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Abstract—A distributed hypothesis testing problem is con-
sidered, where the goal is to declare the distribution of two
random variables, based on their observations. Defining two
error events, the error exponent of Type II is studied under
a fixed constraint over the error of type I. A novel approach
is presented, based on random binning. The benefits of this
approach are demonstrated through an example, compared
to a more traditional approach, as well as to a different
binned decoding method. These performance gains are then
generalized to a large set of probability distributions.

I. INTRODUCTION

The field of hypothesis testing (HT) focuses on the ability
to declare the distribution of one or more random variables
(RVs) by using n available observations. In single-variable
HT, a statistician observes n realizations of a single RV X ,
before declaring if the governing distribution is P0,X(x)
(hypothesis H0) or P1,X(x) (hypothesis H1). Two error
events can occur: An error of the first type, with probability
αn, happens when the statistician declares H1 while P0,X

is the distribution that governs X , while the opposite event,
with probability βn, is defined to be an error of the second
type. Stein’s Lemma (see e.g. [1]) determines the optimal
exponential rate of decay for the probability of error of the
second type, under a fixed constraint over the probability of
error of the first type (αn ≤ ε, ε > 0), to be

θn , − lim
n→∞

1

n
log β?n = D(P0||P1) , (1)

where D(P0||P1) is the Kullback-Leiber (KL) divergence
between the two probability distributions. Note that the
optimal exponential rate of decay of βn does not depend
on the specific constraint over the probability of error of the
first type αn, in this case.

In this paper we consider a distributed HT scenario, where
two nodes in a system are required to reach a decision. While
a “helper” sees realizations of the RV X at node A, the
statistician, at node B, observes realizations of Y (see Fig. 1
for a visual representation of the model). We assume that the
helper is allowed to send information about its observations
to the statistician with rate R

[
bits

symbol

]
. The statistician is then

required to declare the probability distribution that governs
the RVs, out of two possible options, namely P0,XY (under
hypothesis H0) and P1,XY (under hypothesis H1).

A similar model for distributed HT problems was first
presented and analyzed in [2]. An achievable error-exponent

was proposed for an error of the second type, under a
fixed constraint for the error of the first type, as discussed
above. The problem of testing against independence, where
P1,XY (x, y) = P0,X(x)P0,Y (y), ∀(x, y) ∈ X × Y , was
studied as a special case. Here, P0,X(x) =

∑
y∈Y

P0,XY (x, y)

is the marginal distribution of X according to hypothesis
H0, and equivalently for P0,Y (y). For this special case, the
achievable error-exponent was proven to also be optimal.
In [3] the case of testing against independence was revis-
ited, focusing on joint problems of detection and source
estimation. While optimality results remain allusive for the
case of general hypotheses (see e.g., [2]), [4] presents an
interesting achievable region through type-by-type analysis
of the observed sequences at the two nodes (see [5] for a
tutorial on the method of types). The idea of using a coding
technique called “random binning” (see e.g., [6]) in order
to improve these results was first briefly mentioned in [7],
and then analyzed thoroughly in [8]. In [9] it was shown
that binning can be optimal for a special case called testing
against conditional independence.

The method of random binning is attractive for HT
problems, as it allows the transmitter to send more accurate
information while using less resources. However, as this
method involves randomly assigning code sequences into
groups (‘bins’) and allowing the encoder to only send the
group number to the decoder, using it for problems of HT
entails a risk: The value of “side information” used at the
statistician’s side is unknown before a decision has been
made. In [8] this method results in a trade-off between
the event where the wrong sequence is chosen from the
bin and the event of an erroneous decision while using the
right sequence. In this paper we propose a new method,
by which HT is performed by using the entire bin, without
sequence retrieval at the statistician’s side. We show through
an example that for HT problems, where the statistician is
only interested in making a decision, this method can be
very beneficial. We continue to show that these gains are in
fact general, for an important group of HT problems.

