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Abstract

This article presents two novel ideas of improving the Machine Translation (MT) quality
by applying the word-level quality prediction for the second pass of decoding. In this
manner, the word scores estimated by Word Confidence Estimation (WCE) systems help
to reconsider the MT hypotheses for selecting a better candidate rather than accepting
the current sub-optimal one. In the first attempt, the selection scope is limited to the
MT N-best list, in which our proposed re-ranking features are combined with those of the
decoder for re-scoring. Then, the search space is enlarged over the entire search graph,
storing many more hypotheses generated during the first pass of decoding. Over all paths
containing words of the N-best list, we propose an algorithm to strengthen or weaken them
depending on the estimated word quality. In both methods, the highest-score candidate
after the search becomes the official translation. The results obtained show that both
approaches advance the MT quality over the one-pass baseline, and the Search Graph
Re-decoding achieves more gains (in BLEU score) than N-best List Re-ranking method.

1 Introduction

The core idea of Statistical Machine Translation (SMT) is to generate all possible

hypotheses for a given input sentence, then search for the hypothesis of highest

score to become the output. The score used to judge the candidates consists of

various factors, e.g. language model, translation model, reordering model, etc. Since

the state-of-the-art MT models are imperfect, their outputs might not meet the

user’s expectations. More specifically, the MT output perhaps beats the others

under the decoder’s assessment, yet in many cases remains sub-optimal according

to readers’ viewpoint. For instance, by looking at the N-best list presented in Table

1, it is not hard to realize that the third ranked hypothesis is more valuable than

the current 1-best, with only one “Shift” operation (“association udf” → “udf

association”) is required to become the reference (post-edition), although its model

score is lower. Therefore, improving MT performance by adding more objective and

decoder-independent features is a roadmap that many researchers are attempting.
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Source (fr) l’association udf hausse le ton et somme le nouveau centre

de ne plus utiliser son sigle.

Post-edition (en) the udf association increases the tone and commands the

new centre to stop using its acronym.

Hypothesis e1 the association udf increase the tone and after the new

centre to stop using its acronym.

Hypothesis e2 the association udf rise the tone and warn the new

centre to stop using the acronym.

Hypothesis e3 the association udf increases the tone and commands the

new centre to stop using its acronym.

Hypothesis e4 the association udf tone and increase the amount

the new centre to use its acronym.

Hypothesis e5 the association udf increase the tone and warn the new

centre not to use its abbreviation.

Table 1. With state-of-the-art SMT systems, the 1-best is not always optimal

Joining these endeavors, this article contributes two novel ideas for generating a

better candidate from the quality labels predicted for words of the current MT

output. More specifically, we automatically identify the good and bad words (word

confidence estimation), then exploit them as additional indicators to “decode” one

more time for acquiring more valuable translation. There are two spaces over which

the search can be conducted:

• The MT N -best list: after decoding, besides the official translation e1, the

decoder generates also N−1 other alternative hypotheses {e2, e3, ..., eN} with

lower scores. The totality of these N hypotheses is known as the N -best list.

Working on this list, we integrate into the current objective scoring function

with our proposed parameters based on WCE scores, then re-rank it by this

enriched function.

• The MT Search Graph (SG) can be considered as a “vast warehouse”

storing all possible hypotheses generated by the SMT decoder. Our idea when

exploring this huge space is that the overall scores of all paths containing

tagged (error/ no error) words will be modified due to their quality predicted

beforehand by WCE. More precisely, the score is strengthened (increased) in

case of the path contains good words and weakened (decreased) otherwise.

Word Confidence Estimation (WCE) is not a novel topic, although it is still under-

studied compared to research on Sentence-level Quality Estimation. Nevertheless,

the idea of using it to enhance MT quality has not been widely investigated in

literature. To the best of our knowledge, if we ignore our previously published

conference papers, the confidence score (called Goodness) is applied only once in

the work of Nguyen, Huang and Al-Onaizan (2011) to re-rank the N -best list, in a

different way from our approach.

The rest of this article is organized as follows. After reviewing some related work

in Section 2, we investigate the correlation between our proposed scores (built using

WCE) and other MT quality metrics (BLEU, TER, TERp-A) in Section 3. Section
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4 presents the WCE system building. Sections 5 details the idea of using WCE to

re-rank the N -best list. Another way of exploiting it to re-decode the SMT search

graph is discussed in Section 6. Section 7 compares the two methods, concludes the

article and points some perspectives.

2 Related Work

2.1 Word Confidence Estimation

Confidence Estimation (CE) is the task of identifying the correct parts and detecting

the translation errors in MT output. If the quality is predicted for each word, this

becomes WCE. The interesting uses of WCE include: pointing out the words that

need to be corrected by the post-editor, telling readers about the reliability of

a specific portion, and selecting the best segments among options from multiple

translation systems for combination.

To deal with this problem, various approaches have been proposed. They mainly

focus on two principal issues: the features to represent each word and the Ma-

chine Learning (ML) methods to train the classifier. In this domain’s pioneer

work, Blatz, Fitzgerald, Foster, Gandrabur, Goutte, Kulesza, Sanchis and Ueffing

(2003) combine several features using neural network and Näıve Bayes learning algo-

rithms. One of the most effective feature combinations is the Word Posterior Prob-

ability (WPP) as suggested by Ueffing, Macherey and Ney (2003) associated with

IBM-model based features (Blatz, Fitzgerald, Foster, Gandrabur, Goutte, Kulesza,

Sanchis and Ueffing (2004)). Basically, WPP is the likelihood of the word occurring

in the target sentence, given the source sentence. Numerous knowledge sources have

been proposed to calculate it, such as word graphs, N-best lists, etc. To quantify

it, the key point is to determine sentences in N-best lists that contain the word e

under consideration in a fixed position i.

Ueffing and Ney (2005) propose an approach for phrase-based translation models:

a phrase is a sequence of contiguous words and is extracted from the word-aligned

bilingual training corpus. The confidence value of each word is then computed by

summing over all phrase pairs in which the target part contains this word. Xiong,

Zhang and Li (2010) incorporate linguistic features (the word itself, part-of-speech

(POS) and null-link feature) with WPP and train their Maximum Entropy classi-

fier, allowing considerable gains in comparison to the one using only WPP features.

