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Collaborative Information Bottleneck
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Member, IEEE, and Pablo Piantanida, Senior Member, IEEE

Abstract—This paper investigates a multi-terminal source cod-

ing problem under a logarithmic loss fidelity which does not

necessarily lead to an additive distortion measure. The problem

is motivated by an extension of the Information Bottleneck

method to a multi-source scenario where several encoders have

to build cooperatively rate-limited descriptions of their sources

in order to maximize information with respect to other unob-

served (hidden) sources. More precisely, we study fundamental

information-theoretic limits of the so-called: (i) Two-way Collabo-
rative Information Bottleneck (TW-CIB) and (ii) the Collaborative
Distributed Information Bottleneck (CDIB) problems. The TW-

CIB problem consists of two distant encoders that separately

observe marginal (dependent) components X1 and X2 and can

cooperate through multiple exchanges of limited information

with the aim of extracting information about hidden variables

(Y1, Y2), which can be arbitrarily dependent on (X1, X2). On

the other hand, in CDIB there are two cooperating encoders

which separately observe X1 and X2 and a third node which

can listen to the exchanges between the two encoders in order to

obtain information about a hidden variable Y . The relevance
(figure-of-merit) is measured in terms of a normalized (per-

sample) multi-letter mutual information metric (log-loss fidelity)

and an interesting tradeoff arises by constraining the complexity
of descriptions, measured in terms of the rates needed for the

exchanges between the encoders and decoders involved. Inner

and outer bounds to the complexity-relevance region of these

problems are derived from which optimality is characterized for

several cases of interest. Our resulting theoretical complexity-

relevance regions are finally evaluated for binary symmetric and

Gaussian statistical models, showing theoretical tradeoffs between

the complexity-constrained descriptions and their relevance with

respect to the hidden variables.

Index Terms—Multi-terminal source coding; Logarithmic loss;

Distributed source coding; Noisy rate-distortion; Side informa-

tion; Interactive lossy source coding; Information Bottleneck;

Shannon theory.
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I. INTRODUCTION

In the last years we have witnessed a monumental prolif-
eration of digital data, leading to new efforts in the under-
standing of the fundamental principles behind the discovery
of relevant information from massive data sets. A good data
representation is paramount for performing large-scale data
processing and analysis in a computationally efficient (e.g.
minimizing communication resources and time of computa-
tion) and statistically meaningful manner [1]. In addition to
reducing computation time, proper data representations can
decrease storage requirements, which translates into reduced
inter-node communication allowing to take advantage of dif-
ferent information sources (multi-view analysis) to improve
prediction performance.

The challenge of identifying relevant rate-limited infor-
mation from observed samples, that is the statistical useful
information that those observations provide about other hid-

den variables of interest, is to obtain compressed descrip-
tions that are good enough statistics for inference of these
hidden variables. This raises fundamental questions about
the information-theoretic principles underlying the process
of discovering valuable and relevant knowledge in the form
of structured information. In that sense, the standard rate-
distortion function of lossy source coding [2] provides an
interesting starting point as a means to understand fundamental
information-theoretic tradeoffs between relevance (quality of
data descriptions) and complexity (size in terms of bits of
the descriptions). Relevance can be linked to an appropriate
(non-additive) fidelity measure that captures the meaningful
characteristics of unobserved data while complexity can be
associated to the size of the data descriptions generated from
the observed samples.

In this paper, we investigate the fundamental information-
theoretic limits of a collaborative and distributed source coding
problem with a (not necessarily additive) log-loss fidelity,
which is motivated by the Information Bottleneck problem [3].
As opposed to a centralized setting, in our present framework
each source observes only a fragment of the total data set to
process, where subsets of data tuples (possibly overlapping)
are available at different sites. This distributed setup typically
imposes a set of constraints on the decoders which are absent
in the centralized setup and that could prohibit the transfer
of raw data from each of the sites to a central location.
We approach this challenging problem from an information-
theoretic perspective, studying the exchanges of data de-
scriptions between sites or agents subject to communication
(information rates) constraints.
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A. Related Work

The idea of obtaining good descriptions of a hidden variable
through the compression of an observed depedent one can
be formalized through the noisy source-coding problem intro-
duced in [4], where the functions that generate the appropriate
descriptions corresponds to the class of rate-limited encoders
that compress the observation X with the goal of minimizing
a fidelity (distortion) measure with respect to an unobserved
variable Y . The optimal rate-distortion tradeoff region follows
from the function [2]:

R(D) = inf
pU|X : E[d(U,Y )]D

I(X;U),

where d : U ⇥ Y ! R+ is a per-letter distortion (or loss)
measure and pU |X : X ! P(U) is conditional distribution
that satisfies the Markov chain U �⌦� X �⌦� Y . Several
distortion functions could be of interest in practice such as
the Hamming or quadratic loss. In particular, taking the loss
d(u, y) = � log pY |U (y|u) with D = H(Y ) � µ yields
an interesting case of an additive (over the source samples)
mutual information as the (single-letter) distortion measure.
This measure of relevance was first proposed in [3] giving birth
to the Information Bottleneck method. The main idea behind
it is finding a compressed description f(Xn) of the data
X

n = (X1, . . . , Xn) with coding rate log |f |  nR subject to
a constraint on the mutual information I

�
f(Xn);Yi

�
� µ,

where Yi depends on Xi, and µ is the minimal level of
relevance required and R is the coding rate. As pointed out
in [5], this notion of relevance boils down to noisy lossy
source coding with logarithmic loss distortion, from which the
optimal tradeoff region (rates of complexity R and relevance
µ) follows from the rate-relevance function:

R(µ) = inf
pU|X : I(U ;Y )�µ

I(X;U),

where pU |X : X ! P(U) forms a Markov chain U�⌦�X�⌦�Y .
The function µ 7! R(µ) (or its dual R 7! µ(R)) provides
a curve similar to the rate-distortion curve, that provides
all tradeoffs between coding rates and levels of information
w.r.t. hidden variable Y . Interestingly, the same single-letter
characterization is also the optimal characterization when the
relevance is measured by a multi-letter mutual information
I
�
f(Xn);Y n

�
� nµ with Y

n = (Y1, . . . , Yn) which is, in
general, a non-additive distortion [6]. This was also observed
in [5]. The rate-relevance function given by for the classical in-
formation bottleneck given by R(µ) can then be though either,
as point-to-point noisy source coding problem with additive
single letter distorion given by d(u, y) = � log pY |U (y|u) or
with multi-letter fidelity criterion given by I

�
f(Xn);Y n

�
as

discussed above.
In line with the above mentioned works and modeling the

structure of data and its hidden variables by independent and
identically distributed samples draw from a known distribu-
tion, this paper aims at understanding how proper distributed
data descriptions translates into reduced inter-encoder commu-
nication when there are several parties involved which observe
dependent sources and are interested in extracting useful
information about other hidden variables. This clearly should

be done by taking advantage of the dependence between the
different information sources to recover a good enough statistic
that summarizes relevant information about some unobserved
hidden variables using cooperation and interaction among all
parties involved.

It is worth to further emphasize our motivation behind the
use of a multi-letter (non-additive) mutual information as a
measure of relevance. Although in principle more difficult to
analyze, it appears to be more natural and appealing from
a practical perspective, as it allows the possibility of better
exploring temporal dependences in the metric of relevance in-
duced by the encoding mapping with respect to the case where
an additive metric is considered as in [3]. Despite the fact
both additive and non-additive relevances lead asymptotically
to the same mathematical problem (the reader may be refer
to [7] for further details), the multi-letter form of the relevance
is connected to a variety of interesting problems in infor-
mation theory. More precisely, the multi-letter (non-additive)
relevance becomes: the asymptotic exponent corresponding
to the second type error probability of distributed testing
against independence [8], [9]; the asymptotic characterization
of images of sets via noisy channels [10] and is also related
to the Hypercontraction of the Markov operator [11] and
gambling problems [12].

The distributed (non-cooperative) setting of the source
coding problem with logarithmic loss distortion, was first
investigated in [5], where a complete characterization of the
complexity-relevance region was derived, solving completely
the Berger-Tung problem [13] under this specific distortion
metric. Moreover, the well-known longstanding open CEO
problem [14] was also completely solved under this distortion
metric. The CEO problem is in fact a well-studied problem
which has received a lot of interest in the last years because of
its relevance to distributed sensing schemes, specially for the
quadratic Gaussian case [15], [16]. A multi-terminal source
coding problem –fundamentally different from previous dis-
tributed source coding problems– termed information-theoretic

biclustering was also investigated in [17]. In this setting,
several distributed (non-cooperative) encoders are interested
in maximizing, as much as possible, redundant information
among their observations. Equally important is the impact
that cooperation and interaction can have in distributed source
coding scenarios. In this sense, the seminal work by Kaspi [18]
has sparked some interest in the recents years, where several
papers in the fields of distributed function computation and
rate-distortion theory were published [19]–[22].

B. Contributions

In summary, we will consider a multi-point source coding
problem where the dependence between the observed and
hidden sources can be exploited through cooperation and
interaction. As we will be interested in a multi-letter fidelity
criterion given by the mutual information between the gener-
ated descriptions and the hidden variables we can see that our
general setting can be interpreted as a multi-point information
bottleneck problem generalizing the above discussed classical
point-to-point information bottleneck to a distributed setting.
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Figure 1: Two-way Collaborative Information Bottleneck (TW-
CIB).

In more precise terms, in this paper, we first study the so-
called Two-way Collaborative Information Bottleneck (TW-
CIB) problem, as described in Fig. 1. This scenario consists of
two distant encoders that separately observe marginal compo-
nents X

n
1 and X

n
2 of a joint memoryless process and wish to

cooperate through multiple exchanges of limited (complexity)
rate with the goal of extracting relevant information about
some hidden variables (Y n

1 , Y
n
2 ), which can be arbitrarily

dependent on (Xn
1 , X

n
2 ). The relevance of the information

extracted is measured in terms of the normalized multi-letter
mutual information between the generated descriptions and the
corresponding hidden variables. We characterize the set of all
feasible rates of complexity and relevance, for an arbitrary
number of exchange rounds. This result is particularized to
some binary symmetric and all possible Gaussian statistical
models. In particular, the analysis of the binary symmetric
case (even for the simpler half-round case) appears to be rather
involved.

Then, we investigate the so-called Collaborative Distributed

Information Bottleneck (CDIB) problem, as described in
Fig. 2. This differs from the above scenario in that only a
single decoder which is not part of the encoders is considered.
Still the decoder wishes to use descriptions from sources X

n
1

and X
n
2 to maximize the multi-letter mutual information with

respect to the hidden (relevant) variable Y
n. This scenario can

be identified as being the natural extension of the previous
works [5], [23]. However, in the present setting, encoders 1
and 2 can interactively cooperate by exchanging pieces of
information that should be informative enough about Y but
without becoming too complex in order to be transmitted and
recovered at the decoder. The central difficult arises in finding
the way to explicitly exploit the correlation present between
the variables (X1, X2, Y ) to reduce the cost of communica-
tion. We begin by deriving an inner bound to the complexity-
relevance region of this problem that is valid for any number
of exchanges between the encoders. To this end, we use a
cooperative binning procedure to allow explicit cooperation
between encoders while guaranteeing successful decoding at
the decoder. This can be achieved despite of the fact that the
decoder has not side information. Then, we provide an outer
bound which proves to be tight if either X1 �⌦� Y �⌦� X2 or
X2�⌦�X1�⌦�Y when only one round of exchange is allowed.
Our results are finally applied to the Gaussian case.

The rest of the paper is organized as follows. In Section II,
we introduce the Two-way Collaborative Information Bottle-
neck (TW-CIB) problem and provide the optimal characteri-
zation of the set of achievable complexity-relevance tradeoffs.
In Section III, we introduce the Collaborative Distributed

Encoder 1 Encoder 2X
n
1 X

n
2

Y
n

R2 R1

Learner

Figure 2: Collaborative Distributed Information Bottleneck
(CDIB).

Information Bottleneck (CDIB) problem and provide inner
and outer bounds to the corresponding set of achievable
complexity-relevance tradeoffs. Optimal characterizations are
provided in the two specific cases mentioned above. Proofs of
the several outer bounds presented in the paper are relegated
to Section IV while the inner bounds are developed in the
appendices. Gaussian models are investigated in Section V
while the binary symmetric model for the TW-CIB problem
is studied in Section VI. Finally, in Section VII the conclusions
are presented.

Conventions and Notations

We use upper-case letters to denote random variables and
lower-case letters to denote realizations of random variables.
With x

n and X
n we denote vectors and random vectors of

n components, respectively. The i-th component of vector
x

n is denoted interchangeably as xi or x[i] and with x[s:t]

we denote the components with indices ranging from s to t

with s  t. All alphabets are assumed to be finite, except
for the Gaussian models discussed in Section V. Entropy is
denoted by H(·), differential entropy by h(·), binary entropy
by h2(·) and mutual information by I(·; ·). If X , Y and V are
three random variables on some alphabets their probability
distribution is denoted by pXY V . When clear from context
we will simple denote pX(x) with p(x). With P (X ) we
denote the set of probability distributions over alphabet X .
If the probability distribution of random variables X, Y, V

satisfies p(x|yv) = p(x|y) for each x, y, v, then they form
a Markov chain, which is denoted by X �⌦� Y �⌦� V . When
Z1 and Z2 are independent random variables we will denote
it as Z1 ? Z2. Conditional variance of Z1 given Z2 is
denoted by Var[Z1|Z2]. The set of strong typical sequences
associated with random variable X is denoted by T n

[X]✏, where
✏ > 0. Given x

n, the conditional strong typical set given x
n

is denoted as T n
[Y |X]✏(x

n). Typical and conditional typical sets
are denoted as T n

✏ when clear from the context. The cardinality
of set A is denoted by |A| and with 2A we denote its power
set. The complement of A is denoted by Ac. With R�0 and
Z�0 we denote the real and integer numbers greater than 0,
respectively. If a and b are real numbers, with a⇤ b we denote
a(1�b)+b(1�a). We denote [a]+ = max {a, 0} when a 2 R.
All logarithms are taken in base 2.

We finally introduce some convenient notation that will be
used through the paper. Let V1,l and V2,l be a sequence of
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random variables and let:

W1,l ,
�
V1,k, V2,k

 l�1

k=1
for l 2 [1 : K + 1],

W2,l ,
�
W1,l, V1,l

 
for l 2 [1 : K].

This definition will help to simplify the expressions of the
inner and outer bounds of this paper. It will be clear from the
following sections that while each V1,l, V2,l will be used in the
generation of the descriptions in encoders 1 and 2 at time l,
W1,l and W2,l will represent the set of descriptions generated
and recovered at both encoders 1 and 2 up to time l.

II. TWO-WAY COLLABORATIVE INFORMATION
BOTTLENECK

We begin by introducing the so-called Two-way Collabora-

tive Information Bottleneck (TW-CIB) problem and then state
the optimal characterization of the corresponding complexity-
relevance region.

A. Problem statement

Consider (Xn
1 , X

n
2 , Y

n
1 , Y

n
2 ) to be sequences of n i.i.d.

copies of random variables (X1, X2, Y1, Y2) distributed ac-
cording to p(x1, x2, y1, y2) taking values on X1⇥X2⇥Y1⇥Y2,
where Xi,Yi with i 2 {1, 2} are finite alphabets. First,
encoder 1 generates a (representation) description, based on its
observed input sequence X

n
1 = (X11, . . . , X1n) and transmits

it to encoder 2. After correctly recovering this description,
encoder 2 generates a description based on its observed input
sequence X

n
2 and the recovered message from encoder 1 and

transmits a description to encoder 2. This process is repeated at
both encoders, where each new description is generated based
on the observed source realization and the previous description
recovered up to that time. The generation of the description at
encoder 1 (based on the observed source and previous history)
and the recovering at encoder 2 is referred to as a half-round.
The addition of the generation of the description at encoder 2
and its recovering at encoder 1 constitutes what we shall call
simply a round. After K rounds have been completed, the
information exchange between both encoders concludes. It is
expected that the level of relevant information that decoder 1
has gathered about the hidden representation variable Y

n
1 is

above a required value µ1 � 0. Similarly, decoder 2 requires
a minimum value of relevant information about sequence Y

n
2

of µ2 � 0. This problem can be graphically represented as in
Fig. 1. A mathematical formulation of the described process
is given below.