The rest of this paper is organized as follows: In section II
we present the system model, as well as the state of the art.
Section III presents our main result, while an example of
the performance gain is presented in Section IV through
binary symmetric sources. Section V generalizes this result
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Fig. 1: Two-node detection model, with a unidirectional
communication link

by showing that the gain in performance is significant in
a large array of problems, before concluding remarks are
given in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

A. Notation

We use upper-case letters to denote RVs and lower-case
letters to denote realizations of RVs. Vectors are denoted
by bold-face letters. Qx denotes the empirical distribution,
or “type”, of the vector x. That is, for a vector xn and a
letter a ∈ X in the alphabet of X, Qx(a) = N(a|xn)

n , where
N(a|xn) is the number of times the letter a appears in the
vector xn. The set of all vectors of length n in x ∈ Xn with
a specific type Q is denoted by T n(Q), while the set of all
vectors that are δ-typical is denoted by T nδ (Q).

Using Csiszár’s notation [5], we let H(P ) = E [− logP ]
denote the entropy of a RV distributed according to P ,
D(PX ||P ′X) =

∑
x∈X

PX(x) log
(
PX(x)
P ′

X(x)

)
the KL divergence

between the distributions P and P ′, and I(PX ;PY |X) =
I(X;Y ) = D(PXY ||PXPY ) the mutual information be-
tween X and Y while assuming that PXPY |X governs the
pair. All logarithms and exponentials in this paper are base
2. Finally, X −
− Y −
− Z signifies that the RVs X,Y and
Z form a Markov chain.

B. Two-Node System Model

We consider a two-node system model, by which a helper
and a statistician see n samples of the RVs X and Y ,
respectively. We assume that the RVs are jointly distributed
according to one of two possible probability distributions{

H0 : P0,XY (x, y) ,

H1 : P1,XY (x, y) .
(2)

Under each of these distributions, the variables are assumed
to be jointly independent and identically distributed (i.i.d)
in time. Furthermore, we assume that under each of these
hypotheses, the marginal distribution of each of the RVs is
identical. This assumption makes impossible for any node to
make an independent decision, without communication with
the other side.

Remark 1. For the remainder of this paper, we often choose
to view the system from the point of view of the helper. Thus,
the system can be fully characterized by three RVs, X ∼
PX(x), Y0 ∼ P0,Y (y) and Y1 ∼ P1,Y (y).

Communication is allowed through a perfect link with
rate R, measured in bits per symbol, from the helper to the

statistician. Having received the sent information from the
helper, the statistician makes a decision about the probability
distribution that controls the RVs X and Y . In order to do
so, he uses the received information, as well as his own
observations Yn. In accordance to many previous works on
the subject [2]–[4], [8], we consider two error probabilities,
αn , Pr(H1|XY ∼ P0(x, y)) and βn , Pr(H0|XY ∼
P1(x, y)), for errors of Type I and II, respectively. The
performance of the system, for a given rate R, is measured
by the exponential rate of decay of the probability of error
of the second type βn, when a fixed constraint is set over
the probability of error of the first type αn ≤ ε (ε > 0). We
denote this error exponent by E:

E(R, ε) , lim
n→∞

− 1

n
log βn(ε) . (3)

C. State of the Art

We bring forth two approaches, which would form the
basis for comparison for our proposed approach, presented
subsequently. An achievable scheme for the distributed HT
system with two nodes and a unidirectional communication
link, studied first in [2], was presented in [4] for the general
case, which we will use extensively in this paper:

Proposition 1 ([4]). In the case of distributed HT with
two nodes, as seen in Fig. 1, and general hypotheses, the
following is an achievable error exponent, as defined in (3),
as a function of R, and for any constraint ε:

E(R) = sup
U∈S (R)

inf
ŨX̃Ỹ ∈L (U)

D(PŨX̃Ỹ ||PUXY1
) , (4)

where S (R) = {U : I(U ;X) ≤ R, U −
− X −
− Y }
and L (U) = {ŨX̃Ỹ : P (ŨX̃) = P (UX), P (Ũ Ỹ ) =
P (UY0)}.

