [10]

niRi�J ≤njI(Vi�J ;Y
(j)
k , {Ŷj�U}U⊃J |S(j), Q(j))

+ niI(Ŷi�J ;Y
(i)
k |S

(i), Q(i))− niεni
. (22)

2) Finally, the decoder searches for a unique M̂k such
that

(
vvvk(M̂k), yyy

(1)
k , {ŷyy1�U (M̂1�U )}U3k, sss(1), qqq(1)

)
are

jointly typical. Such M̂k can be found and M̂k = Mk

with high probability if

nRk ≤ n1I(Vk;Y
(1)
k , {Ŷ1�U}U3k |S(1), Q(1))− n1εn1

.
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Fig. 2. Symmetric rate versus SNR in the symmetric three-user fading MISO
channel, with nt = 3 transmit antennas.

We let ni →∞, i ∈ K, and apply Fourier-Motzkin elimination
to all constraints to get the rate region given in Theorem 1.

It is worth mentioning that Marton coding is not used in our
scheme, which makes the achievable region less general than
[6] for two-user case. As a matter of fact, the choice has been
made due to our setup of K users. Introducing Marton coding
would lead to a rate region intractable and hard to evaluate.

V. NUMERICAL EXAMPLE

In this section, we consider the three-user Gaussian MISO
channel with i.i.d. Rayleigh fading. We let nt = K = 3 and
focus on the symmetric rate (16). The maximization over {βi}
is done numerically. In evaluation, we compare the proposed
scheme with four cases: 1) TDMA (optimal for no state feed-
back case), 2) the analog MAT scheme [5], 3) the generalized
MAT (GMAT) scheme [9], and 4) an upper bound. In both
MAT and GMAT scheme, we apply the precoding so that the
power constraint is respected in each time slot. For the outer
bound, we apply the genie-aided argument as in [5]. Namely,
by providing the output Y1 to receiver 2, and providing both
outputs Y1 and Y2 to receiver 3, we obtain an outer bound from
the degraded channel whose region can be described by single-
letter constraints: R1 ≤ I(U1;Y1), R2 ≤ I(U2;Y1Y2 |U1),
R3 ≤ I(X;Y1Y2Y3 |U1U2). Then, in the symmetric Rayleigh
channel, one can show that 6R1 + 3R2 + 2R3 ≤ 6I(X;Y1)
which implies that Csym ≤ 6

11CSU. Note that the TDMA
scheme achieves 1

3CSU as symmetric rate.
In Fig. 2, the symmetric rate versus SNR is plotted. In all

SNR regions, the proposed scheme outperforms three refer-
ence schemes. Specifically in medium-to-high SNR regime,
our scheme has a non-negligible power gain over MAT and
GMAT schemes, shown by the gap between curves. This is
mainly due to the flexibility over the duration of each phase
(time-slot) and the compression parameters as a function of the
SNR, which is not possible with the MAT/GMAT schemes as
they are described in [9].



VI. SUMMARY AND DISCUSSION

We proposed a general scheme for the state-dependent K-
user BC with state feedback. This scheme, with a proper
choice of auxiliary RVs, achieves the symmetric capacity in
the Erasure BC, the optimal DoF in a Fading Gaussian BC
as well as a higher rate than the existing schemes. Different
from existing schemes in the same setting, the main ingredient
of the proposed scheme is distributed compression of side
information. Owing to its simplicity, the proposed region may
be applied to other channels in a rather straightforward way.

APPENDIX

A. Sketch of Proof of Expression (11)
We first evaluate the quantities in (9) and (10), that is:

I(Vk;Y
(1)
k , {Ŷ1�U}U3k |S(1), Q(1))

= P (Q
(1)
2 = k)(1− δK) log |X | (23)

I(Vi�J ;Y
(j)
k , {Ŷj�U}U⊃J |S(j), Q(j))

= P (Q
(j)
1 = i)

(
K

j

)−1

(1− δK−j+1) log |X | (24)

I({VI}I⊂J ; Ŷi�J |Y (i)
k , S(i), Q(i))

=

(
j − 1

i− 1

)(
K

i

)−1

δK−j+1(1− δ)j−i log |X |. (25)

Using
∑j−1
i=1 P (Q

(j)
1 = i) = 1 and applying (10), we can

eliminate P (Q
(j)
1 = i) to obtain K− 1 constraints on the α’s,

namely, for j = 2, . . . ,K,

αj(
K
j

) ≥ δK−j+1

(1− δK−j+1)

j−1∑
i=1

(
j − 1

i− 1

)
(1− δ)j−i αi(

K
i

) , (26)

which is equivalent to K−1 lower bounds on the K−1 ratios
α2

α1
, . . . , αK

α1
. Since we have the sum constraint

∑K
j=1 αj = 1,

and that the goal is to maximize α1 in order to maximize the
rate Rk in (9), it follows that the ratios

{
αj

α1

}
j>1

should be

minimized. Thus, each ratio should meet its own lower limit,
i.e., equality must be attained in (26). In this case, the K − 1
ratios can be completely determined from the K−1 equalities.
Finally, α1 can be obtained by

α1 =

(
1 +

∑
j>1

αj
α1

)−1

=
K

(1− δK)
∑K
j=1(1− δj)−1

. (27)

Due to the lack of space, details of the above steps will be
reported in an extended version of the paper.