Definition 1 (K-step code and complexity-relevance region

of the TW-CIB problem): A K-step n-length TW-CIB code,
for the network model in Fig. 1, is defined by a sequence of
encoder mappings:

fl :Xn
1 ⇥ J1 ⇥ · · ·⇥ Jl�1 �! Il

,

gl :Xn
2 ⇥ I1 ⇥ · · ·⇥ Il �! Jl

with l 2 [1 : K] and message sets: Il , {1, 2, . . . , |Il|} and
Jl , {1, 2, . . . , |Jl|}. In compact form we denote a K-step
interactive source coding by (n,F) where F denote the set of
encoders mappings.

An 4-tuple (R1, R2, µ1, µ2) 2 R4
�0 is said to be K-

achievable if 8" > 0 exists n0("), such that 8n > n0(")
exists a K-step TW-CIB code (n,F) with complexity rates
satisfying:

1

n

KX

l=1

log |Il|  R1 + " ,
1

n

KX

l=1

log |Jl|  R2 + ", (1)

and normalized multi-letter relevance conditions:

µi � ✏  1

n
I
�
Y

n
i ; IK

J
K

X
n
i

�
, i 2 {1, 2}. (2)

The K-step complexity-relevance region RTW-CIB(K) for the
TW-CIB problem is defined as:

RTW-CIB(K) ,
�
(R1, R2, µ1, µ2) : (R1, R2, µ1, µ2) is
K-achievable

 
.

Remark 1: By the memoryless property of Y
n
i , the relevance

condition can be equivalently written as:
1

n
H(Y n

i |IK
J

K
X

n
i )  µ

0

i + ✏, i 2 {1, 2}

where µ
0

i , H(Yi) � µi. In this way, the TW-CIB problem
can be recast in the conventional interactive rate-distortion
problem [18] using logarithmic-loss distortion [5], where at
encoder 1 we put a “soft” decoder whose outputs are proba-
bility distributions on Yn

i (refer to [17, Lemmas 18, 19] for
further details). The descriptions (IK

, J
K) can be considered

as the indices of the family of probability distributions that
the decoder can output. It is also easily shown that, restricting
the output probability distributions to products ones should not
reduce the optimal complexity-relevance region.

Remark 2: RTW-CIB(K) depends on the ordering in the
encoding procedure. Above we have defined the encoding
functions {fl, gl}K

l=1 assuming encoder 1 acts first, followed
by encoder 2, and the process beginning again at encoder 1.
We could consider all possible orderings and take RTW-CIB(K)
to be the union of the achievable complexity-relevance pairs
over all possible encoding orderings. For sake of clarity and
simplicity, we shall not pursue this further.

Remark 3: It is straightforward to check that RTW-CIB(K) is
convex and closed.

Remark 4: We could consider the case in which the number
of rounds is arbitrary. In that case we can define the ultimate
complexity-relevance region as:

RTW-CIB ,
[

K2Z>0

RTW-CIB(K)

= {(R1, R2, µ1, µ2) : (R1, R2, µ1, µ2) is
K-achievable for some K 2 Z > 0} .

The set limiting operation in the above equation can be easily
seen to be well-defined.

B. Characterization of the complexity-relevance region

The next theorem provides the characterization of
RTW-CIB(K) in terms of single-letters expressions:

Theorem 1 (Characterization of the complexity-relevance re-

gion for TW-CIB): Consider an arbitrary pmf p(x1, x2, y1, y2).
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The corresponding region RTW-CIB(K) is the set of tuples
(R1, R2, µ1, µ2) 2 R4

�0 such that there exists auxiliary ran-
dom variables {V1,l, V2,l}K

l=1 satisfying:

R1 � I(X1;W1,K+1|X2),

R2 � I(X2;W1,K+1|X1),

µ1  I(Y1;W1,K+1X1),

µ2  I(Y2;W1,K+1X2),

taking values in finite discrete alphabets V1,l and V2,l and
satisfying Markov chains:

V1,l �⌦� (X1, W1,l)�⌦� (X2, Y1, Y2), (3)
V2,l �⌦� (X2, W2,l)�⌦� (X1, Y1, Y2) (4)

for l 2 [1 : K]. The auxiliary random variables can be
restricted to take values in finite alphabets with cardinalities
bounds given by:

|V1,l|  |X1||W1,l|+ 3 , for l = [1 : K]

|V2,l|  |X2||W2,l|+ 3 , for l = [1 : K � 1]

|V2,K |  |X2||W2,K |+ 1.

where |W1,l| =
Ql�1

i=1 |V1,i||V2,i| and |W2,l| = |W1,l||V2,l| for
l = [1 : K].

Proof: The proof of the achievability is given in Appendix
B while the converse part is relegated to the next section.

Remark 5: It is inmediate to see that the point-to-point
classical information bottleneck problemm, where observing
X1 we are interested in extracting information about Y2 can
be seen as an special case of Theorem 1 when X2, Y1 = ?.

III. COLLABORATIVE DISTRIBUTED INFORMATION
BOTTLENECK

We begin by introducing the so-called Collaborative Dis-

tributed Information Bottleneck (CDIB) problem and then
provide bounds to the optimal complexity-relevance region.
Special cases for which these bounds are tight are also
discussed.

A. Problem statement

Consider (Xn
1 , X

n
2 , Y

n) be sequences of n i.i.d. copies
of random variables (X1, X2, Y ) distributed according to
p(x1, x2, y) taking values on X1 ⇥ X2 ⇥ Y . We will consider
a cooperative setup in which X

n
1 and X

n
2 are observed at

encoders 1 and 2, respectively, and a third party referred
as the decoder wishes to “learn” the hidden representation

variable Y
n. Encoders 1 and 2 cooperatively and interactively

generate representations that are perfectly heard by the de-
coder, through a noiseless but rate-limited broadcast link, as
shown in Fig. 2. The cooperation between encoders 1 and
2 permits to save rate during the exchanges and at the same
time maintaining an appropriate level of relevance between the
generated descriptions and the hidden variable Y

n. Encoders
1 and 2 interact as in the TW-CIB problem. After they ceased
to exchange their descriptions, the decoder attempts to recover
the descriptions generated at encoders 1 and 2, which should
have some predefined level of information with respect to Y

n.

Definition 2 (K-step code and complexity-relevance region

of the CDIB problem): A K-step n-length CDIB code, for the
network model in Fig. 2, is defined by a sequence of encoder
mappings:

fl :Xn
1 ⇥ J1 ⇥ · · ·⇥ Jl�1 �! Il ,

gl :Xn
2 ⇥ I1 ⇥ · · ·⇥ Il �! Jl ,

with l 2 [1 : K] and message sets: Il , {1, 2, . . . , |Il|} and
Jl , {1, 2, . . . , |Jl|}. In compact form we denote a K-step
CDIB code by (n,F) where F denote the set of encoders
mappings.

A 3-tuple (R1, R2, µ) 2 R3
�0 is said to be K-achievable if

8" > 0 exists n0("), such that 8n > n0(") exists a K-step
source code (n,F) with rates satisfying:

1

n

KX

l=1

log |Il|  R1 + " ,
1

n

KX

l=1

log |Jl|  R2 + " (5)

and normalized multi-letter relevance at the decoder:

µ � ✏  1

n
I
�
Y

n; IK
J

K
�
. (6)

The K-step complexity-relevance region RCDIB(K) is defined
as:

RCDIB(K) ,
�
(R1, R2, µ) is K-achievable

 
.

It is clearly seen that Remarks 2, 3 and 4 also apply to this
problem. In fact, when X1 �⌦� Y �⌦�X2, this problem can be
seen as a cooperative and interactive CEO problem [14] with
logarithmic loss [5]. The main difference with respect to these
previous works is that the present setting allows cooperation
between encoders 1 and 2. This could lead to savings in
rate and/or gains in the achievable relevance levels through
an adequate use of the structure of the statistical dependence
between sources X1, X2 and Y .

B. Bounds to the complexity-relevance region

We now state the following inner bound to the complexity-
relevance region RCDIB(K).

Theorem 2 (Inner bound to RCDIB(K)): Consider Rinner
CDIB(K)

to be the region of tuples (R1, R2, µ) 2 R3
�0 such that there

exists auxiliary random variables {V1,l, V2,l}K
l=1 satisfying:

R1 � I(X1;W1,K+1|X2),

R2 � I(X2;V2,K |W2,K) + I(X2;W2,K |X1),

R1 + R2 � I(X1X2;W1,K+1),

µ  I(Y ;W1,K+1),

taking values in finite discrete alphabets V1,l and V2,l and
satisfying Markov chains:

V1,l �⌦� (X1, W1,l)�⌦� (X2, Y ), (7)
V2,l �⌦� (X2, W2,l)�⌦� (X1, Y ) (8)

for l 2 [1 : K]. The auxiliary random variables can be
restricted to take values in alphabets verifying:

|V1,l|  |X1||W1,l|+ 4 , for l = [1 : K � 1]

|V2,l|  |X2||W2,l|+ 4 , for l = [1 : K � 1]
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|V1,K |  |X1||W1,K |+ 3,

|V2,K |  |X2||W2,K |+ 1.

where |W1,l| =
Ql�1

i=1 |V1,i||V2,i| and |W2,l| = |W1,l||V2,l| for
l = [1 : K]. Then, Rinner

CDIB(K) ✓ RCDIB(K).
Proof: See Appendix B.

Remark 6: As shown in the Appendix this region is achiev-
able using a special cooperative binning between encoders 1
and 2 which was inspired by previous work in [22]. After the
information exchange is accomplished, the decoder needs to
recover the descriptions generated at encoders 1 and 2. At each
round, for example encoder 2, generates its own description
after having recovered the ones generated at encoder 1 at the
present and previous rounds. So, instead of binning only its
last generated description, it can also consider in its binning
what he already knows from its past descriptions and the ones
from encoder 1 (see Appendix B). This allows for an explicit
cooperation between encoders 1 and 2 in order to help the
decoder to recover both descriptions despite of the fact that
it does not have side information and without penalizing the
rate R1 (e.g. observe the rate constraint on R1 is conditioned
on X2, which corresponds to the minimum rate needed by
encoder 2 to recover the descriptions generated at encoder 1).
Note also that the rate expressions corresponding to R1 and
R2 can be written as:

R1 �
KX

l=1

I (X1;V1,l|W1,lX2) ,

R2 � I (X2;V2,K |W2,K)� I (X2;V2,K |W2,KX1)

+
KX

l=1

I (X2;V2,l|W2,lX1) ,

where the sequential nature of the coding is revealed. We
see that for every round l both rates equations present terms
I (X1;V1,l|W1,lX2) and I (X2;V2,l|W2,lX1) which corre-
spond to the minimum rates that encoder 2 (encoder 1) needs
in order to recover the last description generated by encoder
1 (encoder 2). However, the rate equation R2 presents a
penalizing term that involves the description generated at
encoder 2 in round K. This term appears because the last
description generated at encoder 2 will not get benefit from
further cooperative binning given that there are not any more
rounds. As the decoder has not side information, the encoder
2 has to send an excess rate to compensate for that and
help him to recover all generated descriptions. It is clear
that for the TW-CIB problem, this cooperative binning is not
needed because an external decoder (i.e. different from the
encoders) is not present and both encoders –before generating
a new description– know (with probability close to 1) the
descriptions generated in previous rounds.

The following result gives us an outer bound to the
complexity-relevance region RCDIB(K) in the special case that
X1 �⌦� Y �⌦� X2.

Theorem 3 (Outer bound to RCDIB(K)): Assume that we
have the Markov chain X1 �⌦� Y �⌦� X2. Let Router

CDIB(K) to
be the region of tuples (R1, R2, µ) 2 R3

�0 such that there ex-

ists auxiliary random variables {V1,l, V2,l}K
l=1 simultaneously

satisfying:

R1 � I(X1;W1,K+1|X2), (9)
R2 � [I(X2;W1,K+1|Y )� I(Y ;W2,K) + µ]+ , (10)

R1 + R2 � I(X1X2;W1,K+1|Y ) + µ,

µ  I(Y ;W1,K+1),

satisfying the Markov chains (7) and (8) for l 2 [1 : K] and
taking values in finite discrete alphabets V1,l and V2,l with
cardinalities bounded by:

|V1,l|  |X1||W1,l|+ 4 , for l = [1 : K]

|V2,l|  |X2||W2,l|+ 4 , for l = [1 : K � 1]

|V2,K |  |X2||W2,K |+ 1.

where |W1,l| =
Ql�1

i=1 |V1,i||V2,i| and |W2,l| = |W1,l||V2,l| for
l = [1 : K]. Then, Router

CDIB(K) ◆ RCDIB(K).
Proof: The proof is relegated to Section IV.

In general, it appears not possible to show that Router
CDIB(K) =

Rinner
CDIB(K) for every K 2 Z�0 when X1�⌦�Y �⌦�X2. However,

this is indeed the case when K = 1 that is, the interaction
between encoders 1 and 2 is restricted to only one round.

Remark 7: The Markov chain X1 �⌦� Y �⌦� X2 turns our
problem into the interactive-cooperative CEO problem. This
approach has a well-known converse for the sum-rate [24,
Theorem 3.1] which has been proved for an additive distortion
but can be easily re-adapted. However, the sum-rate constraint
provided in this paper is tighter. To check this, we can ignore
conditions (9) and (10). Then the corner points of Router

CDIB(K)
are:

QA = [I(X1X2;W1,K+1), I(Y ;W1,K+1)],

QB = [I(X1X2;W1,K+1|Y ), 0],

where these components correspond to the sum-rate and
relevance, respectively. The resulting corner points meet si-
multaneously: µ  I(Y ;U) and

R1 + R2 � I(Y ;U) + I(X1;U |Y Z) + I(X2;U |Y Z),

where Z is a random variable independent of (X1, X2, Y ), and
U satisfying Y �⌦�(X1, X2, Z)�⌦�U and X1�⌦�(Y, U, Z)�⌦�X2.
To show this, let us assume that Z , z almost surely, i.e.,
Z is a degenerated random variable, and set U , W1,K+1

and Z , z or U , u for the corner points QA and QB ,
respectively.

C. Characterization of the complexity-relevance region when

X1 �⌦� Y �⌦� X2 with K = 1

Theorem 4 (Complexity-relevance region when X1 �⌦� Y �
⌦� X2 with K = 1): Assume K = 1 and X1 �⌦� Y �⌦� X2,
then Router

CDIB(1) = Rinner
CDIB(1) = RCDIB(1).

Proof: The proof of the equality between the regions
provided in Theorems 2 and 3 is postponed to the next section.

Remark 8 (The role of cooperation): The region RCDIB(1)
can be written as:

R1 � I(X1;V1|X2),
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R2 � I(X2;V2|V1),

R1 + R2 � I(X1X2;V1V2),

µ  I(Y ;V1V2),

with V1 and V2 taking values in finite alphabets V1 and V2 and
satisfying V1 �⌦�X1 �⌦� (X2, Y ), V2 �⌦� (V1, X2)�⌦� (X1, Y ).
It is worth to compare this with the non-cooperative CEO
rate-distortion region under logarithmic loss [5, Theorem 3].
As it is well known, that region can be expressed in terms
of rates R1, R2 and relevance µ, instead of logarithmic loss
distortion level µ

0. In this manner, we can write the following
(non-cooperative) complexity-relevance region RDNCRL as:

R1 � I(X1;V1|V2),

R2 � I(X2;V2|V1),

R1 + R2 � I(X1X2;V1V2),

µ  I(Y ;V1V2),

where V1 and V2 take values in finite alphabets V1 and V2

satisfying: V1 �⌦� X1 �⌦� (X2, Y ) and V2 �⌦� X2 �⌦� (X1, Y )
form Markov chains. It is clearly seen that RCDIB(1) ◆ RDNCRL.
First, note that:

I(X1;V1|V2) = I(V1;X2|V2) + I(X1;V1|X2)

� I(X1;V1|X2).