Intuitively, given a link with limited rate R, the transmitter
is free to choose any strategy U such that its message is only
dependent on X and can be sent over the given link. This
is assured through limiting the choice of strategy U to the
set S (R). Once a strategy has been chosen, the result is
dependent on a worst case over the set L (U).

In [8] a new approach was offered, by which a binned
codebook is used:

Proposition 2 (Performance improvement through binning
[8]). The following error exponent, as a function of R,
is achievable for the two-node HT problem, for any two
hypotheses, and any constraint ε:

E(R) = inf
QX

sup
Q?

U|X

inf
QY

inf
QUXY

QU|X=Q?
U|X{

min
{
G[QUXY , R],

min
ŨX̃Ỹ ∈L (U)

D(PŨX̃Ỹ ||Q
?
UXPY1|X)

}}
,

(5)

where L (U) is as defined above and

G[QUXY , R] = min
i∈{0,1}

{D(QUXY ||Pi,XYQ?U |X}

+
[
R− I(QX ;QU |X) + I(QY ;QU |Y )

]+ (6)



if I(QX ;QU |X) > R, and G[QUXY , R] = ∞ otherwise.
Here, Q?U |X is the chosen coding strategy of node A, and
Q?UX is its joint probability with the source X , Q?UX =
Q?U |XPX .

The trade-off induced by the use of a binning approach
can be identified in (5) through the minimum operator,
imposed over G[QUXY , R] and a second function, which
resembles the achievable result in Proposition 1. The func-
tion G represents the exponential probability of error in
identifying the correct sequence in the bin, while the second
function in (5) represents the error event where a faulty
detection is made over the correct sequence from the bin.

III. MAIN RESULT

We now improve upon the result of [8] by proposing a
new decoding strategy. While binning is still performed at
the helper’s side according to this new strategy, the receiver
does not try to recover the original sequence from the bin.
Instead, it uses the entire bin in order to make its decision,
as explained subsequently.

Proposition 3 (New achievable error exponent). The fol-
lowing error exponent, as a function of R, is achievable for
the two-node HT problem for any two hypotheses, and any
constraint ε, when only node A is allowed to transmit:

E(R) = sup
Q?

U|X

{
min

{
Ĝ[QUXY , R],

min
ŨX̃Ỹ ∈L (U)

D(PŨX̃Ỹ ||Q
?
UXPY1|X)

}}
,

(7)

where Ĝ[QUXY , R] = R − I(PX ;Q?U |X) + I(PY0 ;Q?U |Y0
)

and L (U) is as defined in Proposition 1.

In the following we give a proof outline for Proposition 3.
We start by describing the codebook generation, as well as
the encoding and decoding strategies. We then explain the
general idea behind the calculation of the error exponent,
and calculate Ĝ[QUXY , R] explicitly.

Proof. Codebook Generation: We build the codebook only
for types of Xn, QX , such that T n(QX) ⊂ T nδ (X), for
some arbitrarily small δ > 0. For each of these types
set a unique index k(QX). Then, fix a conditional type
Q?U |X(QX). Randomly and uniformly choose a set of code-
words, CnU (QX), from the resulting marginal type class
T nQ?

U
, induced by QX and Q?U |X(QX). The size of CnU (QX)

is an integer satisfying CnU (QX)
.
= expnI(QX ;Q?

U|X(QX)),
where .

= signifies equality in the exponent. Define fU :
T n(QX) → CnU (QX). The function fU (x) determines the
codeword that would be chosen by the encoder (“node A”)
in order to describe x, and sent to the decoder (“node B”),
as subsequently explained. We define Un , fU (Xn).