The novel features from source side, alignment context, and dependency structure

(Nguyen et al. 2011) advance the error prediction accuracy of the baseline system

using WPP and POS features in both F-score and Pearson correlation with human

judgment. Other approaches are based on external features, which are indepen-

dent from MT system’s resources (Soricut and Echihabi (2010), Felice and Specia

(2012)), allowing to cope with various MT systems, such as statistical, rule-based,

etc.

Recent workshops on MT (WMT 2013, 2014 and 2015) launched WCE as an

evaluation shared task. In WMT 2013, while Han, Lu, Wong, Chao, He, and Xing

(2013); Luong, Lecouteux and Besacier (2013) employ the Conditional Random

Fields (CRF) model (Lafferty, McCallum and Pereira (2001)) to build classifiers,
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Bicici (2013) presents the global learning model by dynamic training with adaptive

weight updates in the perceptron training algorithm. Concerning features: (Bicici,

2013) presents the “common cover links” (the links that point from the leaf node

containing this word to other leaf nodes in the same subtree of the syntactic tree).

(Han et al. 2013) focus on various n-gram combinations of target words. (Luong et

al. 2013) integrated a number of new indicators relying on graph topology, pseudo

reference, syntactic behavior (constituent label, distance to the semantic tree root)

and polysemy characteristic.

In WMT 2014, Wisniewski, Pécheux, Allauzen and Yvon (2014) exploit random

forest classifier and build only 16 dense and continuous features of two categories:

association features between source sentence and each target word, and fluency

features describing the quality of the translation hypotheses. Meanwhile, confusion

network, word lexicon and POS tags are the main resources to form the feature

set of the systems of Camargo-de-Souza, González-Rubio, Buck, Turchi and Negri

(2014).

In WMT 2015, deep neural network is employed by Kreutzer, Schamoni, and

Riezler (2015) to learn continuous feature representations from bilingual contexts.

Their network is firstly trained by initializing the word lookup-table with dis-

tributed word representation, and then adapted to the WCE task via a back-

propagation process, which aims to minimize the word prediction errors using

stochastic gradient descent. Meanwhile, the conventional sequence labeling tech-

nique, CRF, is applied by many other participants (Shah, Logacheva, Paetzold,

Blain, Beck, Bougares and Specia (2015), Logacheva, Hokamp, and Specia (2015),

Shang, Cai, and Ji (2015)) to train their classifiers. Beside using baseline features,

Tezcan, Hoste, Desmet, and Macken (2015) propose new ones to capture the ac-

curacy (meaning transfer from source to target sentence) using word and phrase

alignments, and the fluency (target sentence wellformedness level) via training lan-

guage models on word surface forms and on part-of-speech tags.

As stated above, the main goal of this article is to apply WCE outputs in the

second pass of decoding (i.e. for re-ranking the SMT N -best list, as well as re-

decoding the Search Graph). Therefore, it is interesting to investigate how SMT

multiple-pass decoding was examined in the literature in the next section.

2.2 SMT Multiple-Pass Decoding

Among related work concerning this issue, we observe some prominent ideas.

The first direction focuses on proposing additional Language Models. Kirchhoff

and Yang (2005) train one word-based 4-gram model (with modified Kneser-Ney

smoothing) and one factored trigram model, then combine them with seven decoder

scores for re-ranking N -best lists of several SMT systems. Their proposed LMs in-

crease the translation quality of the baselines (measured by BLEU score) from 21.6

to 22.0 (Finnish - English), or from 30.5 to 31.0 (Spanish - English). Meanwhile,

Zhang, Almut, and Stephan (2006) experiment with a distributed LM where each

server, among the total of 150, hosts a portion of the data and responses its client,

allowing them to exploit an extremely large corpus (2.7 billion word English Gi-
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gaword) for estimating N-gram probability. The quality of their Chinese - English

hypotheses after the re-scoring process by using this LM is improved by 4.8% (from

BLEU 31.44 to 32.64, oracle BLEU score = 37.48).

In another direction, several authors propose to replace the current decoder’s

linear scoring function by more efficient functions. Ueffing and Ney (2007) linearly

combine sentence-level WPP with scores assigned by the underlying SMT system

and additional language model scores . Sokolov, Wisniewski and Yvon (2012) learn

their non-linear scoring function in a learning-to-rank paradigm, applying Boosting

algorithm. Their gains on the WMT’{10, 11, 12} are modest yet consistent and

higher than those based on linear scoring functions. Duh and Kirchhoff (2008)

use Minimum Error Rate Training (MERT) (Och (2003)) as a weak learner and

build their own solution, BoostedMERT, a highly-expressive re-ranker created by

voting among multiple MERT ones. Their proposed model considerably beats the

decoder’s log-linear model (43.7 vs. 42.0 BLEU) in IWSLT 2007 Arabic - English

task. Aiming at lattice rescoring methods for large-scale SMT, Blackwood (2010)

proposes a linearized lattice minimum Bayes-risk decoding method based on efficient

path counting transducers. He also suggests to combine multiple SMT lattices,

allowing the decoder to operate on a much richer and more diverse searching space,

thus improves the translation quality over several language pairs. Applying solely

goodness (the sentence confidence) scores, (Nguyen et al. 2011) obtain slight yet

consistent TER reductions (0.007 and 0.006 on the dev and test set) after a 5-list

re-ranking for their SMT hypotheses. This latter work is the most related to our

paper, yet discrepant in some points: (1) our proposed sentence scores are computed

based on word confidence labels; (2) we perform a study of the use of WCE for N-

best reranking and assess its usefulness in a simulated interactive scenario (using

oracle WCE labels); and (3) we also use, in the second part of this paper, the WCE

score to re-decode the full SMT search graph.