Secondly, the set of probability distributions over which
RCDIB(1) is constructed is greater than the one corresponding to
RDNCRL. This is seen in the requirement of the auxiliary random
variable V2, which in the cooperative case can depend on V1,
reflecting the possibility of cooperation between the encoders.

D. Characterization of the complexity-relevance region when

X1 �⌦� X2 �⌦� Y with K = 1

Definition 3: Let R̂CDIB(1) be the set of tuples (R1, R2, µ) 2
R3

�0 such that there exists a joint pmf p(x1, x2, y, v1, v2) that
preserves the joint distribution of the sources (X1, X2, Y ) and

R1 � I(X1;V1), (11)
R2 � I(X2;V2|V1), (12)
µ  I(Y ;V1V2), (13)

with auxiliary random variables V1, V2 satisfying:

V1 �⌦� X1 �⌦� (X2, Y ) , V2 �⌦� (V1, X1, X2)�⌦� Y. (14)

Similarly, let R̃CDIB(1) be the set of tuples (R1, R2, µ) 2
R3

�0 verifying (11)-(13) such that there exists a joint pmf
p(x1, x2, y, v1, v2) that preserves the joint pmf of the sources
(X1, X2, Y ) while satisfying:

V1 �⌦�X1 �⌦� (X2, Y ) , V2 �⌦� (V1, X2)�⌦� (X1, Y ). (15)

Theorems 5 and 6 will imply the characterization of the
corresponding complexity-relevance region. We present first
Theorem 5 which gives us inner and outer bounds for RCDIB(1)
for arbitrary random sources X1, X2, Y .

Theorem 5: Assume K = 1 and arbitrary random variables
X1, X2, Y . Then, we have

R̃CDIB(1) ✓ RCDIB(1) ✓ R̂CDIB(1).

Proof: The proof is relegated to the next section.
The following result implies that R̃CDIB(1) = R̂CDIB(1) when
X1 �⌦� X2 �⌦� Y .

Theorem 6: Assume K = 1 and X1 �⌦� X2 �⌦� Y . Then
R̂CDIB(1) ✓ R̃CDIB(1).

Proof: Assume that (R1, R2, µ) 2 R̂CDIB(1). Then, there
exists a pmf

p(x1, x2, y, v1, v2) = p(x1, x2, y)p(v1|x1)p(v2|x1, x2, v1)

such that: R1 � I(X1;V1) R2 � I(X2;V2|V1) and µ 
I(Y ;V1V2). Consider the pmf

p̃(x1, x2, y, v1, v2) = p(x1, x2, x3)p(v1|x1)p̃(v2|x2, v1),

where

p̃(v2|x2, v1) ,
p(x2, v1, v2)

p(x2, v1)

=

P
x0

1
p(x0

1, x2)p(v1|x0

1)p(v2|x0

1x2v1)
P

x0

1
p(x0

1, x2)p(v1|x0

1)
.

By assumption this pmf preserves the sources (X1, X2, Y )
while satisfying (15). Moreover, it can be shown without
difficulty that p̃(x1, v1) = p(x1, v1) and p̃(x2, v1, v2) =
p(x2, v1, v2). This implies that I(X1;V1) and I(X2;V2|V1)
are preserved. If we further assume that X1 �⌦�X2 �⌦� Y , we
can write:

p̃(y, v1, v2) =
X

x1,x2

p(x1, x2, y)p(v1|x1)⇥
P

x0

1
p(x0

1, x2)p(v1|x0

1)p(v2|x0

1x2v1)
P

x0

1
p(x0

1, x2)p(v1|x0

1)
,

=
X

x2

p(y|x2)
X

x1

p(x1, x2)p(v1|x1)⇥
P

x0

1
p(x0

1, x2)p(v1|x0

1)p(v2|x0

1x2v1)
P

x0

1
p(x0

1, x2)p(v1|x0

1)

=
X

x0

1,x2

p(x0

1, x2, y)p(v1|x0

1)p(v2|x0

1x2v1)

= p(y, v1, v2).

As a consequence, the term I(Y ;V1V2) is also preserved and
thus (R1, R2, µ) 2 R̃CDIB(1).

The next corollary immediately follows.
Corollary 1: Provided that X1 �⌦� X2 �⌦� Y , we have

R̃CDIB(1) = R̂CDIB(1) = RCDIB(1).
It is easily seen that for achieving any (R1, R2, µ) 2 R̃CDIB(1)
it is not necessary to use binning. First encoder 1 sends
its description which can recovered at encoder 2 and the
decoder. Then, encoder 2 uses this description –as a coded
side information which is also available at the decoder– to
generate and sends its own one to the decoder. The previous
claim shows this coding scheme is optimal when X1�⌦�X2�⌦�Y .
As Rinner

CDIB(1) is also achievable and R̃CDIB(1) ✓ Rinner
CDIB(1) (which

is trivial to show), we can state an alternative characterization
of the complexity-relevance region.

Corollary 2 (Alternative characterization of RCDIB(1) when

X1 �⌦�X2 �⌦� Y ): Assume K = 1 and that X1 �⌦�X2 �⌦� Y



8

form a Markov chain, then R̃CDIB(1) = Rinner
CDIB(1) = RCDIB(1) =

R̂CDIB(1).
Proof: Follows easily from the above discussion. An

alternative proof of this Corollary is presented in Appendix D.

Remark 9: From the previous results it should be clear that
the coding procedure presented in Theorem 2 is clearly optimal
for both cases X1 �⌦�Y �⌦�X2 and X1 �⌦�X2 �⌦�Y . The first
Markov chain corresponds to the typical one considered in the
CEO problem [25]. This would be the case where, for example,
the hidden variable Y is related with the observed variables
X1 and X2 through and additive model: X1 = Y +Z1, X2 =
Y + Z2 where Z1 and Z2 are independent random variables.
For example this situation could appear in a sensor network
setting where X1 and X2 are observed in two geographically
separated nodes and in which the fusion center (node 3) desires
to obtain a good representation of the hidden variable Y . The
case in which X1�⌦�X2�⌦�Y can represent also the case of the
distributed sensor network setting, in which the measurements
in one of sensors (X2) is most informative with respect to the
hidden variable Y that the ones in the other (X1). This could
represent a situation in which the hidden variable Y models a
physical phenomenon which originates in given point of space
and in which the statistical dependence with variables X1 and
X2 at the points of measurements (the sites where nodes 1 and
2 are positioned) depends strongly of their distance to the point
of origin. If node 2 is closer than node 1 to the point of origin
of Y , X2 would have a stronger statistical dependence with
Y and the given Markov chain can be a useful approximate
model of this situation.

Remark 10: It is worth to mention that the cardinality of
the auxiliary variables in this case can be bounded in two
different ways. The auxiliary random variables involved in the
representation of R̂CDIB(1) can be restricted to take values in
alphabets satisfying:

|V1|  |X1|+ 3 , |V2|  |X1||X2||V1|+ 1 .

While the auxiliary random variables involved in the represen-
tation of R̃CDIB(1) can be restricted to take values in alphabets
verifying:

|V1|  |X1|+ 3 , |V2|  |X2||V1|+ 1 .

IV. CONVERSES IN THEOREMS 1, 3, 4 AND 5

In this section, we provide the proofs to the converses of
Theorems 1, 3 and 5. Together with the inner bounds obtained
in Appendix B these results imply the characterization of the
corresponding complexity-relevance regions in Theorems 1, 4
and Corollary 2.

A. Converse result for Theorem 1

If a tuple (R1, R2, µ1, µ2) is achievable, then for all " > 0
there exists n0("), such that 8n > n0(") there exists a code
(n,F) with rates and relevance satisfying (1) and (2). For
t = [1 : n], define variables:

V1,1,t ,
�
I1, X1[1:t�1], X2[t+1:n]

�

V1,l,t , Il, 8 l 2 [2 : K]

V2,l,t , Jl, 8 l 2 [1 : K].

These auxiliary random variables satisfy, for t = [1 : n] the
Markov conditions (3) and (4) and are similar to the choices
made in [18]. In that sense, the converse proof follows along
similar lines as in [18]. However, for sake of completeness we
provide the proof.

1) Constraint on rate R1: For the first rate, we have

n(R1+") � H
�
I

K
�

(a)
� I

�
I

K
J

K ;Xn
1 |Xn

2

�

=
nX

t=1

I
�
I

K
J

K ;X1t|Xn
2 X1[1:t�1]

�

=
nX

t=1

I
�
I

K
J

K
X1[1:t�1]X2[1:t�1]X2[t+1:n];X1t|X2t

�

=
nX

t=1

I
�
W1,K+1[t]X2[1:t�1];X1t|X2t

�

(b)
�

nX

t=1

I
�
W1,K+1[Q];X1[Q]|X2[Q], Q = t

�

(c)
= nI

⇣
fW1,K+1;X1|X2

⌘
,

where
• step (a) follows from the fact that J

K = (J1, . . . , JK)
is function of I

K = (I1, . . . , IK) and X
n
2 ;

• step (b) follows from the use of a time sharing random
variable Q uniformly distributed over the set [1 : n] and
independent of the other variables and from the non-
negativity of mutual information;

• step (c) follows by defining a new random variable
fW1,K+1 , (W1,K+1[Q], Q).

2) Constraint on rate R2: The analysis is similar to the
case for R1 and for that reason is omitted. The final result is:

n(R2 + ") � nI

⇣
fW1,K+1;X2|X1

⌘
.

3) Constraint on relevance µ1: For the first relevance, we
have

n(µ1 � ") 
nX

t=1

I
�
Y1t; I

K
J

K
X

n
1 |Y1[t+1:n]

�

=
nX

t=1

I
�
Y1t; I

K
J

K
X1[1:t�1]X1tX1[t+1:n]Y1[t+1:n]

�

(a)


nX

t=1

I
�
Y1t;W1,K+1[t]X1[t+1:n]Y1[t+1:n]X1t

�

(b)
=

nX

t=1

I
�
Y1[Q];W1,K+1[Q]X1[Q]|Q = t

�

(c)
= nI

⇣
Y1;fW1,K+1X1

⌘
,

where
• step (a) follows from the definition of W1,K+1[t] and

non-negativity of mutual information;
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• step (b) follows from the Markov chain Y1t �⌦��
W1,K+1[t], X1t

�
�⌦�
�
X1[t+1:n], Y1[t+1:n]

�
and the use of

a time sharing random variable Q uniformly distributed
over the set [1 : n] and independent of the other variables;

• step (c) follows by letting a new random variables
fW1,K+1 , (W1,K+1[Q], Q).

4) Relevance µ2: Again, the analysis is similar to the one
for µ1. Following similar steps, we obtain:

n(µ2 � ")  nI

⇣
Y2;fW1,K+1X2

⌘
.

B. Converse result for Theorem 3

If a tuple (R1, R2, µ) is achievable, then for all " > 0 there
exists n0("), such that 8n > n0(") there exists a code (n,F)
with rates and relevance satisfying (5) and (6). For t = [1 : n],
define variables:

V1,1,t ,
�
I1, Y[1:t�1], X2[t+1:n]

�

V1,l,t , Il, 8 l 2 [2 : K]

V2,l,t , Jl, 8 l 2 [1 : K].

These auxiliary random variables satisfy, for t = [1 : n], the
Markov conditions (7) and (8).

1) Constraint on rate R1: For the first rate, we have

n(R1 + ") � H
�
I

K
�

(a)
� I

�
I

K
J

K ;Xn
1 |Xn

2

�

=
nX

t=1

I
�
I

K
J

K ;X1t|Xn
2 X1[1:t�1]

�

=
nX

t=1

I
�
I

K
J

K
X1[1:t�1]X2[1:t�1]X2[t+1:n];X1t|X2t

�

(b)
=

nX

t=1

I
�
W1,K+1[t]X1[1:t�1]X2[t+1:n];X1t|X2t

�

(c)
�

nX

t=1

I
�
W1,K+1[Q];X1[Q]|X2[Q], Q = t

�

(d)
= nI

⇣
fW1,K+1;X1|X2

⌘
,

where
• step (a) follows from the fact that J

K is function of I
K

and X
n
2 ;

• step (b) use the Markov chain Y[1:t�1] �⌦��
I

K
, J

K
, X

n
2 X1[1:t�1]

�
�⌦� X1t;

• step (c) follows from the use of a time sharing random
variable Q uniformly distributed over the set [1 : n]
independent of the other variables;

• step (d) follows by letting a new random variable
fW1,K+1 , (W1,K+1[Q], Q).

2) Constraint on rate R2: For the second rate, we have

n(R2 + ") � H
�
J

K
�

� H
�
J

K�1|Xn
1 Y

n
�
+ H

�
JK |IK

J
K�1

�

(a)
= I

�
J

K�1;Xn
2 |Xn

1 Y
n
�
+ I

�
JK ;Xn

2 Y
n|IK

J
K�1

�

= I
�
J

K�1;Xn
2 |Xn

1 Y
n
�
+ I

�
JK ;Xn

2 |IK
J

K�1
Y

n
�

�I
�
Y

n; IK
J

K�1
�
+ I

�
Y

n; IK
J

K
�

(b)
�

nX

t=1

h
I
�
J

K�1;X2t|X2[t+1:n]Y
n
X

n
1

�

+ I
�
JK ;X2t|IK

J
K�1

X2[t+1:n]Y
n
�

� I
�
Yt; I

K
J

K�1|Y[1:t�1]

� i
+ n(µ � ")

(c)
=

nX

t=1

h
I
�
J

K�1
I

K ;X2t|X2[t+1:n]Y
n
X

n
1

�

+ I
�
JK ;X2t|IK

J
K�1

X2[t+1:n]Y[1:t]

�

� I
�
Yt; I

K
J

K�1
Y[1:t�1]

� i
+ n(µ � ")

(d)
�

nX

t=1

h
I
�
J

K�1
I

K
X2[t+1:n]Y[1:t�1];X2t|Yt

�

+ I
�
JK ;X2t|IK

J
K�1

X2[t+1:n]Y[1:t]

�

�I
�
Yt; I

K
J

K�1
Y[1:t�1]X2[t+1:n]

� i
+ n(µ � ")

(e)
=

nX

t=1

h
I
�
W2,K[Q];X2[Q]|Y[Q], Q = t

�

+ I
�
V2K[Q];X2[Q]|W2,K[Q]Y[Q], Q = t

�

�I
�
Y[Q];W2,K[Q]|Q = t

� i
+ n(µ � ")

(f)
= nI

⇣
fW1,K+1;X2|Y

⌘
� nI

⇣
Y ;fW2,K

⌘
+ n(µ � "),

where
• step (a) follows from the fact that by definition of the

code Il is function of J
l�1 and X

n
1 , and Jl is function

of I
l and X

n
2 ;

• step (b) follows from (6) and the chain rule for mutual
information and entropy;

• step (c) follows from the fact that by definition of the
code I

K is function of J
K�1 and X

n
1 , and the Markov

chains Y[t+1:n] �⌦�
�
I

K
, J

K�1
, X2[t+1:n], Y[1:t]

�
�⌦� X2t

and Y[t+1:n] �⌦�
�
I

K
, J

K
, X2[t+1:n], Y[1:t]

�
�⌦� X2t;

• step (d) follows from the fact that X1 �⌦� Y �⌦�X2 and
non-negativity of mutual information;

• step (e) follows from the use of a time sharing random
variable Q uniformly distributed over the set [1 : n] and
independent of the other variables;

• step (f) follows by letting a new random variables
fW1,K+1 , (W1,K+1[Q], Q), fW2,K , (W2,K[Q], Q).