Encoding: Given a sequence x ∈ T n(QX) node A
first checks if T n(QX) ⊂ T nδ (X). If not, it sends an
error message. Otherwise, it searches for a sequence ui
in the codebook that belongs to the type of x, such that
(ui,x) ∈ T nµ (UX), with µ being some arbitrarily small

value that satisfies µ > δ. The encoder sends the type of x,
k(Qx), with zero rate, as well as an index, that is determined
by the chosen codeword u, F (fU (x)). The nature of this
index is dependent on the type of the observed sequence x.
There are two cases to consider:

1 log |CnU (QX)| < nR, in which case we can assign a
unique index for each member of the codebook.

2 log |CnU (QX)| ≥ nR, in which case we assign each dis-
tinct member of CnU (QX) to a message index uniformly
at random. This step is called the binning process.

Let F (fU (x)) denote the element to which fU (x) is mapped.
The encoder can be expressed mathematically as

Ψ(x) = (F (fU (x)), k(Qx)) . (8)

Decoding: In case an error message is received, the
decoder declares H1. The probability of this event, however,
goes to zero when n → ∞ thanks to the asymptotic
equipartition property (AEP, see e.g., [6]) and the size of
the codebook. When the encoder does not send an error
message, the decoder operates on the entire bin in order to
make a decision. Going over the sequences in the bin one by
one, the decoder checks for each ui if (ui,y) ∈ T nµ (UY0).
If a sequence in the bin is found, which is jointly typical
with y, the decoder declares H0. If no such sequence is
found, the decoder declares H1.

Analysis of the Probability of Error: We now give a
brief outline for the analysis of the probability of error. As
showing that αn → 0 when n→∞ is straight-forward, we
neglect this part of the proof and concentrate on analyzing
the exponential rate with wich βn → 0. When analyzing βn,
it is assumed throughout that the probability distribution that
controls X and Y is the one implied by H1. Node B makes
an error of the Type II if it declares H0. This can be the
result of one of two events:

B1 =
{

(f(x),y) ∈ T nδ (UY0)
}
,

B2 =
{

(∃i ∈ F (f(x)) : ui 6= f(x),

(ui,y) ∈ T nδ (UY0)
}
.

(9)

Here, the first event represents the case where the actual
sequence node A intended to send is jointly typical with
the observed sequence y according to H0, despite the fact
that we assume the probability distribution implied by H1

controls the RVs. The second event represents a case where
a different sequence in the bin “confuses” node B. The first
event was analyzed in [8], showing that the result of [4] is
applicable also when using random codebooks, and thus, for
a given strategy Q?U |X ,

lim
n→∞

− 1

n
log Pr(B1) ≥ minD(PŨX̃Ỹ ||Q

?
UXPY1|X) , (10)

where the minimum is over ŨX̃Ỹ ∈ L (U). We thus
concentrate on the analysis of the error exponent of event
B2.

We start by presenting the following lemma,without proof:



Lemma 1. Let A be the set of triplets, such that a binned
codebook is necessary:

A = {(u,x,y) :u ∈ T nQ?
U|X

, log |CnU (QX)| ≥ nR} .
(11)

Let (u,x,y) ∈ A. Let B2 be the event that (u,y) ∈
T nµ (UY0), for some u 6= f(x) in the bin. Then

Pr (B2|Un = u,Xn = x,Yn = y)

≤ exp−n(R−Ĵ(Quxy)−δn) ,
(12)

with

Ĵ(Quxy) , I(Qx;Q?U |X(Qx))−H(Qu) +H(QU |Y0
|PY0

)
(13)

and δn goes to 0 with n. The probability in (12) is taken
over the choice of the codebook in use.

Using Lemma 1 and summing over types and over se-
quences within each type, the probability of the event where
an unintended sequence in the bin causes an error can be
bounded by

lim
n→∞

− 1

n
log Pr(B2) ≥

= min
QX

max
Q?

U|X

min
QY

min
QUXY

{
D(QUXY ||P1,XYQU |X)

+R− I(QX ;Q?U |X) + I(QU |Y0
;PY0

)
}
.