3 Word Quality Scores and MT Quality Metrics

Before exploiting WCE scores to improve MT quality, we first investigate the

correlation between sentence-level scores (obtained from WCE labels) and con-

ventional evaluation scores, including BLEU (Papineni, Roukos, Ard and Zhu,

(2002)), TER and TERp-A (Snover (2008)). For each output sentence, a word

quality score (WQS) is defined by the ratio of the number of words predicted as

“Good” by WCE system over its total number of words:

WQS =
#′′G′′(good) words

#words
(1)

In other words, we are trying to examine whether the high percentage of “G”

(good) words (predicted by WCE system) in a MT output ensure its possibility of

having a better BLEU and low TER (TERp-A) value. This investigation is a strong

prerequisite for further experiments in order to verify that WCE scores do not bring

additional “noise” to the candidates’ re-judgement process. In this investigation,

we compute WQS over a French - English dataset (encompassing total of 10,881
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1-best translations), taken from news corpora of the WMT evaluation campaign

(from 2006 to 2010). The post-editions of these translations are generated by using

a crowdsourcing platform: Amazon Mechanical Turk. Matching MT hypotheses

against post-editions using TERp-A1, a tuned version of TERp2, enables us not

only to compute TER and TERp-A scores, but also to determine the word quality

labels (“G”, “B”), and then WQS. More details of the corpus can be found in (Potet,

Rodier, Besacier and Blanchon (2012)) and those of the quality label determination

with TERp-A are depicted in (Luong 2012). Once TERp-A labels are obtained, we

convert them into binary labels “G”, “B” (see Section 4.2 for conversion details).

Once we have three conventional scores (BLEU, TER, TERp-A) for each sentence,

we plot each against WQS. Here, we use the “oracle” labels in order to verify the

correlation with conventional evaluation metrics, but obviously, the predicted labels

will be used for the two-pass SMT described in the next section. BLEU, TER and

TERp-A scores are calculated after matching with post-editions. The results are

plotted in Figure 1, where the y axis shows the “G” (good) word percentage, and

the x axis shows BLEU (1a), TER (1b) or TERp-A (1c) scores. It can be seen from

Fig. 1. The correlation between WQS in a sentence and its overall quality measured by:

(a) BLEU, (b) TER and (c) TERp-A metrics

1 https://github.com/snover/terp
2 TERp is an extension of TER (Translation Edit Rate) that uses phrasal substitutions

(using automatically generated paraphrases), stemming, synonyms, relaxed shifting con-
straints and other improvements.
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Figure 1 that the majority of points (the densest areas) in all three cases conform

the common tendency. In Figure 1a, the higher “G” percentage, the higher BLEU

score is. Conversely, in Figure 1b (Figure 1c), the higher “G” percentage, the lower

TER (TERp-A) is. Furthermore, these high correlations are quantified by the high

positive (0.7814 for BLEU) and negative (-0.8687 for TER, and -0.7968 for TERp-

A) correlation scores. We notice some outliers, i.e. sentences with most or almost all

words labeled “good”, yet still have low BLEU or high TER (TERp-A) scores. This

phenomenon is to be expected when many unknown source words are not translated

or when the unique reference is simply too far from the hypothesis. Nevertheless,

the information extracted from oracle WCE labels seems useful to assess the MT

hypotheses in the second pass.

4 Experimental Setting

4.1 Dataset, N-best List and Search Graph Preparation

From a dataset of 10,881 French sentences, we applied a Moses-based SMT system

to generate their English hypotheses. In our SMT system, the translation model

is trained on the Europarl and News parallel corpora of WMT103 (1,638,440 sen-

tences), and the target language model is trained by the SRILM toolkit (Stolcke

2002) on a news monolingual corpus of WMT10 (48,653,884 sentences). Next, hu-

man translators were invited to correct MT outputs, giving us the post editions.

More details on this post-edited corpus can be found in (Potet et al. 2012). The

set of triples (source, hypothesis, post edition) was then divided into the training

set (10000 first triples) and test set (881 remaining ones). The WCE classifier was

trained over all 1-best hypotheses of the training set.

The N -best list (N = 1000) with associated alignment information is also ob-

tained on the test set (1000 * 881 = 881000 sentences) by using options “-n-best-

list” and “-print-alignment-info-in-n-best” of Moses (version 2009-04-13) (Koehn,

Hoang, Birch, Callison-Burch, Federico, Bertoldi, Cowan, Shen, Moran, Zens, Dyer,

Bojar, Constantin, and Herbst (2007)). Besides, the SGs are extracted by some pa-

rameter settings: “-output-search-graph”, “-search-algorithm 1” (using cube prun-

ing) and “-cube-pruning-pop-limit 5000” (adds 5000 hypotheses to each stack). We

then store the SG for each source sentence in a separated file, and the average size

is 43.8 MB.

4.2 WCE System Building

We employ the Conditional Random Fields (Lafferty et al. 2001) (CRFs) as our ma-

chine learning method, with WAPITI toolkit4 (Lavergne, Cappé and Yvon (2010)),

to train the WCE model. A number of knowledge resources are employed for ex-

tracting the system-based, lexical, syntactic and semantic characteristics of a word.

This results in the total of 25 major feature types as follows:

3 http://www.statmt.org/wmt10/
4 https://wapiti.limsi.fr/
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• Target Side: target word; bigram (trigram) backward sequences; number of

occurrences

• Source Side: source word(s) aligned to the target word

• Alignment Context (Nguyen et al. 2011): the combinations of the target

(source) word and all aligned source (target) words in the window ±2

• Word posterior probability (Ueffing et al., 2003)

• Pseudo-reference (Google Translate): does the word appear in the pseudo

reference?

• Graph topology (Luong, Besacier and Lecouteux (2013)): number of alterna-

tive paths in the confusion set, maximum and minimum values of posterior

probability distribution

• Language model (LM) based: length of the longest sequence of the current

word and its previous ones in the target (resp. source) LM. For example, with

the target word wi: if the sequence wi−2wi−1wi appears in the target LM but

the sequence wi−3wi−2wi−1wi does not, the n-gram value for wi will be 3.

• Lexical Features: word’s Part-Of-Speech (POS) obtained by TreeTagger

toolkit5 on both source and target sides; sequence of POS of all its aligned

source words; POS bigram (trigram) backward sequences; binary lexical fea-

tures: is the character sequence a punctuation? a proper name? a numerical

value?

