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ABSTRACT

This article proposes an optical flow type method for coregistration of forest remote sensing images. The principle of the algorithm called GeFolki is first explained. Results are shown on the images of the BioSAR 3 campaign, for the production of SAR interferograms, the coregistration a SAR and LIDAR image, and the coregistration an optical image and SAR image.

The advantages of such an algorithm over conventional algorithms are explained. Finally, we propose various applications within the operating data for future BIOMASS mission: massive interferometry, ground truth production, upscaling by fusion of LIDAR and SAR data, and image mining.

MOTIVATION

In remote sensing, data are now ever growing. To benefit from this wealth of information, and to make the fusion of several sensors, a first step involves the common mapping of all the images available on the same site, as shown in Figure 1. This is the stage called coregistration. For all our forest images, we want to have a tool able to superimpose the different images of the same site with a tool that is fast enough to handle large temporal stacks or large volumes. Also, in this article we propose the use of an algorithm based on the classical optical flow framework, called GeFolki.. In the next section, we give the brief description of how the algorithm works. Then, we show the results obtained on the BioSAR 3 images. The performance in terms of precision and speed of execution are discussed quantitatively. Finally, we propose several different application frameworks in the case of evaluation of forest biomass.

Figure 1. Example of composition using all products

that can be useful for biomass estimation: from left to right: Optics, LIDAR, L-band POLSAR, P-band POLSAR and P-band InSAR.

GENERAL DESCRIPTION OF THE ALGORITHM

The algorithms for optical flow provide a displacement map between two images. Generally, they rely on the calculation of an optical flow equation, which is derived from a data model wherein:

-The images of one frame to the next are identical in terms of intensity variations. This hypothesis is called the brightness constancy hypothesis.

-Displacements to look for are small enough to allow the use of Taylor series expansion. This can be called the small motion hypothesis. Although these assumptions are absolutely not respected in the context of remote sensing images, we aim still to be inspired by these methods.

The method we have developed is called GeFolki. This acronym is a historical result of the following acronyms: Folki is an initial algorithm of Optical Flow, inspired by the Lucas-Kanade algorithm [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF], developed by the G. Le Besnerais and F. Champagnat at Onera [START_REF] Besnerais | Dense optical flow by iterative local window registration[END_REF]. EFolki is an extended version, developed and implemented on GPU by Aurélien Plyer during his PhD thesis [START_REF] Plyer | Massively parallel Lucas Kanade optical flow for real-time video processing applications[END_REF]. GeFolki is devoted to the new version of remote sensing images for geoscience.

As for the local optical flow algorithm originally developed by Lucas and Kanade, Gefolki is based on the minimization of the following criterion of Eq 1:
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where is a local neighborhood of the pixel at position x, u(x) is the desired displacement, I 1 and I 2 are the master and slave images to coregister. Here, the key feature of GeFolki lies in the definition of the functions f 1 and f 2 . These two functions convert the intensities so that the brightness constancy assumption is satisfied for transforms of the two images.

The functions that we propose are defined as follows:

R is a ranking function. This rank function consists in replacing the intensity value I(x) by the number of pixels in the neighborhood of x with an intensity lower than I(x). f is a filter function preserving edges and called rolling guidance filter, described in [START_REF] Zhang | Rolling guidance filter[END_REF] and g is a function of local contrast inversion decision.

Figure 2. Example of application of the inversion contrast decision on optical and radar images

This function g corresponds to a rapid test to implement and decide whether the intensity of the slave image has to be inverted or not. This function allows obtaining intensity variations with similar contrasts in both images, whereas this is not necessarily the case on the initial images, as shown in Fig 2.

Finally, a pyramid-solving approach enables to respect the assumption of small motion, as conventionally done in the optical flow algorithms dedicated to relatively large displacements.

RESULTS

Several results are obtained images of the site of the BIOSAR3 campaign. The optical images are from Lantmäteriet, and LIDAR images were provided by SLU and the FOI. They are represented in Fig. 3. The results obtained enable to qualitatively show a significant improvement compared to coregistration final products obtained by a fine geocoding method.

To strengthen the quality of products quantitatively, we proposed an accuracy assessment method based on the detection of the trees in the master image and in the slave image, and then matching them, as in the example of the Fig. 5 containing 5 trees.

In this case, it is possible to make statistics on the distances obtained between the detected pairs of trees. These statistics show that we have a precision of about 10 pixels in the case of geocoding against an accuracy of about less than two pixels in the case of GeFolki.

Regarding the speed of execution, we also compared GeFolki to a conventional method based on mutual information for the coregistration heterogeneous images [START_REF] Kroon | MRI modalitiy transformation in demon registration[END_REF]. The execution speeds are faster by a factor of 10.