(14)

As we only work with δ-typical x sequences, we may choose
δ to be any value, as long as it is strictly positive. Thus,
we may force QX to be arbitrarily close to PX by taking
δ → 0+. The error exponent in question thus becomes

lim
n→∞

− 1

n
log Pr(B2)

≥ max
Q?

U|X

{
R− I(PX ;Q?U |X) + I(QU |Y0

;PY0
)

+ min
QY

min
QUXY

(
D(QUXY ||P1,XYQ

?
U |X)

)}
+ ε̂

= max
Q?

U|X

{
R− I(PX ;Q?U |X) + I(QU |Y0

;PY0
)
}

+ ε̂ ,

(15)
with ε̂→ 0 as δ → 0. Here, the last equality is true since we
are now free to minimize the KL divergence independently
of the maximized expression before it, which is set once
Q?U |X is chosen. Thus, it can always be brought to its
minimal value, which is zero. This, along with an analysis
of the complementary error event similar to the one given
in [8], completes the proof. The maximization over Q?U |X
in Proposition 3 stems from the fact that the encoder can
choose its strategy freely.

IV. BINARY SYMMETRIC SOURCES

As an example, consider the following sources:

X = Bern
(

1

2

)
,

{
Y0 = X + Z0 ,

Y1 = X + Z1 ,
(16)

where Z0 = Bern(p) and Z1 = Bern(q), and we assume
0 ≤ p < q ≤ 1

2 . For this case, we draw results under the
assumptions that Q?U |X is chosen to be a binary symmetric

0 5 · 10−2 0.1 0.15
0

5 · 10−2

0.1

0.15

0.2

δ

hypothesis testing error exponent
G (Proposition 2, [8])

hypothesis testing without binning

Ĝ (Proposition 3)
“Stein” Upper Bound

Fig. 2: Error exponents for both error events in the BSC case
with p = 0.1, q = 0.2 and R = 0.4, under the strategies
implied by Propositions 2 and 3.

channel (BSC) from X to the auxiliary RV U , with cross-
over probability δ. This of course may be a suboptimal
choice. However, we will see that performance gains may
be significant, even under this limiting choice. Performance
results for this case are presented in Fig. 2. The curve entitled
‘hypothesis testing error exponent’ depicts the exponential
probability of error under the assumptions detailed above,
while using the right sequence at the decoder. Using the
approach offered by [4], as summarized in Proposition 1,
performance is limited by the available rate. This is depicted
in Fig. 2 by the dashed line entitled ‘hypothesis testing
without binning’. It is important to emphasize that this line
is presented as a lower bound over the performance of the
binned approaches, and is not a function of δ.

As was explained in previous sections, the results attained
by each of the binned approaches in Proposition 2 and
Proposition 3 are each a result of a trade-off between two er-
ror events. The curve representing the function G[QUXY , R],
in blue, refers to the event that, under the approach of
Proposition 2, the wrong sequence is chosen from the bin
by the decoder. For this case, choosing δ ' 0.12 results
in the best performance offered by this approach, under
our presumptions, detailed above. The curve representing
Ĝ[QUXY , R], in green, refers to the event where, while
going through all the sequences in the bin, as implied by
the approach of Proposition 3, the decoder is confused by
a sequence, which is not the one the encoder intended to
send. Optimal results under this approach are attained by
choosing δ ' 0.035. It can be seen that, at lest for this case,
Proposition 3 offers superior performance to the approach
presented in [8].

V. ASSESSING THE GAIN IN PERFORMANCE

In this section we show that the performance gain shown
for the specific example of binary symmetric sources in
Section IV is in fact general for many cases. In order
to do so, we choose to examine a “cross-section” of the
performance gain, at the point where R = I(U ;X|Y1). This
cross-section is illustrated for the BSC example in Fig. 2
by a black dashed line. We choose this point because of its



importance to problems where both detection and source-
estimation are required at the receiver (see e.g., [3], [10]).
It can be seen in Fig. 2, that it is at this point that the
curve of G[QUXY , R] leaves 0. This is in fact general
for all cases, and is implied by the decoding approach of
Proposition 2, where a single sequence must first be chosen,
before detection is performed.