• Syntactic Features: null link (Xiong et al. 2010); constituent label; depth in

the constituent tree

• Semantic Features: number of word senses in WordNet.

In the next step, the word’s reference labels (or so-called oracle labels) are initially

set by using TERp-A toolkit (Snover, 2008) in one of the following classes: “I”

(insertions), “S” (substitutions), “T” (stem matches), “Y” (synonym matches), “P”

(phrasal substitutions), “E” (exact matches). “E”, “T” and “Y” are then regrouped

into “good” class “G”, meanwhile the rest (“I”, “P” and “S”) belongs to “bad” class

“B”. We observe that 85% of the words in our dataset are labeled as “G” and 15%

are labeled as “B”. Once having the prediction model, we apply it on the test

set (881 x 1000 best = 881000 sentences) and get needed WCE labels along with

confidence probabilities. In terms of F-score, our WCE system gets performance in

predicting “G” label of 87.65%, and“B” label of 42.29%. The above-mentioned

feature types were also used in our English - Spanish WCE System submitted for

WMT Quality Estimation shared task and achieved a high rank (first rank in 2013

(Luong et al. 2013) and third rank in 2014 (Luong, Besacier and Lecouteux (2014)).

Both WCE and oracle labels will be used in the experiments.

5 WCE in N-best List Re-ranking

As stated above, the main goal of this idea is to add WCE-based scores along with

existing decoder ones (LM, Translation model, Reordering model, etc.) in order

5 http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
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to re-select the best hypothesis among N candidates. We start by describing our

proposed features, followed by experiments and further analysis.

5.1 Proposed Features

Since the scores resulting from the WCE system are for words, we have to synthesize

them in sentence level scores for integrating with the 14 (already existing) Moses

decoder scores. Six new scores are proposed; they include:

• The ratio of number of good words to total number of words (1 score)

• The ratio of number of good nouns (verbs) to total number of nouns (verbs)

(2 scores)

• The ratio of number of n consecutive good word sequences to the total number

of consecutive word sequences; n=2, n=3 and n=4 (3 scores)

Let us give an example in Figure 2: among the total of 18 words of a given SMT

hypothesis, we have 12 labeled as “G”; 7 out of 17 word pairs (bigram) are labeled

as “GG” and 3 out of 16 triples are labeled as “GGG”. In this case, some of the

above scores can be computed as:

#good words

#words
=

12

18
= 0.667

#good bigrams

#bigrams
=

7

17
= 0.4118

#good trigrams

#trigrams
=

3

16
= 0.1875

(2)

With the features built on oracle labels, we are able to analyze the upper bound

performance. In other words, we can establish an “oracle” setting which is com-

parable to an interactive case where users would validate a word as “G” or “B”

without providing any confidence score.

5.2 Experiments

To better examine the impact of the proposed scores, we calculate them not only

using our predicted WCE system, but also using an oracle WCE (further called

“WCE scores” and “oracle scores”, respectively). We experiment with the three

following systems:

• BL: Baseline SMT system with 14 above decoder scores

• BL+WCE: Baseline + 6 predicted WCE scores

• BL+OR: Baseline + 6 oracle WCE scores (simulating an interactive sce-

nario).

The weights assigned to these scores are tuned by a 2-fold cross validation on

the test set, using MERT (Och 2003) and MIRA (Watanabe, Suzuki, Tsukada and

Isozaki (2007)) methods. More specifically, we split the test set into two equivalent

parts: S1 and S2, then take S1 as a development set to optimize the parameters
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Fig. 2. Example of our WCE classification results for one MT hypothesis

which are then used to decode and re-rank the translations of S2, and vice versa.

The translation quality of BL, BL+WCE and BL+OR systems are reported in

Table 2. The results obtained show that the integration of oracle scores signifi-

Systems MERT MIRA

BLEU TER TERp-A BLEU TER TERp-A

BL 52.31 0.2905 0.3058 50.69 0.3087 0.3036

BL+OR 58.10 0.2551 0.2544 55.41 0.2778 0.2682

BL+WCE 52.77 0.2891 0.3025 51.01 0.3055 0.3012

WCE + 25% 53.45 0.2866 0.2903 51.33 0.3010 0.2987

WCE + 50% 55.77 0.2730 0.2745 53.63 0.2933 0.2903

WCE + 75% 56.40 0.2687 0.2669 54.35 0.2848 0.2822

Oracle BLEU score BLEU=60.48

Table 2. Translation quality of the baseline system (only decoder scores) and that

with additional scores from real “WCE” or “oracle” WCE system

cantly boosts the MT output quality, measured by all three metrics and optimized

by both tuning methods employed. We gained 5.79 and 4.72 points in BLEU score,

by MERT and MIRA (respectively). With TER, BL+OR helps to gain 0.03 point

in both methods. Meanwhile, in case of TERp-A, the improvement is 0.05 point

for MERT and 0.03 point for MIRA. It is worthy to mention that the possibility of

obtaining such oracle labels is doable through a human-interaction scenario (which

could be built from a tool like PET (Post-Editing Tool) (Aziz, De Sousa and Spe-

cia (2012)) for instance). In such an environment, once having the hypothesis

produced by the first pass (translation task), the human editor could simply
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click on words considered as bad (B), the other words being implicitly considered

as correct (G).

For more insightful understanding about WCE scores’ role, we calculate the pos-

sible optimal BLEU score obtained from the N -best list. Applying the sentence-level

BLEU+1 metric (Nakov, Guzman and Vogel (2012)) over candidates in the list,

we select the one with highest score and aggregate all of them in an oracle-best

translation; the resulting performance obtained is 60.48. This score shows that

the simulated interactive scenario (BL+OR) is less than optimal only 2.38 points

(in case of MERT) and clearly overpasses the baseline (8.17 points below the best

score).

The contribution of a real (predicted) WCE system seems more modest:

BL+WCE marginally increases BLEU scores of BL (0.46 gain in case of opti-

mizing by MERT and 0.32 by MIRA). For both TER and TERp-A metric, the

improvements are also negligible. To verify the significance of this result, we es-

timate the p-value between BLEU of BL+WCE system and BLEU of baseline

BL relying on Approximate Randomization (AR) method (Clark, Dyer, Lavie and

Smith (2011)) which indicates if the improvement yielded by the optimized system

is likely to be generated again by some random processes (randomized optimizers).