3) Constraint on sum-Rate R1 +R2: For the sum-rate, we
have

n(R1 + R2 + 2")
(a)
� I

�
I

K
J

K ;Y n
�
+ I

�
I

K
J

K ;Xn
1 X

n
2 |Y n

�

(b)
� n(µ � ") +

nX

t=1

I
�
I

K
J

K
X2[t+1:n]Y[1:t�1];X1tX2t|Yt

�

(c)
= n(µ � ") +

nX

t=1

I
�
W1,K+1[Q];X1[Q]X2[Q]|Y[Q], Q = t

�

(d)
= n(µ � ") + nI(fW1,K+1;X1X2|Y ),

where



10

• step (a) follows from definition of the code I
K and J

K

are functions of X
n
1 and X

n
2 ;

• step (b) follows from (6);
• step (c) follows from the use of a time sharing random

variable Q uniformly distributed over the set [1 : n]
independent of the other variables;

• step (d) follows by letting a new random variables:
fW1,K+1 , (W1,K+1[Q], Q).

4) Constraint on the relevance µ: Finally, for the relevance,
we have

n(µ � ✏)  I
�
Y

n; IK
J

K
�

=
nX

t=1

I
�
Yt; I

K
J

K |Y[1:t�1]

�


nX

t=1

I
�
Yt; I

K
J

K
Y[1:t�1]X2[t+1:n]

�

(a)
=

nX

t=1

I
�
Y[Q];W1,K+1|Q = t

�

(b)
= nI

⇣
Y ;fW1,K+1

⌘
,

where
• step (a) follows from the use of a time sharing random

variable Q uniformly distributed over the set [1 : n]
independent of the other variables;

• step (b) follows by letting a new random variables
fW1,K+1 , (W1,K+1[Q], Q).

In this way we conclude the proof that Router
CDIB(K) ◆

RCDIB(K). The fact that Rinner
CDIB(K) ✓ RCDIB(K) is given in

Appendix B.

C. Proof of Theorem 4

We now show that Router
CDIB(1) = Rinner

CDIB(1) = RCDIB(1) which
implies Theorem 4. When K = 1 we have that Rinner

CDIB(1) reads
as:

R1 � I(X1;V1|X2),

R2 � I(X2;V2|V1),

R1 + R2 � I(X1X2;V1V2),

µ  I(Y ;V1V2),

with V1 and V2 taking values in finite alphabets V1 and V2 and
satisfying V1 �⌦�X1 �⌦� (X2, Y ), V2 �⌦� (V1, X2)�⌦� (X1, Y ).
Similarly Router

CDIB(1) can be written as:

R1 � I(X1;U1|X2),

R2 � [I(X2;U2|Y U1)� I(Y ;U1) + µ]+,

R1 + R2 � I(X1X2;U1U2|Y ) + µ,

µ  I(Y ;U1U2),

with the auxiliary variables U1 and U2 taking values in finite
alphabets U1 and U2 and satisfying: U1�⌦�X1�⌦� (X2, Y ) and
U2�⌦� (U1, X2)�⌦� (X1, Y ) (note that U1�⌦�Y �⌦�X2 because
of X1 �⌦� Y �⌦� X2). From the previous results it is clear
that Rinner

CDIB(1) ✓ Router
CDIB(1). Similarly to [5], it can be shown

that Rinner
CDIB(1) ◆ Router

CDIB(1). This is accomplished by showing
that, when we fix a distribution on (U1, U2) for every point
(R1, R2, µ) 2 Router

CDIB(1), we can find an appropriate distribution
(V1, V2) such that (R1, R2, µ) 2 Rinner

CDIB(1). To this end, we
study the extreme points (see Appendix E for a definition) and
directions [26] of the restriction of Router

CDIB(1) over the assumed
distribution of (U1, U2). The details are given in Appendix C.

D. Converse result for Theorem 5

The proof that R̃CDIB(1) ✓ RCDIB(1) follows from simple
multiterminal coding arguments and for that reason is omitted.
The relevance level can be obtained using the same ideas that
those in Appendix B. For RCDIB(1) ✓ R̂CDIB(1) assume that
(R1, R2, µ) 2 RCDIB(1) , then for all " > 0 there exists n0("),
such that 8n > n0(") there exists a code (n,F) with rates
and relevance satisfying (5) and (6). For each t = [1 : n], we
define random variables:

V1,t ,
�
I1, Y[1:t�1], X2[1:t�1]

�
, V2,t , J1. (16)

It is easy to show that these choices verify (14). Using similar
steps as in the previous converse proofs, we can easily obtain
the following bounds:

R1 + ✏ � 1

n

nX

t=1

I
�
I1X2[1:t�1]Y[1:t�1];X1t

�
,

R2 + ✏ � 1

n

nX

t=1

I
�
X2t; J1

��I1X2[1:t�1]Y[1:t�1]

�
,

µ � ✏  1

n

nX

t=1

I
�
Yt; I1J1X2[1:t�1]Y[1:t�1]

�
.

From a time-sharing argument and using (16) we get the rate
conditions corresponding to R̂CDIB(1).

V. GAUSSIAN SOURCE MODELS

In this section, we study Gaussian models between source
samples and hidden representations. Although the above
achievability results are strictly valid for random variables
taking values on finite alphabets, the results can be ap-
plied to continuous random variables with sufficiently well
behaved probability density function (e.g. Gaussian random
variables). A simple sequence of coding schemes consisting
of a quantization procedure over the sources and appropriate
test channels (with diminishing quantization steps) followed
by coding schemes as the ones presented in this paper will
suffice (e.g. see [25]).

A. Gaussian TW-CIB model

Let (X1, X2, Y1, Y2) be Gaussian random variables with
zero-mean. We will assume without loss of generality that we
can write:

Y1

Y2

�
= A·


X1

X2

�
+


Z1

Z2

�
, A =


a11 a12

a21 a22

�
, (17)

where Z1 ? (X1, X2) and Z2 ? (X1, X2) and matrix A
can be obtained from the correlation structure of the random
variables. To this end, define:

a12 , �y1

�x2

⇢x2y1 � ⇢x1y1⇢x1x2

1� ⇢2
x1x2



11

a21 , �y2

�x1

⇢x1y2 � ⇢x2y2⇢x1x2

1� ⇢2
x1x2

,

where �
2
b denotes the variance of a random variable B,

and ⇢b1b2 represents the Pearson product-moment correla-

tion coefficient between random variables B1 and B2. As
(X1, X2, Y1, Y2) are jointly Gaussian, then Z1 and Z2 are
Gaussian as well. It is easy to check that:

�
2
z1

=
�

2
y1
�

1� ⇢2
x1x2

, �
2
z2

=
�

2
y2
�

1� ⇢2
x1x2

,

where

� ,1� ⇢
2
x1x2

� ⇢
2
x1y1

� ⇢
2
x2y1

+ 2⇢x1x2⇢x1y1⇢x2y1 ,

� ,1� ⇢
2
x1x2

� ⇢
2
x2y2

� ⇢
2
x1y2

+ 2⇢x1x2⇢x2y2⇢x1y2 .

We are ready to present our first result.
Theorem 7 (Complexity-relevance region for the Gaussian

TW-CIB model): When (X1, X2, Y1, Y2) are jointly Gaussian,
for any K, RTW-CIB(K) is given by:

R1 � 1

2
log

 
(1� ⇢

2
x1x2

)(1� ⇢
2
x2y2

)� �

2�2µ2(1� ⇢2
x1x2

)� �

!

0  µ2 <
1

2
log

✓
1� ⇢

2
x1x2

�

◆
, (18)

R2 � 1

2
log

 
(1� ⇢

2
x1x2

)(1� ⇢
2
x1y1

)� �

2�2µ1(1� ⇢2
x1x2

)� �

!

0  µ1 <
1

2
log

✓
1� ⇢

2
x1x2

�

◆
. (19)

Proof: We first consider the converse.
Converse: Assume (R1, R2, µ1, µ2) 2 RTW-CIB(K). Consider

the relevance level µ1. Using (2):

µ1 � ✏  1

n
I
�
Y

n
1 ; IK

J
K

X
n
1

�
,

= h(Y1)�
1

n
h
�
Y

n
1

��IK
J

K
X

n
1

�
,

=
1

2
log
�
2⇡e�

2
y1

�
� 1

n
h
�
a12X

n
2 + Z

n
1

��IK
J

K
X

n
1

�

| {z }
(a)

. (20)

From the equation for R2 and using the fact that J
K is

function of X
n
2 and I

K it is not difficult to obtain:

R2 + ✏ � 1

n
I
�
X

n
2 ; I

K
J

K
��Xn

1

�
,

= h(X2|X1)�
1

n
h
�
X

n
2

��IK
J

K
X

n
1

�
,

=
1

2
log (2⇡eVar[X2|X1])�

1

n
h
�
X

n
2

��IK
J

K
X

n
1

�

| {z }
(b)

. (21)

As Z
n
1 ?

�
I

K
J

K
�

we can link (a) and (b) using the
conditional EPI [27] to write:

2
2
nh

⇣
a12Xn

2 +Zn
1

��IKJKXn
1

⌘

� a
2
122

2
nh

⇣
Xn

2

��IKJKXn
1

⌘

+ 2⇡e�
2
z1

.

From (20) and (21) we can write:

R2 + ✏ � 1

2
log

 
Var[X2|X1]a2

12

�
2
Y1
2�2(µ1�✏) � �

2
Z1

!
.

Using the correlation structure implied by (17) we can obtain:

R2 + ✏ � 1

2
log

 
(1� ⇢

2
x1x2

)(1� ⇢
2
x1y1

)� �

2�2(µ1�✏)(1� ⇢2
x1x2

)� �

!
.

As ✏ > 0 is arbitrary we obtain the desired result. The results
for R1 and µ2 can be obtained similarly.

Achievability: We propose the following choices for aux-
iliary random variables. Let V

[2:K]
1 = V

[2:K]
2 = ; and

V1,1 = X1 +P1 and V2,1 = X2 +P2, where V1,1 and V2,1 are
zero-mean Gaussian random variables with variances:

E[V 2
1,1] = �

2
x1

+ �
2
p1

,

E[V 2
2,1] = �

2
x2

+ �
2
p2

,

�
2
p1

= �
2
x1

2�2µ2(1� ⇢
2
x1x2

)� �

1� ⇢x2y2 � 2�2µ2
,

�
2
p2

= �
2
x2

2�2µ1(1� ⇢
2
x1x2

)� �

1� ⇢x1y1 � 2�2µ1
,

and P1, P2 are Gaussian zero-mean random variables such that
P1 ? (X1, X2, Y1, Y2, P2) and P2 ? (X1, X2, Y1, Y2, P1).
It is clear these choices satisfies the appropriate Markov
chain conditions. Although a bit cumbersome, it is
straightforward to calculate the corresponding values of
I(Y1;W[1;K+1]X2), I(Y2;W[1;K+1]X2), I(X1;W[1;K+1]|X2)
and I(X2;W[1;K+1]|X1) and conclude the proof.

Remark 11: Notice that the maximum values of µ1 and µ2 in
(19)) and (18) correspond to I(X1X2;Y1) and I(X1X2;Y2)
and are achievable when R2 ! 1 and R1 ! 1 respec-
tively. Besides that, it is clear from the achievability that
only one round of interaction suffices to achieve optimality
when the sources are jointly Gaussian. In perspective, this is
not surprising, and derives from the Wyner-Ziv’s result [28]
which states that for Gaussian random variables, the rate-
distortion function with side information at the encoder and
decoder is not larger than the one with side information only
at the decoder. These two cases correspond to two extreme
situations: one in which there is no interaction between both
encoders and the other in which interaction is not needed
because both encoders have access to both observable sources.
This conclusion follows easily by noticing that any code for a
Gaussian rate-distortion problem, where decoder 1 desires to
reconstruct Y1 with distortion µ

0

1 , �
2
Y1
2�2µ1 and decoder 2

desires to recover Y2 with distortion µ
0

2 , �
2
Y2
2�2µ2 , is also

good for an equivalent CRL problem with desired relevances
levels µ1 and µ2.

B. Gaussian CDIB model: X1 �⌦� X2 �⌦� Y case

We study the Gaussian case for the region RCDIB(1) investi-
gated in Section III-D when X1�⌦�X2�⌦�Y . Let (X1, X2, Y ) be
Gaussian random variables with zero-mean. We will assume
without loss of generality that we can write:

Y = aX2 + Za , X2 = bX1 + Zb ,
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where Za ? (X1, X2) and Zb ? X1 are Gaussian and
constants a and b are obtained from the correlation structure
of the random variables. That is:

a , ⇢x2y
�y

�x2

, b , ⇢x1x2

�x2

�x1

.

It is easy to check that

�
2
za

= �
2
y(1� ⇢

2
x2y) , �

2
zb

= �
2
x2
(1� ⇢

2
x1x2

) .

Theorem 8 (Complexity-relevance region for the Gaussian

model when X1 �⌦� X2 �⌦� Y ): Let (X1, X2, Y2) be jointly
Gaussian random variables satisfying X1 �⌦� X2 �⌦� Y . The
complexity-relevance region RCDIB(1) is given by (22), with
R1 � 0, R2 � 0.

Proof: We begin with the converse.
Converse: Assume (R1, R2, µ) 2 RCDIB(1) and consider rate

constraint R1. Using the fact that I1 is function of X
n
1 :

R1 + ✏ � 1

n
I (Xn

1 ; I1) = h(X1)�
1

n
h
�
X

n
1

��I1

�
. (23)

From rate R2 and using the fact that J1 is function of X
n
2 and

I1 it is not hard to obtain:

R2 + ✏ � 1

n
I
�
J1;X

n
2

��I1

�

=
1

n
h
�
bX

n
1 + Z

n
b

��I1

�
� 1

n
h
�
X

n
2

��I1J1

�

(a)
� 1

2
log
⇣
b
22

2
nh(Xn

1 |I1) + 2⇡e�
2
zb

⌘

� 1

n
h
�
X

n
2

��I1J1

�

(b)
� 1

2
log
⇣
2⇡e�

2
x1

b
22�2(R1+✏) + 2⇡e�

2
zb

⌘

� 1

n
h
�
X

n
2

��I1J1

�
, (24)

where (a) uses the conditional EPI because Z
n
b ? I1, and (b)

use Eq. (23).
From relevance condition we use the same idea:

µ � ✏  1

n
I (Y n; I1J1)

= h(Y )� 1

n
h
�
aX

n
2 + Z

n
a

��I1J1

�

(c)
 1

2
log
�
2⇡e�

2
y

�
� 1

2
log
⇣
a
22

2
nh(Xn

2 |I1J1) + 2⇡e�
2
za

⌘

where (c) use the conditional EPI because Z
n
a ? (I1, J1).

Then, (22) is proved using Eq. (24) and the fact that ✏ > 0 is
arbitrary.

Achievability: We propose the following choices for auxil-
iary random variables. Let V1 = X1 +P1 and V2 = X2 +P2,
where V1 and V2 are zero-mean Gaussian random variables
with variances:

E[V 2
1 ] = �

2
x1

+ �
2
p1

, E[V 2
2 ] = �

2
x2

+ �
2
p2

,

�
2
p1

= �
2
x1

2�2R1

1� 2�2R1
,

�
2
p2

= �
2
x2

2�2R2

1� 2�2R2

�
1� ⇢

2
x1x2

+ ⇢
2
x1x2

2�2R1
�

,

and P1, P2 are Gaussian zero-mean random variables such
that P1 ? (X1, X2, Y, P2) and P2 ? (X1, X2, Y, P1). It
is clear these choices satisfy the appropriate Markov chain
conditions. Although a bit cumbersome, it is straightforward to
calculate the corresponding values of I(X1;V1), I(X2;V2|V1)
and I(Y ;V1, V2). This concludes the proof.
This region can also be written as:

R1 � 0,

R2 � 1

2

"
log

 
⇢
2
x2y⇢

2
x1x2

2�2R1 + ⇢
2
x2y(1� ⇢

2
x1x2

)

2�2µ � (1� ⇢2
x2y)

!#+

In Fig. 3 we plot this alternative parametrization for different
values of µ. Taking into account that µmax = I(Y ;X2) it
is seen how when increasing R1 the value of R2 tends to
saturate. If the value of µ required is small enough, after
increasing sufficiently R1, the information about Y provided
by the second encoder would be not useful. In fact, it can
be proved that the critical value of R1 (if exists) for which
R2 = 0 satisfy:

R1 =
1

2
log

 
⇢
2
x1x2

⇢
2
x2y

2�2µ � (1� ⇢2
x1x2

⇢2
x2y)

!
.