In the example presented above, at the same point, the
curve for Ĝ[QUXY , R] is above the one representing the
‘hypothesis testing error exponent’ while using the intended
sequence (seen in black in Fig. 2). This implies that at this
point, performance is not limited by the binning approach.
We now check if this observation is true in general:[
Ĝ[QUXY , R]−D(PUY0 ||PUY1)

]∣∣∣
R=I(U ;X|Y1)

= [R− I(U ;X) + I(U ;Y0) −D(PUY0
||PUY1

)]|R=I(U ;X|Y1)

(a)
= [R− I(U ;X|Y0) D(PUY0 ||PUY1)]|R=I(U ;X|Y1)

= I(U ;X|Y1)− I(U ;X|Y0)−D(PUY0
||PUY1

)

= I(U ;XY1)− I(U ;Y1)− I(U ;XY0)

+ I(U ;Y0)−D(PUY0
||PUY1

)

(b)
= I(U ;Y0)− I(U ;Y1)−D(PUY0 ||PUY1) , (∗) .

(17)
Here, (a) stems from the Markov chain U−
−X−
−Y0, while
(b) stems from the same Markov chain, as well as U−
−X−

−Y1. Through the chain rule for KL divergence we get that
(∗) = H(Y1|U) − H(Y0|U) − D(PY0|U ||PY1|U |PU ) where
D(PY0|U ||PY1|U |PU ) is the conditional KL-divergence. In
order to check if the performance at this point is not limited
by the binning approach of Proposition 3, we would like
to check if this expression is positive, or equivalently if
H(Y1|U) − H(Y0|U) ≥ D(PY0|U ||PY1|U |PU ). This is a
conditional version of Theorem 3 in [11]. A sufficient (but
not necessary) condition for this inequality to hold is thus
that Y1 is majorized by Y0, for any choice of U :

Definition 1 ([11]). Consider discrete probability distribu-
tions P = {pi} and Q = {qi} defined on the positive
integers labeled in decreasing probabilities, i.e.,

pi ≥ pi+1, qi ≥ qi+1 . (18)

Q is majorized by P if for all k = 1, 2, . . .

k∑
i=1

qi ≤
k∑
i=1

pi . (19)

Lemma 2 ([11]). If Q is majorized by P , then

H(Q)−H(P ) ≥ D(P ||Q) . (20)

When considering the conditional case, as we are required
to do here, it is enough to verify the majorization condition
in Lemma 2 for the average of Y0 (respectively, Y1) over U .
Nevertheless, we will restrict ourselves further by demanding
that (Y1|X = x) is majorized by (Y0|X = x) for any
x ∈ X . In such a case, there will always be a U ∈ S (R)
(not necessarily unique) that achieves the maximum over

S (R) in Proposition 3, and such that the majorization
constraint holds. Thus, performance is not limited by our
proposed binning approach of Proposition 3, for any setting
that complies with this condition, at our chosen reference
point R = I(U ;X|Y1). Comparing this to the approach in
Proposition 2, where at the same reference point binning
reduces the error exponent of interest to zero, the benefits
of the approach presented in Proposition 3 are clear.

Remark 2. While at a first glance enforcing the majoriza-
tion condition for each x ∈ X might seem unnecessarily
strict, in fact it still includes many interesting problems,
including settings in which H0 and H1 imply the same
channel from X to Y , with the difference that the channel
implied by H1 is noisier. This is in fact the case of the BSC
example above.

VI. CONCLUDING REMARKS

In this paper, a novel approach to the distributed HT
problem was presented through the use of binned codebooks,
without sequence retrieval at the decoder. Comparing our
results to the state of the art, it was shown that performance
gains may be significant. Moreover, it was shown that
significant gains are assured in a wide array of interesting
problems. This was achieved by showing that at a point
where previous methods are highly restricted, the proposed
approach is not limited by its binned codebook.
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