After various optimizer runs, we randomly selected 5 optimizer outputs to perform

the AR test and obtain a p-value of 0.01. This result reveals that the improvement

yielded by BL+WCE is significant although small, originated from the contribu-

tion of WCE score, not by any optimizer variance. This modest but positive change

in BLEU score using WCE features encourages us to investigate and analyze further

about WCE scores’ impact by illustrating the gradual improvement of WCE per-

formance, which we now explain. Firstly, we filter out all wrongly classified words in

the test set (by matching against the oracle labels) and push them into a temporary

set, called T. Then, we correct randomly a percentage (25%, 50%, or 75%) of labels

in T. Finally, the altered T will be integrated back with the correctly predicted

part (by the WCE system) in order to form a new “simulated” result set. This

strategy results in three “virtual” WCE systems called “WCE+N%” (N=25, 50

or 75), which use 14 decoder scores (including 7 reordering, 1 language model, 5

translation model and 1 word penalty scores) and 6 “simulated” WCE scores. From

each of the above systems, the whole experimental setting is identical to what we

did with the original WCE and oracle systems: six scores are built and combined

with existing 14 system scores for each hypothesis in the N -best list. After that,

MERT and MIRA methods are invoked to optimize their weights, and finally the

reordering is performed thanks to these scores and appropriate optimal weights.

The translation quality measured by BLEU, TER and TERp-A after re-ranking

using “WCE+N%” (N=25,50,75) can be seen also in Table 2.

We note that all obtained scores behave as expected: the better performance

WCE system reaches, the clearer its role in improving MT output quality. Dimin-

ishing 25% of the wrongly predicted words leads to a gain of 0.68 point (by MERT)

and 0.32 (by MIRA) in BLEU score. More significant increases of BLEU 3.00 and

BLEU 3.63 (MERT) can be achieved when prediction errors decrease up to 50%
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and 75%. These scores suggest that WCE has a promising role in improving MT

quality if its quality is adequate.

6 WCE for SMT Search Graph Re-decoding

The major drawback of the approach previously presented is that the search is

limited to a set of N best sentences. What would happen if this space was widened?

Will it be efficient for mining better hypothesis? These questions motivate us to

investigate SMT search graph re-decoding.

6.1 Search Graph Structure

The SMT decoder’s Search Graph (SG) can be roughly considered as a “vast ware-

house” storing most promising hypotheses generated by the SMT system during

decoding for a given source sentence. In this large directed acyclic graph, each hy-

pothesis is represented by a path, carrying all nodes between its start and end ones,

along with the edges connecting adjacent nodes. One hypothesis is called complete

when all the source words are covered and incomplete otherwise. Starting from the

empty initial node, the SG is gradually enlarged by expanding hypotheses during

decoding. In order to facilitate the access and the cost calculation, each hypothesis

H is further characterized by the following fields:

• hyp: hypothesis ID

• back: the backpointer pointing to its previous cheapest path.

• transition: the cost to expand from the previous hypothesis (denoted by

pre(H)) to this one.

• score: the cost of this hypothesis: score(H) = score(pre(H)) + transition.

• out: the last output (target) phrase, can contain multiple words.

• covered: the source coverage of out, represented by the start and the end

position of the source words translated into out.

Figure 3 illustrates a simple SG generated for the source sentence: “identifier et

mesurer les facteurs de mobilization”. The attributes “t” and “c” refer to

the transition cost and the source coverage, respectively. Hypothesis 175541 is ex-

tended from 57552, when the three words from 3rd to 5th position of the source sen-

tence (“les facteurs de”) are translated into “the factors of” with the transition cost

of −8.5746. Hence, its cost is: score(175541) = score(57552)+transition(175541) =

−16.1014 + (−8.5746) = −24.6760. Three rightmost hypotheses: 204119, 204109

and 198721 are complete since they cover all source words. Among them, the

cheapest-cost one is 198721, from which the model-best translation is read off by

tracing back to the initial node 0: “identify the causes of action .”.

6.2 Overview of the Approach

We assume that the decoder generates N best hypotheses T = {T1, T2, ..., TN} at the

end of the first pass. Using the WCE system (which can only be applied to sequences
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Fig. 3. An example of search graph representation

of words - and not directly to the search graph - that is why N best hypotheses

are used), we are able to assign the j-th word in the hypothesis Ti, denoted by tij ,

with one appropriate quality label, cij ( i.e. “G” (Good: no translation error), “B”

(Bad: need to be edited)), along with the confidence probabilities (Pij(G), Pij(B)

or P (G), P (B) for short, where P (B) = 1−P (G)). Then, the second pass is carried

out by considering every word tij as well as its labels and scores cij , P (G), P (B).

Our principal idea is that, if tij is a positive (good) translation, i.e. cij = “G′′ or

P (G) ≈ 1, all hypotheses Hk ∈ SG containing it in the SG should be “rewarded”

by reducing their cost. On the contrary, those containing negative (bad) translation

will be “penalized”. Let reward(tij) and penalty(tij) denote the reward or penalty

score of tij . The new transition cost of Hk after being updated is formally defined

by:

transition′(Hk) = transition(Hk) +

{
reward(tij) if tij = good

penalty(tij) if otherwise
(3)

The update finishes when all words in the N -best list have been considered. We then

re-compute the new score of complete hypotheses by tracing backward via back-

pointers and aggregating the transition cost of all their edges. Essentially, the

re-decoding pass reorders SG hypotheses: the more “G” words (predicted by WCE

system) they contain, the more cost reduction will be made and consequently, the

more opportunity they get to be the best hypothesis. It is vital to note that, during

the update process, we might face a phenomena that the word tij (corresponds to

the same source words) occurs in different sentences of the N -best list. In this case,

for the sake of simplicity, we process it only at its first occurrence (in the highest

rank sentence) instead of updating the hypotheses containing it multiple times. In

other words, if we meet the word tij which aligns to the same source word once
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again in the next N-best sentence(s), no further score update will be done in the

SG.