B. Sketch of Proof of Expression (16)
We apply the RVs defined in Section III-B, and compute

the quantities in (9) and (10), that is:

I(Vk;Y
(1)
k , {Ŷ1�U}U3k |S(1), Q(1)) = K−1a1 (28)

I(Vi�J ;Y
(j)
k , {Ŷj�U}U⊃J |S(j), Q(j)) =

(
K

j

)−1

aj (29)

I({VI}I⊂J ; Ŷi�J |Y (i)
k , S(i), Q(i)) =

i∑
l=1

(
K

i

)−1

bl,i (30)

where the last two equalities hold only when j = i + 1; for
other i, j, both quantities are zeros according to the values of
Q(i) and Q(j). Thus, we obtain:

αj ≥
(
K
j

)∑
l≤j bl,j(

K
j−1

)
aj

αj−1 ≥ · · · ≥
(
K
j

)
K

j∏
t=2

∑
l≤t bl,t

at
α1

Applying the previous reasoning, each αj should meet its
lower bound to maximize α1, which means that the above
inequality provides the exact optimal ratio αj

α1
. From (27),

we obtain the exact optimal α1, which combining with (28)
and (9) leads to (16).

C. Proof of Expression (21)

We let βi = 1, ∀ i. One can verify, from (17) and (18), that,
at high SNR,

at = |T | log snr + o(log snr), (31)

bl,t =

{
o(log snr), l = 1

log snr + o(log snr), l 6= 1
(32)

provided that nt ≥ K. Note that |T | = K − t+ 1, we have

Rsym

log snr
snr→∞−→

K +

K∑
j=2

(
K

j

) j∏
t=2

t− 1

K − t+ 1

−1

K (33)

=

1 +
1

K

K∑
j=2

(
K

j

)(
K − 1

j − 1

)−1
−1

(34)

=

( k∑
j=1

j−1

)−1

. (35)

REFERENCES

[1] G. Dueck, “Partial feedback for two-way and broadcast channels,”
Information and Control, vol. 46, no. 1, pp. 1–15, 1980.

[2] L. Ozarow and S. Leung-Yan-Cheong, “An achievable region and outer
bound for the Gaussian broadcast channel with feedback (corresp.),”
IEEE Trans. Inf. Theor., vol. 30, no. 4, pp. 667–671, July 1984.

[3] C.-C. Wang, “On the capacity of 1-to-K broadcast packet erasure chan-
nels with channel output feedback,” IEEE Trans. Inf. Theory, vol. 58,
no. 2, pp. 931–956, Feb 2012.

[4] M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Multiuser broadcast
erasure channel with feedback-capacity and algorithms,” IEEE Trans.
Inf. Theory, vol. 59, no. 9, pp. 5779–5804, May 2013.

[5] M. A. Maddah-Ali and D. Tse, “Completely stale transmitter channel
state information is still very useful,” IEEE Trans. Inf. Theory, vol. 58,
no. 7, pp. 4418–4431, July 2012.

[6] O. Shayevitz and M. Wigger, “On the capacity of the discrete memory-
less broadcast channel with feedback,” IEEE Trans. Inf. Theory, vol. 59,
no. 3, pp. 1329–1345, Mar 2013.

[7] H. Kim, Y.-K. Chia, and A. El Gamal, “A note on the broadcast channel
with stale state information at the transmitter,” IEEE Trans. Inf. Theory,
vol. 61, no. 7, pp. 3622–3631, May 2015.

[8] A. Vahid, M. A. Maddah-Ali, and A. S. Avestimehr, “Approximate
capacity of the two-user MISO broadcast channel with delayed CSIT,”
in 51st Annual Allerton Conference on Communication, Control, and
Computing, Oct 2013, pp. 1136–1143.

[9] X. Yi and D. Gesbert, “Precoding methods for the MISO broadcast
channel with delayed CSIT,” IEEE Trans. Wireless Commun., vol. 12,
no. 5, pp. 1–11, May 2013.

[10] E. Tuncel, “Slepian-Wolf coding over broadcast channels,” IEEE Trans.
Inf. Theory, vol. 52, no. 4, pp. 1469–1482, April 2006.