The transition to an implementation on GPU saves an additional factor 100.

APPLICATIONS FOR BIOMASS

Interferogramm production

One of the first possible applications is the production of SAR interferograms. Compared to other existing methods, it has the advantage of being fast and not requiring any auxiliary data. Moreover, it is a dense method, that is to say, the deformation can be calculated at all points of the image, unlike the methods that evaluate this deformation on specific tie-points, or on a pixel subgrid. This advantage is particularly important in the case of airborne data and high resolution images, which undergo large deformations and that difficult to correct, because of the instability of the trajectory path. 

Ground Truth production

In the context of the use of machine learning methods, it is necessary to label a number of data in order to constitute the training data. If the classification that is desired is made pixel by pixel, then the associated labeling must also be done for each pixel of the image. One way of doing so is to start from a ground truth given by another image, and coregister it with the image that is to be classified. This is what we proposed to do to classify a polarimetric SAR image into different vegetation classes. The ground truth is generated from the volumetric density raster files of each species of trees, provided by the SLU. These layers themselves were obtained from SPOT image and in situ field measurement. The resulting layers are created at much lower resolutions to ours (30m against 80 cm for the SAR image). However, it is possible to coregister the images all the same, and get a set of labels like in Fig. 7. 

Fusion at the pixel level

Another interesting application relates to the fusion of images from different sensors. For the assessment of biomass, it is the PhD subject of G. Brigot [START_REF] Brigot | Fusion of LIDAR and POLINSAR images for forest vertical structure retrieval From EUSAR[END_REF]. The main idea is to learn the existing inference function between POLINSAR parameters and LIDAR profile, by machine learning. This requires selecting a radar feature that is most correlated possible to the LIDAR feature, for each pixel of the image, after the coregistration process.

We chose as POLINSAR feature, a number of geometrical parameters to describe the coherence shape.

The LIDAR feature or associated label is the percentage points of the return back to the sensor, according to the elevation.

Figure 8 Upscaling process: the inference function between a POLINSAR feature, here the coherence shape, and the LIDAR vertical profiles is learnt through a machine learning method.

To implement the machine learning process, the first step is to match a number of features. This is what was done by the coregistration of ALS data, at 10mx10m resolution, provided by SLU, with our POLINSAR radar data. 

Image mining

Recently, we also have developed an image mining algorithm based on the same criterion of similarity that GeFolki.

From this algorithm, we are for example able to find a high resolution image of TerraSAR-X, inside the Sentinel image of the same area, as illustrated in Fig. 10.

In a first step, we are simply trying to center the smallest image on the most probable center pixel from the Sentinel image. Secondly, the residual deformations can be corrected from the classic GeFolki algorithm.

This image mining stage could be an automatic initialization of the flow calculation between any two images.

Figure 10 Two steps of an image mining process: in the first step the best position of the TSX image is found inside the Sentinel 1 image. In the second step, results are improved thanks to GeFolki

CONCLUSION

We have shown how we managed to adapt a method of optical flow coregistration in case of heterogeneous remote sensing data registration. The spatial accuracy is improved by a factor of 5, and execution speed by a factor of 10. Especially, the algorithm offers many advantages such as dense evaluation of deformation between two images, and the independence to the auxiliary data. This allows to produce interferograms under difficult conditions, but also to consider new applications such as ground truth production for machine learning, fusion of heterogeneous images at the pixel-wise level, and image mining.
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 3 Figure 3. Description of the data set from the BIOSAR 3 campaign: radar, LIDAR and optics image.
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 4 Figure 4. A small example of the improvement brought by the coregistration algorithm in comparison to the geocoding coregistration.

Figure 5 .

 5 Figure 5. P-band Interferogramm in HSV colored compositionThus, we generated the P-band interferogram of the area, as shown in Fig .5. The orbital fringes were calculated from a polynomial regression of order 2 of the fringe pattern thus obtained. Similarly, we generated the L-band interferogram, which proved even more difficult because of very fast variations of the interferometric phases, caused by a low ambiguity height. The result is shown in Fig.6
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 6 Figure 6. L-band Interferogramm in HSV colored composition
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 7 Figure 7. Example of a ground truth -For each pixel of the SAR image corresponds a label.
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 9 Figure 9 Some results of the upscaling process after the coregistration of all LIDAR raster data and SAR images.

Figure 9

 9 Figure 9 illustrates a number of learning outcomes obtained by SVM: four pixels of different radar images, profiles learned from the radar are shown in blue, while the LIDAR profiles considered as ground truth are represented in red color.
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