6.3 Update Score Definitions

Defining the update scores is a nontrivial issue as there is no quantitative estimate

on the importance of WCE scores over the SG scores or vice versa. Our approach

is to measure their importance empirically via weight optimization. In this article,

we propose several types of update scores, deriving from the global or local cost.

6.3.1 Definition #1: Global Update Score

In this type, an unique score derived from the cost of the current best hypothesis H∗

(by the first pass) is used for all updates. We propose to compute this score by two

ways: (a) exploiting WCE labels {cij}; or (b) only WCE confidence probabilities

{P (G), P (B)} will matter and WCE labels will be left aside.

Definition #1a:

penalty(tij) = α ∗ score(H∗)

#words(H∗)

reward(tij) = −penalty(tij)

(4)

Where #words(H∗) is the number of target words in H∗, the positive coefficient

α accounts for the impact level of this score on the final cost of the hypothesis and

can be optimized during experiments. Here, penalty(tij) gets negative sign (since

score(H∗) < 0) and will be added to the transition cost of all hypotheses containing

tij in case where this word is labelled as “B”; whereas reward(tij) (same value,

opposite sign) is used in the other case.

Definition #1b:

update(tij) = α ∗ P (B) ∗ score(H∗)

#words(H∗)
− β ∗ P (G) ∗ score(H∗)

#words(H∗)

= (α ∗ P (B)− β ∗ P (G)) ∗ score(H∗)

#words(H∗)

(5)

Where P (G), P (B) (P (G) +P (B) = 1) are the probabilities of “Good” and “Bad”

class of tij . The positive coefficients α and β can be tuned in the optimization

phase. In this definition, the fact that update(tij) is a reward (reward(tij)) or a

penalty (penalty(tij)) will depend on tij ’s goodness. Indeed, we have: update(tij) =

reward(tij) if update(tij) > 0, which means: α ∗ [1− P (G)]− β ∗ P (G) < 0 (since

score(H∗) < 0), therefore P (G) > α
α+β .

On the contrary, if P (G) is under this threshold, update(tij) takes a negative

value and therefore becomes a penalty.

6.3.2 Definition #2: Local Update Score

The update score of each (local) hypothesis Hk depends on its current transition

cost, even when they cover the same word tij . Similarly to Definition 1, two sub-
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types are defined as follows:

Definition #2a:

penalty(tij) = −reward(tij) = α ∗ transition(Hk) (6)

Definition #2b:

update(tij) = α ∗ P (B) ∗ transition(Hk)− β ∗ P (G) ∗ transition(Hk)

= (α ∗ P (B)− β ∗ P (G)) ∗ transition(Hk)
(7)

Where transition(Hk) denotes the current transition cost of hypothesis Hk, and the

meanings of coefficient α (Definition 2a) or α, β (Definition 2b) are analogous

to those of Definition 1a (Definition 1b), respectively.

6.4 Re-decoding Algorithm

Algorithm 1 Using WCE labels in SG decoding

Input: SG = {Hk}, T = {T1, T2, ..., TN}, C = {cij}
Output: T

′
= {T

′
1 , T

′
2 , ..., T

′
N}

1: {Step 1: Update the Search Graph}
2: Processed← ∅
3: for Ti in T do
4: for tij in Ti do
5: pij ← position of the source words aligned to tij
6: if (tij , pij) ∈ Processed then
7: continue; {ignore if tij appeared in the previous sentences}
8: end if
9: Hypos← {Hk ∈ SG| out(Hk) 3 tij}
10: if (cij = “Good′′) then
11: for Hk in Hypos do
12: transition(Hk)← transition(Hk) + reward(tij) {reward hypothesis}
13: end for
14: else
15: for Hk in Hypos do
16: transition(Hk)← transition(Hk) + penalty(tij) {penalize hypothesis}
17: end for
18: end if
19: Processed← Processed ∪ {(tij , pij)}
20: end for
21: end for
22: {Step 2: Trace back to re-compute the score for all complete hypotheses}
23: for Hk in Final (Set of complete hypotheses) do
24: score(Hk)← 0
25: while Hk 6= initial hypothesis do
26: score(Hk)← score(Hk) + transition(Hk)
27: Hk ← pre(Hk)
28: end while
29: end for
30: {Step 3: Select N cheapest hypotheses and output the new list T

′
}
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The above pseudo-code depicts our re-decoding algorithm using WCE labels

(Definition 1a and Definition 2a). The algorithm in case of using WCE con-

fidence probabilities (Definition 1b and Definition 2b) is essentially similar,

except the update step (from line 10 to line 18) is replaced by the following part:

for Hk in Hypos do
transition(Hk)← transition(Hk) + update(tij)

end for

During the update process, the pairs including the visited word tij and the position

of its aligned source words pij are consequently admitted to be Processed, so that

all the analogous pairs (t
′

ij , p
′

ij) occuring in the latter sentences can be discarded.

For each tij , we search for all hypotheses in the SG whose the output phrase (stored

in the field out) contains tij to form the set Hypo. To avoid the ambiguity where

tij occurs multiple times in the sentence, the position coverage (stored in the field

covered) must be ensured to bound the position of the aligned source word of the

current tij . Then, the confidence score of tij , denoted by cij (or P (G)), determines

whether all members Hk in Hypo will be rewarded or penalized. Once having all

words in the N -best list visited, we obtain a new SG with updated transition costs

for all edges containing them. On this updated SG, we re-compute the score of

all complete hypotheses stored in Final. Finally, we backtrack the cheapest-cost

hypothesis to obtain the new translation.

Rank Cost Hypotheses + WCE labels

1 -29.9061 identify the cause of action .