Moreover, it can be proved that there will be a critical value
for R1 if and only if the required level of relevance satisfy
µ  I(Y ;X1). If the value for µ is greater than this quantity,
it is not possible to have R2 = 0 independently of the value
of R1. This not a surprise because it means, that for the level
of relevance required, encoding of only X1 is sufficient. If
µ > I(Y ;X1) s required node 3 will require information from
X2 (remember that X1 �⌦�X2 �⌦� Y ) which leads to R2 > 0.

C. Gaussian CDIB model: X1 �⌦� Y �⌦� X2 case

We will consider the Gaussian case for the region RCDIB(1)
when X1�⌦�Y �⌦�X2, studied in section IV-C. Let (X1, X2, Y )
be Gaussian random variables with zero-mean. We will assume
without loss of generality, that we can write:

Y = a1X1 + a2X2 + Z,

where Z ? (X1, X2) is Gaussian and constants a1 and a2

can be obtained from the correlation structure of the random
variables, using the Markov chain X1 �⌦� Y �⌦� X2. This is:

a1 , �y

�x1

⇢x1y(1� ⇢
2
x2y)

1� ⇢2
x1y⇢

2
x2y

a2 , �y

�x2

⇢x2y(1� ⇢
2
x1y)

1� ⇢2
x1y⇢

2
x2y

.

µ  1

2
log

 
1

1� ⇢2
x2y + ⇢2

x2y2
�2R2 � ⇢2

x2y⇢
2
x1x2

2�2R2 + ⇢2
x2y⇢

2
x1x2

2�2(R1+R2)

!
. (22)
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Figure 3: Achievable rates R1 and R2 for the Gaussian case
with X1 �⌦� X2 �⌦� Y for several values of relevance µ. The
correlation coefficients are ⇢x1x2 = ⇢x2y = 0.8.

It is not difficult to check that

�
2
z = �

2
y

(1� ⇢
2
x1y)(1� ⇢

2
x2y)

1� ⇢2
x1y⇢

2
x2y

.

Theorem 9 (Outer bound to RCDIB(1) for the Gaussian model

when X1 �⌦� Y �⌦� X2): If (X1, X2, Y ) are jointly Gaussian
with X1�⌦�Y �⌦�X2 and if (R1, R2, µ) 2 RCDIB(1), then there
exists r1 � 0 and r2 � 0 such that they meet (25), (26) and

R1 � r1 �
1

2
log

✓
1

1� ⇢2
x2y

◆
+ µ,

R1 + R2 � r1 + r2 + µ,

Proof: First of all, we define

r1 , 1

n
I (Xn

1 ; I1|Y n) , r2 , 1

n
I (Xn

2 ; J1|I1Y
n)

Consider the constraint on R1 � µ, using the Markov chain
X1 �⌦� Y �⌦� X2 we can write:

R1 � µ + 2✏ � 1

n
H (I1)�

1

n
I (Y n; I1J1) ,

� 1

n
I
�
X

n
1 Y

n; I1

��Xn
2

�
� 1

n
I (Y n; I1X

n
2 ) ,

=
1

n
I
�
X

n
1 ; I1

��Xn
2 Y

n
�
� 1

n
I (Y n;Xn

2 ) ,

= r1 �
1

2
log

 
�

2
y

Var[Y |X2]

!
,

= r1 �
1

2
log

✓
1

1� ⇢2
x2y

◆
.

For R1 +R2 �µ, using Markov chain X1 �⌦�Y �⌦�X2 again,
it is not difficult to obtain:

R1 + R2 � µ + 3✏ � 1

n
H (I1, J1)�

1

n
I (Y n; I1J1) ,

=
1

n
H
�
I1J1

��Y n
�
,

=
1

n
I
�
X

n
1 X

n
2 ; I1J1

��Y n
�
,

=
1

n
I
�
X

n
1 ; I1J1

��Y n
�
+

1

n
I
�
X

n
2 ; I1J1

��Xn
1 Y

n
�
,

= r1 + r2.

For R2 � µ, doing a similar analysis:

R2 � µ + 2✏ � 1

n
H (J1)�

1

n
I (Y n; I1J1) ,

� 1

n
I
�
X

n
2 Y

n; J1

��I1

�
� 1

n
I (Y n; I1J1) ,

=
1

n
I
�
X

n
2 ; J1

��Y n
I1

�
� 1

n
I (Y n; I1) ,

= r2 � h (Y ) +
1

n
h
�
Y

n
��I1

�
,

where the term h (Y n|I1) can be bounded using the condi-
tional EPI two times (in a similar fashion as in [16]): firstly
because of Z

n ? I1 and secondly because of X
n
1 �⌦�(I1, Y

n)�
⌦� X

n
2 ,

2
2
nh(Y n

|I1) � 2
2
nh(a1Xn

1 +a2Xn
2 |I1) + 2⇡e�

2
z ,

=
2

2
nh(a1Xn

1 +a2Xn
2 |Y nI1)2

2
nh(Y n

|I1)

2⇡e�2
z

+ 2⇡e�
2
z ,

�

h
a
2
12

2
nh(Xn

1 |Y nI1) + a
2
22

2
nh(Xn

2 |Y nI1)
i
2

2
nh(Y n

|I1)

2⇡e�2
z

+ 2⇡e�
2
z ,

=

h
a
2
12

2
nh(Xn

1 |Y n)2�2r1 + a
2
22

2
nh(Xn

2 |Y n)
i
2

2
nh(Y n

|I1)

2⇡e�2
z

+ 2⇡e�
2
z ,

=

�
a
2
1Var[X1|Y ]2�2r1 + a

2
2Var[X2|Y ]

�
2

2
nh(Y n

|I1)

�2
z

+ 2⇡e�
2
z .

Finally, this term is bounded by

2
2
nh(Y n

|I1) � 2⇡e�
4
z

�2
z � (a2

1Var[X1|Y ]2�2r1 + a
2
2Var[X2|Y ])

.

Then, the bound of R2 � µ can be written as:

R2 � µ + 2✏ � r2

� 1

2
log

 
�

2
y

⇥
�

2
z �

�
a
2
1Var[X1|Y ]2�2r1 + a

2
2Var[X2|Y ]

�⇤

�4
z

!

and then (25) is proved because ✏ > 0 is arbitrary. The analysis
is similar to the case for h (Y n|I1J1), because Z

n ? (I1, J1)
and X

n
1 �⌦� (I1, J1, Y

n)�⌦� X
n
2 :

2
2
nh(Y n

|I1J1) �
2⇡e�

4
z

�2
z � (a2

1Var[X1|Y ]2�2r1 + a
2
2Var[X2|Y ]2�2r2)

.

Finally, the relevance condition can be bounded as:

µ � ✏  1

n
I (Y n; I1J1) ,

= h (Y )� 1

n
h
�
Y

n
��I1J1

�
,
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=
1

2
log

 
�

2
y

�4
z

⇥
�

2
z �

�
a
2
1Var[X1|Y ]2�2r1

+a
2
2Var[X2|Y ]2�2r2

�⇤�
,

As ✏ > 0 is arbitrary, we obtain (26).
An inner bound for RCDIB(1) can be obtained defining

V1 = X1 + P1 and V2 = X2 + V1 + P2, where P1 and
P2 are Gaussian variables with P1 ? (X1, X2, Y, P2) and
P2 ? (X1, X2, Y, P1) and variances �2

P1
and �2

P2
. Numerically

choosing �2
P1

and �2
P2

to satisfy the relevance condition we can
plot the resulting inner bound and compare with the obtained
outer bound. The results are showed in Fig. 4. We observe that
there is small gap between both regions (the parameters ⇢x1y

and ⇢x2y were chosen to maximize the observed difference).
Although we were unable to prove it, we suspect that in this
special Gaussian case there is no gain from cooperation and
that the observed gap is indeed not achievable. This suspicion
is motivated by the fact that the non-cooperative Gaussian
CEO region for this problem, which can be easily obtained
from the corresponding CEO result with Gaussian inputs and
quadratic distortion in [15], was also numerically shown to
be equal to the above inner bound for the cooperative case.
It is interesting to observe that, if true, the conclusion that
cooperation is not helpful should hold for the cooperative
Gaussian CEO problem with quadratic distortion as well. In
the case the gap were achievable, this would be due to possible
gains in the individuals rates R1 and R2. The sum-rate and
relevance do not increase when cooperation is allowed. This
is rooted in the well-known result that when cooperation is
in force there is no gain in the sum-rate for a two encoder
rate-distortion problem with Gaussian inputs and quadratic
distortions [29]. The same result for our setting with log-loss
distortion can be obtained easily.

VI. BINARY SOURCE MODEL

In this section, we will consider a binary example for the
region obtained related to the TW-CIB problem. The study
of the binary examples with multiple rounds proves to be a
rather challenging problem for which closed forms remain
elusive to obtain. Our approach to the problem will be the
following. We will consider the problem in which decoder
1 is intended to learn a hidden variable Y1 while decoder
2 desires to learn Y2. Exchanges between encoder 1 and
the decoder 2, and between encoder 2 and decoder 1, are
through a two decoupled half-rounds as will we explained
below. First we will consider the problem where both encoders
know X1 and X2. From the perspective of each encoder-
decoder pair this is reminiscent of a noisy rate-distortion
problem with side information at both the encoder and the

decoder where the metric of interest is given by the relevance
1
nI (Y n

1 ; J1X
n
1 ) and 1

nI (Y n
2 ; I1X

n
2 ), respectively. Let us refer

this region to as RED
TW-CIB(1/2). Secondly, we will consider the

more interesting problem in which X2 is not known at encoder
1 and X1 is not known at encoder 2. This is reminiscent of
a noisy rate-distortion problem with side information only at
the decoder. We refer to this region to as RD

TW-CIB(1/2). Notice
that in these two regions there is not interaction between the
encoders. In the first case, interaction is not needed because
each node has full knowledge of the side information of the
other node. In the second case, we neglect any interaction.
Encoder 1 sends its description to decoder 2 who uses its side
information X2 for decoding. Similar, and without consider
the previous description received from node 1, encoder 2 sends
its own description to decoder 1 who recover it with its side
information X1. It is clear that we have the following:

RD
TW-CIB(1/2) ✓ RTW-CIB ✓ RED

TW-CIB(1/2).

As a consequence, the existent gap between RED
TW-CIB(1/2)

and RD
TW-CIB(1/2) can be thought to be an upper bound to

the potential gain to be obtained from multiple interactions.
In more specific terms, each of the above regions can be
characterized by two relevance-rate functions (one for each
encoder-decoder pair). For instance, for the encoder 1-decoder
2 pair, we have:

µ
ED
TW-CIB(R1) = sup

n
µ2 : (R1, µ2) 2 RED

TW-CIB(1/2)
o

,

µ
D
TW-CIB(R1) = sup

n
µ2 : (R1, µ2) 2 RD

TW-CIB(1/2)
o

.

Similar definitions are valid for the relevance-rate func-
tions µ

ED
TW-CIB(R2), µ

D
TW-CIB(R2) corresponding to the encoder

2-decoder 1 pair. It is also clear that as the encoding and
decoding of the encoders and decoders are decoupled, a full
characterization of these functions for the encoder 1-decoder
2 pair also leads to the full characterization of the functions
for the other pair. These functions which are concave (see
Appendix E) are to be computed when (X1, X2, Y1, Y2) satisfy
(X1, X2, Y1, Y2) ⇠ Bern(1/2) and subject to Y1 �⌦� X2 �⌦�
X1�⌦�Y2. This implies that X1 = X2�Z with Z ⇠ Bern(q),
q 2 (0, 1/2), Z?X2, Y2 = X1 �W1 and Y1 = X2 �W2 with
Wi ⇠ Bern(pi), pi 2 (0, 1/2), Wi?(X1, X2) for i = 1, 2.
In the following, we will assume that p1 = p2. In this way
the above relevance-rate functions for both pairs of encoders
and decoders are the same and we can work with only one
encoder-decoder pair satisfying X2 �⌦� X1 �⌦� Y , where the
decoder has access to X2 and wishes to learn Y . With this
in mind, we begin with the characterization of µ

ED
TW-CIB(R). We

have the following result.

R2 � r2 �
1

2
log

 
1� ⇢

2
x1y⇢

2
x2y � ⇢

2
x1y(1� ⇢

2
x2y)2

�2r1 � ⇢
2
x2y(1� ⇢

2
x1y)

(1� ⇢2
x1y)(1� ⇢2

x2y)

!
+ µ, (25)

µ  1

2
log

 
1� ⇢

2
x1y⇢

2
x2y � ⇢

2
x1y(1� ⇢

2
x2y)2

�2r1 � ⇢
2
x2y(1� ⇢

2
x1y)2

�2r2

(1� ⇢2
x1y)(1� ⇢2

x2y)

!
. (26)
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Figure 4: Comparison between the outer bound (dashed) and
the inner bound (solid) for RCDIB(1) when ⇢x1y = 0.8 and
⇢x2y = 0.6. In this case µmax = I(Y ;X1X2).

Theorem 10 (Relevance-rate function for binary sources

with side information to the encoder and the decoder):

Consider random binary sources (X1, X2, Y ) ⇠ Bern(1/2)
with X2 �⌦� X1 �⌦� Y such that X1 = X2 � Z with
Z ⇠ Bern(q), q 2 (0, 1/2), Z?X2 and Y = X1 � W with
W ⇠ Bern(p), p 2 (0, 1/2), W?(X1, X2). The relevance-rate
function µ

ED
TW-CIB(R) can be put as:

µ
ED
TW-CIB(R) = 1� h2

⇣
h
�1
2

⇣
[h2(q)� R]+

⌘
⇤ p

⌘
.

Proof: For the converse, we can without loss of generality
begin from a single letter description. If (R, µ) is achievable,
it is clear that there exists U such that U �⌦� (X1, X2)�⌦� Y

and
R � I(X1;U |X2) , µ  I(Y ;UX2).

is straightforward to obtain:

H(X1|X2U) � [h2(q)� R]+ , µ  1� H(Y |X2U).

As Y = X1 � W with W ⇠ Bern(p) and W?(X1, X2) it
is clear that W?(U, X1). This allows us to use Mrs. Gerber
lemma [30] to obtain:

H(Y |X2U) � h2

�
h
�1
2 (H(X1|X2U)) ⇤ p

�

� h2

⇣
h
�1
2

⇣
[h2(q)� R]+

⌘
⇤ p

⌘
,

which implies

µ
ED
TW-CIB(R)  1� h2

⇣
h
�1
2

⇣
[h2(q)� R]+

⌘
⇤ p

⌘
.

The achievability is straightforward choosing
U = U01 {X2 = 0}+ U11 {X2 = 1}, where Ui, i = 0, 1 are
binary random variables which are schematized in Fig. 5 and
the value of s is given by s = h

�1
2

⇣
[h2(q)� R]+

⌘
.

Now we consider the problem of obtaining µ
D
TW-CIB(R). Unfor-

tunately in this case, as U should depend only on X1 (and
not on X2) we cannot apply Mrs. Gerber Lemma to obtain a

Figure 5: Optimal choice of the random variable U exhausting
µ

ED
TW-CIB(R).

tight upper bound to µ
D
TW-CIB(R). The converse and achievability

in this case are more involved requiring the use of convex
analysis. The following theorem provides the characterization
of µ

D
TW-CIB(R) and its proof is deferred to Appendix E.