G G G G B B

2 -40.0868 identify and measure the factors of mobilization

G G G G G G G

Table 3. The N-best (N=2) list generated by the SG in Figure 3 and WCE labels

These above depictions can be clarified by taking another look at the example in

Figure 3: from this SG, the N -best list (for the sake of simplicity, we choose N = 2)

is generated as the single-pass decoder’s result. According to our approach, the

second pass starts by tagging all words in the list with their confidence labels, as

seen in Table 3. Then, the graph update process is performed for each word in the

list, sentence by sentence, which details are tracked in Figure 4. In this example,

we apply Definition 1a to calculate the reward or penalty score, with α = 1
2 ,

resulting in: penalty(tij) = −reward(tij) = 1
2 ∗

−29.9061
6 = −2.4922. Firstly, all

hypotheses containing words in the 1st ranked sentence are considered. Since the

word “identify” is labeled as “G”, its corresponding edge (connecting two nodes

0 and 1) is rewarded: tnew = told + reward = −1.8411 + 2.4922 = +0.6511. On

the contrary, the edge between two nodes 121252 and 182453 is penalized and

takes new cost: tnew = told + penalty = −5.8272 + (−2.4922) = −8.3194, due to
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Fig. 4. Details of update process for the SG in Figure 3. The first loop is represented in

red color, while the second one is in blue. For edges with multiple updates, all transition

costs after each update are logged. The winning cost is emphasized by green color.

the bad quality of the word “action”. The edges having multiple considered words

(e.g. between nodes 19322 and 121252) will be updated multiple times, and the

transition costs after each update can be also observed in Figure 4 ( e.g. t1, t2,

etc). Next, when the 2nd-best is taken into consideration, all repeated words (e.g.

“identify”, “the” and “of”) are ignored since they have been visited before, whereas

the remaining ones are identically processed. The only untouched edge in this SG

corresponds to the word “mobilizing”, as this word does not belong to the list. Once

having the update process finished, we recalculate the final cost for every complete

path and return the new best translation: “identify and measure the factors

of mobilization” (new cost = −22.6414).

6.5 Experimented Decoders

As in the Re-ranking approach, we investigate the WCE’s contributions in two

scenarios: predicted WCE and ideal WCE (oracles). We experiment with the seven

following decoders:

• BL: Baseline (1-pass decoder)
• BL+WCE(1a, 1b, 2a, 2b): four 2-pass decoders, using our estimated WCE

labels and confidence probabilities to update the SGs, and the update scores

are calculated by Definition (1a, 1b, 2a, 2b).
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• BL+OR(1a, 2a): two 2-pass decoders, computing the reward or penalty

scores by Definition (1a, 2a) on the oracle labels

It is important to note that, when using oracle labels, Definition 1b becomes

Definition 1a and Definition 2b becomes Definition 2a, since if a word tij is

labelled as “G”, then P (G) = 1 and P (B) = 0, and vice versa. In order to tune

the coefficients α and β, we carry out a 2-fold cross validation on the test set.

First, the set is split into two equivalent parts: S1 and S2. Playing the role of a

development set, S1 will train the parameters which are then used to compute the

update scores on S2 re-decoding process, and vice versa. The optimization steps are

handled by CONDOR toolkit (Frank 2004), in which we vary α and β within the

interval [0.00; 5.00]. Test set is further divided to launch experiments in parallel on

our cluster using an open-source batch scheduler: OAR (Capit and Joseph 2013).

This mitigates the overall processing times on such huge SGs. The re-decoding

results for them are properly concatenated for evaluation. Tuned values for these

parameters are: α = 0.9 (Definition 1a); α = 1.7, β = 0.8 (Definition 1b); α = 0.9

(Definition 2a); and α = 1.8, β = 0.8 (Definition 2b).

7 Results

Systems Performance Comparison to BL p-
BLEU ↑ TER ↓ TERp-A ↓ B (%) E (%) W (%) value

BL 52.31 0.2905 0.3058 - - - -
BL+WCE(1a) 53.80 0.2876 0.2922 28.72 57.43 13.85 0.00
BL+WCE(1b) 53.24 0.2896 0.2995 26.45 59.26 14.29 0.00
BL+WCE(2a) 53.32 0.2893 0.3018 23.68 60.11 16.21 0.02
BL+WCE(2b) 53.07 0.2900 0.3006 22.27 55.17 22.56 0.01
BL+OR(1a) 60.18 0.2298 0.2264 62.52 24.36 13.12 -
BL+OR(2a) 59.98 0.2340 0.2355 60.18 28.82 11.00 -

Oracle BLEU = 66.48 (from SG)

Table 4. Translation quality of the conventional decoder and the 2-pass decoders
using scores from predicted or oracle WCE, followed by the percentage of better
(B), equivalent (E) or worse (W) sentences compared to BL system, as well as
p-values

Table 4 shows the translation performances of all experimental decoders and

their percentages of sentences which outperform, remain equivalent or degrade the

baseline hypotheses (when match against the references, measured by TER). Re-

sults suggest that using oracle labels to re-direct the graph searching considerably

boosts the baseline quality. BL+OR(1a) augments 7.87 points in BLEU, and di-

minishes 0.0607 (0.0794) point in TER (TERp-A), compared to BL. Meanwhile,

with BL+OR(2a), these gains are 7.67, 0.0565 and 0.0514 (in that order). Besides,

the contribution of our WCE system scores seems less prominent, yet positive: the

best performing BL+WCE(1a) increases 1.49 BLEU points of BL (0.0029 and

0.0136 gained for TER and TERp-A). The small p-values (in the range [0.00; 0.02],

seen on Table 2) estimated between BLEU of each BL+WCE system and that
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of BL using Approximate Method ( Clark et al. 2011) indicate that these perfor-

mance improvements are significant. Results also reveal that the use of WCE labels

is slightly more beneficial than that of confidence probabilities: BL+WCE(1a)

and BL+WCE(2a) outperform BL+WCE(1b) and BL+WCE(2b). In both

scenarios, we observe that the global update score (Definition 1) performs better

compared to the local one (Definition 2). For more insightful understanding about

WCE scores’ usefulness, we make a comparison with the best achievable hypotheses

in the SG (oracles), based on the “LM Oracle” approximation approach presented

in (Sokolov, Wisniewski and Yvon (2012)). This method simplifies the oracle decod-

ing to the problem of searching for the cheapest path on a SG where all transition

costs are replaced by the n-gram LM scores of the corresponding words. The LM

is built for each source sentence uniquely using its target post-edition. We update

the SG by assigning all edges with the LM back-off score of the word it contains.

Finally, we combine the oracles of all sentences yielding BLEU oracle of 66.48: 6.30

points higher than BL+OR(1a). This result reveals that the use of oracle WCE

scores, although helps to outperform significantly over the Baseline (52.31 BLEU

→ 60.18 BLEU), yet still remains a big gap to the best-achievable performance by

SG re-decoding. It opens a room for future work on how to exploit WCE scores

more efficiently toward this goal.

We close this section with some examples of outputs before and after the re-

decoding process (shown in Table 5). In the first example, re-decoding yields a

slightly better translation compared to the baseline MT system. Using labels pre-

dicted by WCE: “Bad” for “a” (at the beginning of the MT hypothesis) and

“penalty”, and “Good” for the rest, BL+WCE(1a) led to a new candidate whose

last words (“demoralization death”) are closer to the post-edition (“deadly demoral-

ization”) than the corresponding part of BL (“penalty demoralisation”). Similarly,

in the second example, thanks to word error detection in the second example (tagged

for “it has”, “speech that was”, and “post route”), BL+OR(1a) helped to trans-

late correctly the pronoun (“he” instead of “it”), as well as to translate better the

final part of the source sentence (into “after operating were normal”). The posi-

tive contributions of WCE-predicted labels and scores can also be observed in the

remaining (from the third to the fifth) examples in the same table.

8 Discussion, Conclusion and Perspectives

If we compare the performances between the use of WCE for N -best list re-ranking

(Table 2) and SG Re-decoding (Table 4), the results suggest that the contribu-

tion of WCE in SG re-decoding outperforms that in N-best re-ranking in both

“oracle” or real scenarios. BL+OR(1a) outperforms its corresponding oracle re-

ranker BL+OR(N-best Reranking) in 2.08 points of BLEU, diminishes 0.0253

(0.0280) in TER (TERp-A). Meanwhile, BL+WCE(1a) beats BL+WCE(N-

best Reranking) (the re-ranker which uses predicted WCE scores) in 1.03

(BLEU), 0.0015 (TER), 0.0103 (TERp-A). In addition, there are 178 out of 881

sentences (20.20 %) outputted by BL+WCE(1a) that do not belong to the N-best

list, suggesting that the re-decoding method can help to generate candidates which
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Example 1

Source une démobilisation des employés peut déboucher sur une démoralisation
mortifère

BL a demobilisation employees can lead to a penalty demoralisation
BL+WCE(1a) a demobilisation of employees can lead to a demoralization death
Post-edition demobilization of employees can lead to a deadly demoralization

Example 2

Source celui-ci a indiqué que l’intervention s’était parfaitement bien déroulée
et que les examens post-opératoires étaient normaux

BL it has indicated that the speech that was well conducted , and that
the tests were normal post route

BL+OR (1a) he indicated that the intervention is very well done , and that the
tests after operating were normal

Post-edition he indicated that the operation went perfectly well and the post-
operative tests were normal

Example 3

Source pour le système des transports ferroviaires le s21 est néfaste .
BL for the rail traffic system , s21 is damaging .
BL+OR (2a) for the system of rail transport the s21 is harmful .
Post-edition for the railway transportation system the s21 is harmful .

Example 4

Source tout comme le rêve , la psychose ouvre les écluses à une marée d’ idées
et de fantasmes issue des couches plus profondes de la conscience .

BL as the dream , the hype opens the floodgates to a tide of ideas and
fantasies , the deeper layers of conscience .

BL+OR (1b) like the dream , a psychosis also opens the floodgates to a tide of ideas
and phantasies , which stem from the deepest layers of conscience .

Post-edition just like the dream , the psychosis opens the floodgates to a tide of ideas
and fantasies that emerged from the deepest layers of consciousness .

Example 5

Source burda avait fait savoir jeudi dernier qu’ il se retirait du poste
président-directeur-général dès le mois de janvier et que son successeur
était paul-bernhard kallen .

BL burda said last thursday that it is pulling out of the post président-
directeur-général in january and that his successor was paul-bernhard
kallen .

BL+OR (2b) burda let it be known last thursday that he is pulling out of his
post président-directeur-général in january and that his successor was
paul-bernhard kallen .

Post-edition burda let it be known last thursday that he is pulling out of his post
as president director general beginning in january and that his successor
would be paul-bernhard kallen .

Table 5. Examples of MT outputs before and after re-decoding

have not been nominated by SMT decoder. More notably, among these newly-

produced translations, 113 (63.5%) translations are better than the corresponding

1-best of the N-best list, measured by sentence-level BLEU+1 metric (Nakov,

Guzman and Vogel (2012)). These positive results can be explained by the follow-

ing facts: (1) in re-ranking, WCE scores are integrated at sentence level, so word

translation errors are not fully penalized; and (2) in re-ranking, best translation
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selection is limited to the N -best list, whereas in re-decoding, we allow the search

over the entire updated SG (on which not only N-best list paths but also those

containing at least one word in this list are altered).

To conclude, we have presented two novel two-pass decoding methods for enhanc-

ing SMT quality. From the output of the first pass (N -best list), we predict words’

labels and confidence probabilities, then employ them to seek a more valuable can-

didate; first among the other in the N -best list, and then over the entire SGs. In

both methods, while “oracle” WCE labels substantially improve the MT quality (to

reach the oracle score), real WCE achieves also the positive and promising gains.

These methods show that error prediction using WCE helps to guide the decoding

to less erroneous parts of the graph.

As future work, we plan to focus on enhancing our WCE system using more

linguistic features as well as advanced techniques (feature selection, Boosting

method...). We also focus on breaking down the translation errors (i.e.“Bad” la-

bel) into more concrete categories, so that they will be more informative. Besides,

the update scores used in this article will be further considered towards the con-

sistency with SMT graph scores to obtain a better updated SG. Also, currently in

the graph-redecoding process, our WCE scores can only be applied to sequences

of words - and not directly to the search graph. Applying WCE to tag directly

the search graph will be part of future work. Finally, we will investigate the use of

WCE labels to re-decode speech translation graphs and improve spoken language

translation (SLT) performance.
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