Theorem 11 (Relevance-rate function for binary sources

with side information only to the decoder): Consider random
Binary sources (X1, X2, Y ) ⇠ Bern(1/2) with X2�⌦�X1�⌦�Y

such that X1 = X2 � Z with Z ⇠ Bern(q), q 2 (0, 1/2),
Z?X2 and Y = X1 � W with W ⇠ Bern(p), p 2 (0, 1/2),
W?(X1, X2). The relevance-rate function µ

D
TW-CIB(R) can be

put as:

µ
D
TW-CIB(R) =8
>><

>>:

1� h2(p ⇤ q) +
f
�
g
�1(Rc)

�

Rc
R 0  R  Rc,

1� h2(p ⇤ q) + f
�
g
�1(R)

�
Rc < R  h2(q),

1� h2(p) R > h2(q),

where Rc is given by:

f
0
�
g
�1(Rc)

�

g0 (g�1(Rc))
=

f
�
g
�1(Rc)

�

Rc
,

and g(·) and f(·) are defined in (44) and (45).
It is important to emphasize, as it is discussed in Ap-

pendix E, that this region is achieved by time-sharing. This
is similar to the Wyner-Ziv problem for binary sources [28].

Remark 12: The proof in Appendix E can be generalized
to the cases in which X1, X2 and Y are Bernoulli random
variables with other parameters than 1/2. Moreover, a similar
(but even more cumbersome) analysis can be carried over
for arbitrary discrete random sources that satisfy the above
Markov chain.

In order to compare these two extreme cases, where there is
no interaction with an example where there is some coupling
between the two pairs of encoder-decoder, we study the full
interactive case with one round for random binary sources that
satisfy Y1 �⌦� X2 �⌦� X1 �⌦� Y2 with p1 = p2. Assume that
in the first half round, encoder 1 transmits a description to
decoder 2, who wants to learn hidden variable Y2. After that,
encoder 2 sends a description to decoder 1. In this case, and
according to Theorem 1, encoder 2 should transmit with rates
and relevances satisfying:

R1 � I(X1;V1|X2),

R2 � I(X2;V2|X1V1),

µ1  I(Y1;V1V2X1) = I(Y1;V2X1)

µ2  I(Y2;V1X2),
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Figure 6: µ
D
TW-CIB(R1),µD

TW-CIB(R2), µ
ED
TW-CIB(R1), µ

ED
TW-CIB(R2) and

µ
INT
TW-CIB(R2) as functions of R1 and R2 respectively and when

p1 = p2 = 0.1 and q = 0.1.

where V1 �⌦� X1 �⌦� (X2, Y1, Y2) and V2 �⌦� (V1, X2) �⌦�
(X1, Y1, Y2). It is clear that the tradeoff between R1 and µ2

is given by the function µ
D
TW-CIB(R1), with the optimal choice

of V1 given in Appendix E. Regarding the choice of V2, we
should consider the following problem (with V1 fixed with the
mentioned optimal choice):

max
p(v2|x2v1)

I(Y1;V2X1) s.t. R2 � I(X2;V2|X1V1). (27)

This problem is similar to the one considered for µ
D
TW-CIB(R1).

It is however, a little more subtle and difficult to solve. It
can be seen that it corresponds to a source coding problem
where both encoder and decoder have side information (V1

and X1 respectively), but the side information of the encoder
is degraded with respect to that of the decoder. We simply
evaluated the resulting rate region by numerically generating
random probability distributions of V2 with cardinalities no
lower than 7, as indicated in Theorem 1, for each value of
R2. Taking the maximum1 of the generated value of µ1 for
each value of R2 and considering the concave envelope of the
resulting curve (allowing for time-sharing between different
points in the curve), we obtained the function µ

INT
TW-CIB(R2)

which is clearly achievable. In Fig. 6, we plot this function
along with µ

D
TW-CIB(R1), µ

D
TW-CIB(R2) (plotted as only one curve,

as these are equivalent) and µ
ED
TW-CIB(R1), µ

ED
TW-CIB(R2) (again,

plotted together because they are equivalent). It is seen that,
in contrast with the corresponding Gaussian TW-CIB case
analyzed in Section V where interaction does not help and
both encoder-decoder pairs operate in a complete decoupled
manner, interaction clearly helps in this binary setting. Actu-
ally, during the second half round, the first description sent by

1It is clear that with this approach we cannot guarantee the solution to the
optimization problem in (27), but that it is not necessary as we only aim at
generating an achievable region which shows that interaction helps.

encoder 1 is useful for encoder 2 and decoder 1 in the task of
learning Y1.

VII. SUMMARY AND DISCUSSION

We investigated a multi-terminal collaborative source coding
problem with a non-additive logarithmic distortion. This work
intended to characterize tradeoffs between rates of complexity
and relevance to the source-coding problem of cooperatively
extracting information about hidden variables from some ob-
served and physically distributed ones. Two different scenarios
are distinguished: the so-called Two-way Collaborative Infor-
mation Bottleneck (TW-CIB) and the Collaborative Distributed
Information Bottleneck (CDIB). These problems differ from
each other in the fact that the decoder may or may not
be one of the encoders, necessitating fundamentally differ-
ent approaches. Inner and outer bounds to the complexity-
relevance region of these problems are derived and optimality
is characterized for several cases of interest.

Specific applications of our results to binary symmetric and
Gaussian statistical models were also considered and optimal-
ity is characterized for most of the cases. These results show
that cooperation does not improve the rates of relevance in
presence of Gaussian statistical models in most cases. This can
be explained from the well-known result by Wyner-Ziv [28]
which implies that side information at the encoder does not
improve the quadratic distortion in presence of Gaussian
sources. In contrast, we have shown that cooperation clearly
helps in the TW-CIB scenario. In particular, the converse to
the complexity-relevance region of the binary model appears
to be rather involved and required the use of tools of convex
analysis. It will be the purpose of future work to study the
binary source model within the CDIB framework for which
we conjecture that cooperation also helps.

APPENDIX A
STRONGLY TYPICAL SEQUENCES AND RELATED RESULTS

In this appendix we introduce standard notions in infor-
mation theory but suited for the mathematical developments
and proof needed in this work. The results presented can
be easily derived from the standard formulations provided
in [25] and [31]. Be X and Y finite alphabets and (xn

, y
n) 2

Xn⇥Yn. With P(X ⇥Y) we denote the set of all probability
distributions on X ⇥ Y . We define the strongly �-typical sets
as:

Definition 4 (Strongly typical set): Consider p 2 P(X ) and
� > 0. We say that x

n 2 Xn is p�- strongly typical if x
n 2

T n
[p]� with:

T n
[p]� =

⇢
x

n 2 Xn :
���
N(a|xn)

n
� p(a)

��� 
�

|X | ,

8a 2 X such that p(a) 6= 0} ,

where N(a|xn) denotes de number of occurrences of a 2 X
in x

n and p 2 P(X ). When X ⇠ pX we can denote the
corresponding set of strongly typical sequences as T n

[X]� .
Similarly, given pXY 2 P (X ⇥ Y) we can construct the set
of �-jointly typical sequences as:

T n
[XY ]� = {(xn

, y
n) 2 Xn ⇥ Yn :
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���
N(a, b|xn

, y
n)

n
� pXY (a, b)

��� 
�

|X ||Y| ,

8(a, b) 2 X ⇥ Y such that pXY (a, b) 6= 0} .

We also define the conditional typical sequences. In precise
terms, given x

n 2 Xn we consider the set:

T n
[Y |X]�(x

n) =
n

y
n 2 Yn :

���
N(a, b|xn

, y
n)

n
� pXY (a, b)

��� 
�

|X ||Y| ,

8(a, b) 2 X ⇥ Y such that pXY (a, b) 6= 0
o

.

Notice that we the following is an alternative writing of this
set:

T n
[Y |X]�(x

n) =
n

y
n 2 Yn : (xn

, y
n) 2 T n

[XY ]�

o
.

We have several useful and standard lemmas, which will be
presented without proof:

Lemma 1 (Conditional typicality lemma [31]): Consider de
product measure

Qn
t=1 pXY (xt, yt). Using that measure, we

have the following

Pr
n
T n

[X]✏

o
� 1�O

⇣
c
�nf(✏)
1

⌘
, c1 > 1

where f(✏) ! 0 when ✏ ! 0. In addition, for every x
n 2

T n
[X]✏0 with ✏0 <

✏
|Y|

we have:

Pr
n
T n

[Y |X]✏(x
n)|xn

o
� 1�O

⇣
c
�ng(✏,✏0)
2

⌘
, c2 > 1

where g(✏, ✏0) ! 0 when ✏, ✏0 ! 0.
Lemma 2 (Covering Lemma [25]): Be (U, V, X) ⇠ pUV X

and (xn
, u

n) 2 T n
[XU ]✏0 , ✏

0
<

✏
|V|

and ✏ < ✏
00. Consider

also {V n(m)}2nR

m=1 random vectors which are independently

generated according to
1
n

vn
2T

n
[V |U]✏00 (u

n)
o

|T[V |U]✏00 (u
n)| . Then:

Pr
n

V
n(m) /2 T n

[V |UX]✏(x
n
, u

n) for all m

o
����!
n!1

0

uniformly for every (xn
, u

n) 2 T n
[XU ]✏0 if:

R > I (V ;X|U) + �(✏, ✏0, ✏00, n) (28)

where �(✏, ✏0, ✏00, n) ! 0 when ✏, ✏0, ✏00 ! 0 and n ! 1.
Corollary 3: Assume the conditions in Lemma 2, and also:

Pr
n
(Xn

, U
n) 2 T n

[XU ]✏0

o
����!
n!1

1 .

Then:

Pr
n
(Un

, X
n
, V

n(m))) /2 T n
[UXV ]✏ for all m

o
����!
n!1

0

when (28) is satisfied.
Lemma 3 (Packing Lemma [25]): Be (U1U2WV1V2X) ⇠

pU1U2WV1V2X , (xn
, w

n
, v

n
1 , v

n
2 ) 2 T n

[XWV1V2]✏0
and ✏

0
<

✏
|U1||U2|

and ✏ < min {✏1, ✏2}. Consider random vectors
{Un

1 (m1)}A1

m1=1 and {Un
2 (m2)}A2

m2=1 which are independently
generated according to

1
n

u
n
i 2 T n

[Ui|ViW ]✏i
(vn

i , w
n)
o

|T[Ui|ViW ]✏i(w
n, v

n
i )|

, i = 1, 2 ,

and A1,A2 are positive random variables independent of
everything else. Then

Pr
n
(Un

1 (m1), U
n
2 (m2)) 2 T n

[U1U1|XWV1V2]✏
(xn

, w
n
, v

n
1 , v

n
2 )

for some (m1, m2)} ����!
n!1

0

uniformly for every (xn
, w

n
, v

n
1 , v

n
2 ) 2 T n

[XWV1V2]✏0
provided

that:

logE [A1A2]

n
<I (U1;XV2U2|WV1) + I (U2;XV1U1|WV2)

� I (U1;U2|XWV1V2)� � (29)

where � , �(✏, ✏0, ✏1, ✏2, n) ! 0 when ✏, ✏
0
, ✏1, ✏2 ! 0 and

n ! 1.
Corollary 4: Assume the conditions in Lemma 3, and also:

Pr
n
(Xn

, W
n
, V

n
1 , V

n
2 ) 2 T n

[XWV1V2]✏0

o
����!
n!1

1.

Then:

Pr
n
(Un

1 (m1), U
n
2 (m2), X

n
, W

n
, V

n
1 , V

n
2 )) 2 T n

[U1U1XWV1V2]✏

for some (m1, m2)} ����!
n!1

0

when (29) is satisfied.
Lemma 4 (Generalized Markov Lemma [32] ): Consider a

pmf pUXY belonging to P (X ⇥ Y ⇥ U) and that satisfies de
following: Y �⌦� X �⌦� U .

Consider (xn
, y

n) 2 T n
[XY ]✏0 and random vectors U

n

generated according to:

Pr
n

U
n = u

n
��xn

, y
n
, U

n 2 T n
[U |X]✏00(x

n)
o

=
1
n

u
n 2 T n

[U |X]✏00(x
n)
o

|T n
[U |X]✏00(x

n)| . (30)

For sufficiently small ✏, ✏0, ✏00 the following holds uniformly
for every (xn

, y
n) 2 T n

[XY ]✏0 :

Pr
n

U
n

/2 T n
[U |XY ]✏(x

n
, y

n)
��xn

, y
n
, U

n 2 T n
[U |X]✏00(x

n)
o

= O
�
c
�n
�

where c > 1.
Corollary 5: Assume the conditions in Lemma 4, and also:

Pr
n
(Xn

, Y
n) 2 T n

[XY ]✏0

o
����!
n!1

1

and that uniformly for every (xn
, y

n) 2 T n
[XY ]✏0 :

Pr
n

U
n

/2 T n
[U |X]✏00(x

n)
��xn

, y
n
o
����!
n!1

0

we obtain:

Pr
n
(Un

, X
n
, Y

n) 2 T n
[UXY ]✏

o
����!
n!1

1 .

We next present a result which will be very useful to us.
In order to use the Markov lemma we need to show that
the descriptions induced by the encoding procedure in each
encoder satisfies (30). A proof of this result can be found in
[22]
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Lemma 5 (Encoding induced distribution): Consider a
pmf pUXW belonging to P (U ⇥ X ⇥W) and ✏

0 � ✏. Be
{Un(m)}S

m=1 random vectors independently generated ac-
cording to

1
n

u
n 2 T n

[U |W ]✏0(w
n)
o

|T[U |W ]✏0(wn)|
and where (Wn

, X
n) are generated with an arbitrary distribu-

tion. Once these vectors are generated, and given x
n and w

n,
we choose one of them if:

(un(m), wn
, x

n) 2 T n
[UWX]✏, for some m 2 [1 : S] .

If there are various vectors u
n that satisfies this we choose

the one with smallest index. If there are none we choose an
arbitrary one. Let M denote the index chosen. Then we have
that:

Pr
n

U
n(M) = u

n
��xn

, w
n
, U

n(M) 2 T n
[U |XW ]✏(x

n
, w

n)
o

=
1
n

u
n 2 T n

[U |XW ]✏(x
n
, w

n)
o

|T[U |XW ]✏(xn, wn)| .

APPENDIX B
ACHIEVABILITY PROOFS

We will begin with the proof of Theorem 2. The proof of
Theorem 1 can be seen as a simple extension with some minor
differences to be discussed next.

A. Proof of Theorem 2

Let us describe the coding generation, encoding and de-
coding procedures. We will consider the following notation.
With mi,l we will generically denote the indices used for
the descriptions V

n
i,l generated at encoder i at round l. With

Mi,l we will denote the actual index corresponding to the
actual description V

n
i,l generated at encoder i at round l. With

mWi,l we denote the indices used for the sets of descriptions
generated just before encoder i generated its own description
at round l and with MWi,l the actual corresponding indices
generated. Similarly, pi,l will denote the bin indices used at
encoder i at round l and Pi,l will denote the actual bin index
generated at encoder i at round l. With M̂i,l(j) where i 6= j

we denote the estimation at encoder j of the actual index
generated at encoder i at round l, where i 2 {1, 2} and
j 2 {1, 2, 3}. We will fix codeword length n and a distribution
which satisfies the Markov chains (7) and (8). We will describe
the coding procedure to be used.

Coding generation: Consider the round l 2 [1 : K]. For
each mW1,l , we generate 2nR̂1,l independent and identically
distributed n-length codewords V

n
1,l(m1,l, mW1,l) according

to:

Pr
�
V

n
1,l(m1,l, mW1,l) = v

n
1,l

 
=

1
n

v
n
1,l 2 T n

[V1,l|W1,l]✏(1,l)

⇣
w

n
1,l

⌘o

���T n
[V1,l|W1,l]✏(1,l)

⇣
w

n
1,l

⌘���
, ✏(1, l) > 0

where m1,l 2 [1 : 2nR̂1,l ] and let mW1,l denote the indices
of the descriptions W

n
1,l generated at encoders 1 and 2 in

the past rounds t 2 [1 : l � 1] as explained above. For
example, mW1,l = {m1,t, m2,t}l�1

t=1. With w
n
1,l we denote the

set of n-length codewords (which are realizations of W
n
1,l)

from previous rounds corresponding to the indices mW1,l .
Constant ✏(1, l) is chosen to be sufficiently small. It is clear
that there exists 2n(R̂1,l+

Pl�1
k=1 R̂1,k+R̂2,k)

n-length codewords
V

n
1,l(m1,l, mW1,l). These codewords are distributed indepen-

dently and uniformly over 2nR1,l bins which are denoted as
B1,l(p1,l) with p1,l 2 [1 : 2nR1,l ]. Similarly, for encoder
2 and for each mW2,l we generate 2nR̂2,l independent and
identically distributed n-length codewords V

n
1,l(m1,l, mW1,l)

according to:

Pr
�
V

n
2,l(m1,l, mW2,l) = v

n
2,l

 
=

1
n

v
n
2,l 2 T n

[V2,l|W2,l]✏(2,l)

⇣
w

n
2,l

⌘o

���T n
[V2,l|W2,l]✏(2,l)

⇣
w

n
2,l

⌘���
, ✏(2, l) > 0

These 2n(R̂2,l+R̂1,l+
Pl�1

k=1 R̂1,k+R̂2,k)
n-length codewords are

distributed independently and uniformly over 2nR2,l bins
which are denoted as B2,l(p2,l) with p2,l 2 [1 : 2nR2,l ]. It
is clear that we should impose that

R1,l < R̂1,l +
l�1X

k=1

R̂1,k + R̂2,k,

R2,l < R̂2,l + R̂1,l +
l�1X

k=1

R̂1,k + R̂2,k, (31)

for each l 2 [1 : K].
This procedure for the codebooks generation is done se-

quentially beginning at encoder 1 and round 1 and terminated
at encoder 2 and round K. After that, the codebooks are
revealed to all parties.

Encoding: Consider encoder 1 at round l 2 [1 : K].
Upon observing x

n
1 and given all of its encoding

and decoding history up to round l, encoder 1
first looks for a codeword v

n
1,l(m1,l, m̂W1,l(1)) such

that
⇣
x

n
1 , w

n
1,l(m̂W1,l(1)), v

n
1,l(m1,l, m̂W1,l(1))

⌘
2

T n
[V1,lX1W1,l]✏c(1,l), where ✏c(1, l) > 0. Notice that some

components in m̂W1,l(1) are generated at encoder 1 and
are perfectly known. If more than one codeword satisfies
this condition, then we choose the one with the smallest
index. Otherwise, if no such codeword exists, we choose an
arbitrary index and declare an error. With the chosen index
m1,l, and with m̂W1,l(1), we determine the index p1,l of the
bin B1,l

�
p1,l

�
to which v

n
1,l(m1,l, m̂W1,l(1)) belongs. Then,

the index p1,l is transmitted to encoder 2 and 3. Similarly,
encoder 2 looks for a codeword d v

n
2,l(m2,l, m̂W2,l(2))

such that
⇣
x

n
2 , w

n
2,l(m̂W2,l(1)), v

n
2,l(m2,l, m̂W2,l(2))

⌘
2

T n
[V2,lX2W2,l]✏c(2,l), where ✏c(2, l) > 0. If more than one

codeword satisfies this condition, then we choose the one
with the smallest index. Otherwise, if no such codeword
exists, we choose an arbitrary index and declare an error. With
the chosen index m2,l, and with m̂W2,l(2), we determine the
index p2,l of the bin B2,l

�
p2,l

�
to which v

n
2,l(m2,l, m̂W2,l(2))

belongs. Then, the index p2,l is transmitted to encoder 1 and
the decoder.
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Decoding: At round l 2 [1 : K] encoder 1,
after receiving p2,l�1 looks for m2,l�1 such that⇣
x

n
1 , w

n
[2,l�1](m̂W2,l�1(1)), v

n
2,l�1(m2,l�1, m̂W2,l�1(1))

⌘
2

T n
[V2,l�1X1W2,l�1]✏d(1,l) and such that (m2,l, m̂W2,l�1(1)) 2

B(p2,l�1). If there are more than one pair of codewords,
or none that satisfies this, we choose a predefined
one and declare an error. Similarly, at round l and
after receiving p1,l encoder 2 looks for m1,l such
that

⇣
x

n
2 , w

n
1,l(m̂W1,l(1)), v

n
1,l(m1,l, m̂W1,l(2))

⌘
2

T n
[V1,lX2W1,l]✏d(2,l) and such that (m1,l, m̂W1,l(2)) 2 B(p1,l).

If there are more than one pair of codewords, or none that
satisfies this, we choose a predefined one and declare an error.
After all exchanges are done it is the turn of encoder 3 to
recover the descriptions generated at encoder 1 and 2. After
receiving {p1,l, p2,l}K

l=1, the encoder 3 looks for a codeword
W

n
1,K+1(mW1,K+1) such that (m1,l, mW1,l) 2 B(p1,l) and

(m2,l, mW2,l) 2 B(p2,l) for all l 2 [1 : K]. Notice that as
encoder 3 has no side information, it is not needed to employ
joint decoding. It suffices to search over the codebooks and
bins for appropriate indices. The coding guarantee that with
high probability only one set of indices will be compatible
with the above conditions.

We are now ready to analyze the error probability and
relevance averaged over all random codes. We will explain,
without a detailed mathematical treatment, the basic idea of
the achievability for the case of only one round (K = 1).
Following this, the analysis for a generic K would be done in
precise and rigorous mathematical terms.

In the one round scenario, after observing X
n
1 , node

1 choose V
n
1 (M1) with M1 2 [1 : 2nR̂1 ] such that

(Xn
1 , V

n
1 (M1)) are typical. This would the case with high

probability if
R̂1 > I(V1;X1)

The index M1 of V
n
1 belongs to a given bin whose index (P1)

is sent to node 2 and 3. The numbers of bins (2nR1 , R1 < R̂1)
in node 1 is chosen such that the use of side information (Xn

2 )
in node 2 allows for the recovery of the index of V

n
1 (M1).

The joint-typicality decoding at node 2 would be successful
with high probability if

R̂1 � R1 < I(V1;X2)

Of course, it is not guaranteed that node 3 could recover that
index because it does not have side information. In this way,
the information sent by node 2 should provide something to
be used by node 3 to recover not only the index generated
at node 2 but also the index generated at node 1. First, node
2 choose V

n
2 (M2, M̂1(2)) with M2 2 [1 : 2nR̂2 ] such that

(Xn
2 , V

n
1 (M̂1(2)), V n

2 (M2, m̂1)) is typical, where M̂1(2) is
estimation of M1 at node 2 (which with probability close to
one will be equal to the true M1). In order to achieves this
with high probability:

R̂2 > I(V2;X2|V1)

After that, node 2 look for the bin index where both

(M̂1(2), M2) live (P2) and send it to node 3. Notice that
as explained before, at node 2 the bins contain all possible

pairs (m1, m2) (distributed in uniform fashion). This is the key
fact. Node 2 bins both indices: the one recovered from node
1 and the one it generates. In this way an explicit cooperation
is achieved between node 1 and 2 through binning in order
to help the decoder in node 3 to recover both M1 and M2.
Clearly, the number of bins in node 3 should satisfy:

R2 < R̂2 + R̂1.

Finally, node 3 should recover M1 and M2 from the bin
indices P1 and P2. This is simply done by looking for
(m1, m2) such that m1 2 B(P1) and (m1, m2) 2 B(P2)
and , V

n
1 (m1), V n

2 (m2, m1)) are jointly typical. As the bins
formations in node 1 and 2 are done with uniform distributions
over the indices sets, the probability of failure of this procedure
is shown to go to zero exponentially fast if:

R̂1 < R1 + R2,

R̂2 < R2,

R̂1 + R̂2 < R1 + R2.

The mathematical details of the proof of this fact can be
found in appendix B in [22] (setting X3 = V1 = V2 = ?).
Eliminating R̂1 and R̂2 through a Fourier-Motzkin elimination
procedure we obtain:

R1 � I(X1;V1|X2),

R2 � I(X2;V2|V1),

R1 + R2 � I(X1X2;V1V2),

In the following, we will provide the detailed mathematical
proof for case with arbitrary K. In order to maintain expres-
sions simple, in the following when we denote a description
without the corresponding index, i.e. V

n
i,l or W

n
i,l for i 2 {1, 2},

we will assume that the corresponding index is the true
one generated in the corresponding encoders through the
detailed encoding procedure. Consider round l and the event
Dl = Gl \ Fl, where for ✏l > 0,

Gl =
n
(Xn

1 , X
n
2 , Y

n
, W

n
1,l) 2 T n

[X1X2Y W1,l]✏l

o
,

for all l 2 [1 : K + 1] and

Fl =
n

M̂1,t(2) = M1,t, M̂2,t(1) = M2,t, t 2 [1 : l � 1]
o

,

for all l 2 [1 : K]. We also define

FK+1 =
n

M̂1,t(3) = M1,t, M̂2,t(3) = M2,t, t 2 [1 : K]
o

.

Sets Gl tell us that all the descriptions generated up to round l

are jointly typical with the sources X1, X2, Y . This is an event
that clearly depend on the encoding procedure at encoders
1 and 2. Sets Fl indicate that encoders are able to recover
without error the indices generated in the other encoders.
Clearly, this event depends on the decoding procedure em-
ployed. The occurrence of event Dl guarantees that encoders
1 and 2 share a common path of descriptions W

n
1,l which are

typical with (Xn
1 , X

n
2 , Y

n). Similarly, DK+1 = FK+1\GK+1

guarantees that all the generated descriptions are typical with
(Xn

1 , X
n
2 , Y

n) and are perfectly recovered at the decoder. Let
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us also define the event El = { there exists at least an error at
the encoding or decoding in a encoder during round l}

El = Eenc(1, l) [ Edec(2, l) [ Eenc(2, l) [ Edec(1, l), (32)

where Edec(i, l) considers the event that at encoder i during
round l there is a failure at recovering an index generated
previously in the other encoder and Eenc(i, l) contains the
errors at the encoding in encoder i during round l. In precise
terms:

Eenc(1, l) =
n
(Xn

1 , W
n
1,l(M̂W1,l(1)), V

n
1,l(m1,l, M̂W1,l(1))

/2 T n
[V1,lW1,lX1]✏c(1,l) 8m1,l 2 [1 : 2nR̂1,l ]

o

Eenc(2, l) =
n
(Xn

2 , W
n
2,l(M̂W2,l(2)), V

n
2,l(m2,l, M̂W2,l(2))

/2 T n
[V2,lW2,lX2]✏c(2,l) 8m2,l 2 [1 : 2nR̂2,l ]

o

Edec(1, l) =
n

M̂2,l(1) 6= M2,l

o
,

Edec(2, l) =
n

M̂1,l(2) 6= M1,l

o
,

for all l 2 [1 : K]. Defining the fictitious round K +1, where
there are not descriptions generation and exchanges but only
a decoding procedure at encoder 3, we can write:

EK+1 ,Fc
K+1 =

n
M̂1,l(3) 6= M1,l, M̂2,l(3) 6= M2,l,

for some l 2 [1 : K]} .

The main goal is to prove the occurrence of DK+1 (with high
probabilty) which guarantees that the descriptions generated
at each encoder are jointly typical with the sources and are
perfectly recovered at the decoder 3. We can write:

Pr
�
Dc

K+1

 
= Pr

�
Dc

K+1 \DK

 
+ Pr

�
Dc

K+1 \Dc
K

 

 Pr
�
Dc

K+1 \DK

 
+ Pr {Dc

K}
 Pr {Dc

K}+ Pr
�
Dc

K+1 \ (DK \ Ec
K)
 

+ Pr
�
Dc

K+1 \ (DK \ EK)
 

 Pr {Dc
K}+ Pr

�
Dc

K+1 \ (DK \ Ec
K)
 

+ Pr {DK \ EK}

 Pr {Dc
1}+

KX

l=1

Pr {Dl \ El}

+
KX

l=1

Pr
�
Dc

l+1 \ (Dl \ Ec
l )
 

.

Notice that

D1 =
n
(Xn

1 , X
n
2 , Y

n) 2 T n
[X1X2Y ]✏1

o
, ✏1 > 0 .

From Lemma 1, we see that for every ✏1 > 0, Pr {Dc
1} ����!

n!1

0. Then, it is easy to see that Pr {DK+1} ����!
n!1

1 will hold if
the coding generation, the encoding and decoding procedures
described above allow us to have the following:

1) If Pr {Dl} ����!
n!1

1 then Pr {Dl+1} ����!
n!1

1 8l 2 [1 :

K � 1];
2) Pr {Dl \ El} ����!

n!1

0 8l 2 [1 : K];
3) Pr

�
Dc

K+1 \ (DK \ Ec
K)
 
����!
n!1

0.

In the following we will prove these facts. Observe
that, at round l the encoders act sequentially:
Encoding at encoder 1 ! Decoding at decoder 2 !
Encoding at encoder 2 ! Decoding at decoder 1. Then,
using (32) we can write condition 2) as:

Pr {Dl \ El} = Pr {Dl \ Eenc(1, l)}
+ Pr {Dl \ Edec(2, l) \ Ec

enc(1, l)}
+ Pr {Dl \ Eenc(2, l) \ Ec

enc(1, l) \ Ec
dec(2, l)}+

+ Pr {Dl \ Edec(1, l) \ Ec
enc(1, l) \ Ec

dec(2, l) \ Ec
enc(2, l)} .

Assume then that at the beginning of round l we have
Pr {Dl} ����!

n!1

1. This implies that Pr {Gl}, Pr {Fl} ����!
n!1

1.
Clearly, we have:

Pr
n
(Xn

1 , W
n
1,l) 2 T n

[X1W1,l]✏l

o
����!
n!1

1.

We can clearly write:

Pr {Dl \ Eenc(1, l)}  Pr
�
(Xn

1 , W
n
1,l, V

n
1,l(m1,l, MW1,l)) /2

T n
[X1W1,lV1,l]✏c(1,l) 8m1,l 2 [1 : 2nR̂1,l ]

o
.

We can use lemma 2 to show that:

Pr
n
(Xn

1 , W
n
1,l, V

n
1,l(m1,l, MW1,l)) /2 T n

[X1W1,lV1,l]✏c(1,l)

8m1,l 2 [1 : 2nR̂1,l ]
o
����!
n!1

0,

if
R̂1,l > I(V1,l;X1|W1,l) + �c,1, (33)

where �c,1 can be made arbitrarly small. In this situation we
clearly guarantee that:

Pr
n
(Xn

1 , W
n
2,l) 2 T n

[X1W2,l]✏c(1,l)

o
����!
n!1

1.

The conditions in Lemma 5 are also satisfied implying:

Pr
�
V

n
1,l(m1,l) = v

n
1,l

��xn
1 , x

n
2 , y

n
, w

n
1,l, V

n
1,l(m1,l) 2

T n
[V1,l|X1W1,l]✏c(1,l)(x

n
1 , w

n
1,l)
o

=
1
n

v
n
1,l 2 T n

[V1,l|X1W1,l]✏c(1,l)(x
n
1 , w

n
1,l)
o

|T n
[V1,l|X1W1,l]✏c(1,l)(x

n
1 , w

n
1,l)|

.

Given that we imposed the Markov chain V1,l�⌦�(X1, W1,l)�⌦�
(X2, Y ) we can use lemma 4 and its corresponding corollary
to obtain:

Pr
n
(Xn

1 , X
n
2 , Y

n
, W

n
2,l) 2 T n

[X1X2Y W2,l]✏0l

o
����!
n!1

1,

with ✏
0

l sufficiently small. At this point we have that all de-
scriptions generated up to round l, including the one generated
at encoder 1 at round l are jointly typical with the sources
X

n
1 , X

n
2 , Y

n with probability arbitrarily close to 1. Next, we
should analyze the decoding at encoder 2. We can write:

Pr {Dl \ Edec(2, l) \ Ec
enc(1, l)}  Pr

n
Dl \ Edec(2, l)

\ Ec
enc(1, l) \

n
(Xn

1 , X
n
2 , Y

n
, W

n
2,l) 2 T n

[X1X2Y W2,l]✏0l

oo

+ Pr
n
(Xn

1 , X
n
2 , Y

n
, W

n
2,l) /2 T n

[X1X2Y W2,l]✏0l

o

 Pr
n
(Xn

2 , W
n
2,l) 2 T n

[X2W2,l]✏0l
\ Fl \ Edec(2, l)

o
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+ Pr
n
(Xn

1 , X
n
2 , Y

n
, W

n
2,l) /2 T n

[X1X2Y W2,l]✏0l

o
. (34)

Clearly, the second term in the RHS of (34) goes to zero when
n ! 1. The first term is bounded by:

Pr
n
(Xn

2 , W
n
2,l) 2 T n

[X2W2,l]✏0l
\ Fl \ Edec(2, l)

o
 Pr {K2,l} ,

where

K2,l =
�
9m̃1,l 6= M1,l : (m̃1,l, MW1,l 2 B(P1,l),

(Xn
2 , W

n
1,l, V

n
1,l(m̃1,l, MW1,l)) 2 T n

[X2W1,lV1,l]✏d(2,l)

o
.

From lemma 3 we can easily obtain that:

Pr {K2,l} ����!
n!1

0,

if
1

n
logE

⇥
|m̃1,l : (m̃1,l, MW1,l) 2 B(P1,l)|

⇤

 I(X2;V1,l|W1,l)� �
0
,

where �0 can be made arbitrarly small. It is very easy to show
that:

E
⇥
|m̃1,l : (m̃1,l, MW1,l) 2 B(P1,l)|

⇤
= 2n(R̂1,l�R1,l),

which implies that:

R̂1,l � R1,l < I(X2;V1,l|W1,l)� �
0
. (35)

At this point, we should analyze the encoding at encoder 2.
This is done along the same lines of thought used for the
encoding at encoder 1. The same can be said of the decoding at
encoder 1. In summary we obtain the following rate equations:

R̂2,l > I(V2,l;X2|W2,l) + �c,2, (36)
R̂2,l � R2,l < I(X1;V2,l|W2,l)� �

00
. (37)

It is straightforward to see that Pr {Dl \ El} ����!
n!1

0 8l 2
[1 : K] . The analysis for the joint typicality of all descriptions
generated up to round l, including the one generated at encoder
1 at round l are jointly typical with the sources X

n
1 , X

n
2 , Y

n

with probability arbitrarly close to 1, can be repeated at
encoder 2 obtaining:

Pr
n
(Xn

1 , X
n
2 , Y

n
, W

n
1,l+1) 2 T n

[X1X2Y W[1:l+1]]✏
0

l+1

o
����!
n!1

1,

which is a restatement of Pr {Gl+1} ����!
n!1

1. In conjunction
with the fact the above rate conditions guarantee that there
are not errors at the enconding and decoding at encoder 1 and
2 during round l we have that Pr {Dl+1} ����!

n!1

1. In this
manner we can conclude that Pr {Dl} ����!

n!1

1 implies that
Pr {Dl+1} ����!

n!1

1 for l 2 [1 : K � 1]. In order to complete
the error probability analysis we need to prove that

Pr
�
Dc

K+1 \ (DK \ Ec
K)
 
����!
n!1

0.

In order to do this we need to analyze the decoding at encoder
3. It is easy to show that:

Pr
�
Dc

K+1 \ (DK \ Ec
K)
 

 Pr
�
GK+1 \ Fc

K+1

 
+ Pr

�
Gc

K+1

 
, (38)

where

GK+1 =
n
(Xn

1 , X
n
2 , Y

n
, W

n
1,K+1) 2 T n

[X1X2Y W1,K+1]✏K+1

o
.

From the previous analysis it is easy to see that
Pr
�
Gc

K+1

 
����!
n!1

0. The first term in the RHS of (38) can
be bounded as:

Pr
�
GK+1 \ Fc

K+1

 

 Pr
nn

W
n
1,K+1 2 T n

W1,K+1✏K+1

o
\ Fc

K+1

o

 Pr {K3} ,

where

K3 =
n
9 {m̃1,l, m̃2,l}K

l=1 6= {M1,l, M2,l}K
l=1 :

(m̃1,l, m̃W1,l) 2 B(P1,l), (m̃2,l, m̃W2,l) 2 B(P2,l),
�
V

n
1,l(m̃1,l, m̃W1,l), V

n
2,l(m̃2,l, m̃W2,l)

 K

l=1
2

T n
[{V1,l,V2,l}

K
l=1]✏F

o
.

We can write:

Pr {K3} = E
h
Pr
n
K3

�� {M1,l, M2,l}K
l=1 = {m1,l, m2,l}K

l=1 ,

{P1,l, P2,l}K
l=1 = {p1,l, p2,l}K

l=1

oi

= E

2

64Pr

8
><

>:

[

{m̃1,l,m̃2,l}
K
l=12A({m1,l,m2,l}

K
l=1)

�
V

n
1,l(m̃1,l, m̃W1,l), V

n
2,l(m̃2,l, m̃W2,l)

 K

l=1

2 T n
[{V1,l,V2,l}

K
l=1]✏F

����� {M1,l, M2,l}K
l=1 = {m1,l, m2,l}K

l=1

)#

 E

2

64
X

{m̃1,l,m̃2,l}
K
l=12A({m1,l,m2,l}

K
l=1)

Pr
n�

V
n
1,l(m̃1,l, m̃W1,l), V

n
2,l(m̃2,l, m̃W2,l)

 K

l=1

2 T n
[{V1,l,V2,l}

K
l=1]✏F

����� {M1,l, M2,l}K
l=1 = {m1,l, m2,l}K

l=1

)#

 E
h���A

⇣
{M1,l, M2,l}K

l=1

⌘���
i
,

where we used the fact that {P1,l, P2,l}K
l=1 are functions of

{m1,l, m2,l}K
l=1, and that:

Pr
n�

V
n
1,l(m̃1,l, m̃W1,l), V

n
2,l(m̃2,l, m̃W2,l)

 K

l=1
2

T n
[{V1,l,V2,l}

K
l=1]✏F

o
 1

and where we defined

A
⇣
{m1,l, m2,l}K

l=1

⌘

=

8
<

:

{m̃1,l, m̃2,l}K
l=1 6= {m1,l, m2,l}K

l=1 ,

(m̃1,l, m̃W1,l) 2 B(p1,l),
(m̃2,l, m̃W2,l) 2 B(p2,l)

9
=

; ,

considering that {p1,l, p2,l}K
l=1 are the functions of

{m1,l, m2,l}K
l=1 generated by the described encoding
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procedure. In order to compute E
h���A

⇣
{m1,l, m2,l}K

l=1

⌘���
i

we will consider a relabelling of the indices of the exchanged
descriptions. We define for every s 2 [1 : 2K]:

ms =

⇢
I s+1

2
s odd

J s
2

s even
, ps =

⇢
p1, s+1

2
s odd

p2, s2
s even.

(39)

Clearly, we can write:

A
⇣
{m1,l, m2,l}K

l=1

⌘
=
n
{m̃s}2K

s=1 6= {ms}2K
s=1 : {m̃s}2K

s=1

2 B(ps), s 2 [1 : 2K]
o

.

Consider M = [1 : 2K] and its power set 2M. It is
straightforward to obtain:

E
h���A

⇣
{m1,l, m2,l}K

l=1

⌘���
i
=
X

H22M

E [|{{m̃s}s2M :

m̃s 6= Ms 8s 2 H, {m̃l}s
l=1 2 B(Ps), s 2 M}|] .

Let us analyze each term in the above suma-
tion. Consider H 2 2M and smin(H) =
min {s : s 2 H}. We are interested in computing:
E [|{{m̃s}s2M : m̃s 6= Ms 8s 2 H, {m̃l}s

l=1 2 B(Ps),
s 2 M}|] . It is clear that the number of indices such that

m̃s 6= Ms 8s 2 H is given by:
Y

s2H

(2nR̂s � 1)  2n
P

s2H
R̂s .

As all indices of the generated codewords are independently
and uniformly distributed in each of the bins used in the
encoders 1 and 2, the probability that each of the above
indices {m̃s}s2M belongs to the bins {B(ps)}s2M

is given
by 2�n

P2K
s=smin(H) Rs for any sequence {ps}s2M

. Then we
can write:

E
h���A

⇣
{m1,l, m2,l}K

l=1

⌘���
i


X

H22M

2
n
⇣P

s2H
R̂s�

P2K
s=smin(H) Rs

⌘

.

Clearly, E
h���A

⇣
{m1,l, m2,l}K

l=1

⌘���
i
����!
n!1

0 if for each H 2
2M:

X

s2H

R̂s �
2KX

s=smin(H)

Rs < 0. (40)

Consider this equation for every H 2 2M. Clearly smin(H) 2
[1 : 2K] when H ranges over 2M. Consider the sets H 2 2M

such that smin(H) = r. It is clear that over these sets, the one
which put the more stringent condition in (40) is [r : 2K]. In
this way, the 22K equations in (40) can be replaced by only
2K equations given by:

2KX

s=r

(R̂s � Rs) < 0, r 2 [1 : 2K].

Using the relabelling in (39) it is easy to see that these
equations can be put in the following manner in terms of Ri,l

and R̂i,l with l 2 [1 : K] and i 2 {1, 2}:

R̂1,l + R̂2,l +
KX

k=l+1

(R̂1,k + R̂2,k)

< R1,l + R2,l +
KX

k=l+1

(R1,k + R2,k)

R̂2,l +
KX

k=l+1

(R̂1,k + R̂2,k) < R2,l +
KX

k=l+1

(R1,k + R2,k).

At this point we can use equations (31), (33), (35), (36), (37)
jointly with the fact that the total rates at encoders 1 and 2
can be written as:

R1 =
KX

l=1

R1,l , R2 =
KX

l=1

R2,l,

in a Fourier-Motzkin elimination procedure to obtain:

R1 > I(X1;W1,K+1|X2),

R2 > I(X2;V2,K |W2,K) + I(X2;W2,K |X1),

R1 + R2 > I(X1X2;W1,K+1).

Now we are set to prove analyze the average level or
relevance. Let us denote with C the random realization of one
codebook and be C = c one of its realizations. The average
level of relevance over all random codebooks can be written
as:

EC


1

n
I
�
Y

n;MW1,K+1

��C = c
��

=
1

n
I
�
Y

n;MW1,K+1

��C
�

=
1

n
I
�
Y

n;MW1,K+1C
�

� 1

n
I
�
Y

n;MW1,K+1

�
,

using the independence of the random generated codes with
Y

n. The following decomposition can be obtained introducing
the indices recovered at encoder 3, which will denote as
M̂W1,K+1 :

1

n
I
�
Y

n;MW1,K+1

�

=
1

n
H (Y n)� 1

n
H

⇣
Y

n|MW1,K+1M̂W1,K+1

⌘

� 1

n
I

⇣
Y

n; M̂W1,K+1 |MW1,K+1

⌘

� H(Y )� 1

n
H

⇣
Y

n|MW1,K+1M̂W1,K+1

⌘

� 1

n
H

⇣
M̂W1,K+1 |MW1,K+1

⌘
.

Last term in the above expression can be negligible when
n ! 1 by a simple application of Fano inequality. To bound
the other conditional entropy term we consider the following
random variable:

Ŷ
n =

8
<

:

Y
n if MW1,K+1 = M̂W1,K+1

^
�
Y

n
, W

n
1,K+1

�
2 T n

[Y W1,K+1]✏K+1

; else

where, W
n
1,K+1 , W

n
1,K+1

⇣
M̂W1,K+1

⌘
. This auxiliary vari-

able allows us to bound the conditional entropy as follows:

H

⇣
Y

n|MW1,K+1M̂W1,K+1

⌘
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= H

⇣
Y

n
, Ŷ

n|MW1,K+1M̂W1,K+1

⌘
,

 H

⇣
Ŷ

n|MW1,K+1M̂W1,K+1

⌘
+ H

⇣
Y

n|Ŷ n
⌘

,

(a)
 log

n���T n
[Y |W1,K+1]

���+ 1
o
+ � + H

⇣
Y

n|Ŷ n
⌘

,

(b)
 n (H (Y |W1,K+1) + ✏) + � + H

⇣
Y

n|Ŷ n
⌘

,

(c)
 n [H (Y |W1,K+1) + ✏] + � + 1

+ nPr
⇣
Y

n 6= Ŷ
n
⌘
log |Y|,

where (a) follows from the fact that the uniform distribution
maximize entropy, (b) stems from standard properties of a con-
ditional typical set and (c) is consequence of Fano inequality.
We define the error probability P

n
e = Pr

n
Y

n 6= Ŷ
n
o

. Then,
the relevance condition can be bounded as

1

n
I
�
Y

n;MW1,K+1

�

� H(Y )� H (Y |W1,K+1)� P
n
e log |Y|� n

� I(Y ;W1,K+1)� P
n
e log |Y|� n,

where n goes to zero with n large enough. In this way,

EC


1

n
I
�
Y

n;MW1,K+1

��C = c
��

� I(Y ;W1,K+1)� ✏n,

with ✏n ! 0 when n ! 1. This show that every relevance
level µ  I(Y ;W1,K+1) is achievable in an average sense
over all random codebook. For that reason, there must exists
at least one good codebook.

B. Achievability in Theorem 1

The coding scheme is basically the same as the previous
one. In this case encoder 1 and 2 operate sequentially in the
same manner as above until the last round. As there is no
encoder 3, only the first part of error probability analysis given
is relevant for this case. The calculation of the relevance levels
at encoder 1 and 2 follows also the same lines and for that
reason is also omitted. We should mention that, at a given
round, the bins generated, for example, at encoder 1 needs
to contain only the index of latest generated description. It
is not needed to generate larger bins in order to contain also
all previous generated descriptions at encoder 1 and 2. In this
way, instead of (31), only the following are to be satisfied in
the bins generation:

R1,l < R̂1,l , R2,l < R̂2,l, l 2 [1 : K],

which simplifies the analysis and the needed Fourier-Motzkin
elimination procedure. The reason for this difference is given
by the absence of the decoder in node 3.

APPENDIX C
CORNER POINTS FOR ROUTER

CDIB (1)

Let any fix distribution of U1 and U2 according to the
corresponding Markov chains. This distribution induces 4
different corner points in Router

CDIB(1), namely:

Q1 = [I(X1;U1|X2), I(U1U2;X2), I(Y ;U1U2)] ,

Q2 = [I(X1;U1), I(U2;X2|U1), I(Y ;U1U2)] ,

Q3 = [I(U1;X1), 0, I(Y ;U1)� I(U2;X2|U1Y )] ,

Q4 = [I(U1;X1|X2), 0, I(X1;U1|X2)� I(U1U2;X1X2|Y )]

The involved directions are given by the vectors (0, 1) and
(1, 0) and do not enter in the analysis. The inclusion of
Q1 and Q2 in Rinner

CDIB(1) is easily proved by simply choosing
V1 = U1 and V2 = U2. For Q3 simply choose V1 = U1

and V2 = v2 with v2 2 V2. The analysis of Q4 is slightly
more sophisticated. We need to use time sharing. We define
a random variable Z ⇠ Bern (�), with � 2 (0, 1), and
independent of everything else. We select

V1 = U11 {Z = 1}+ v11 {Z = 0} , v1 2 V1,

V2 = v2, v2 2 V2.

Thanks to an appropriate choice of the time-sharing parameter
�, we will show that the point Q4 is in Rinner

CDIB(1). That choice
is given by

� , I(X1;U1|X2)

I(X1;U1)
= 1� I(X2;U1)

I(X1;U1)
.

It is easy to see that the following conditions are met:

R1 � �I(U1;X1|X2),

R2 � 0,

R1 + R2 � �I(U1;X1),

µ  �I(Y ;U1).

With this specific choice it is easy to show that we meet the
rate conditions in Rinner

CDIB(1) . It remains to analyze the relevance
condition µQ4  �I(Y ;U1). To this end, let us consider: A ,
�I(Y ;U1)�I(X1;U1|X2)+I(U1U2;X1X2|Y ). We can easily
check that:

A =�I(Y ;U1)� �I(X1;U1) + I(U1U2;X1X2|Y )

=� �I(X1;U1|Y ) + I(U1U2;X1X2|Y )

=(1� �)I(X1;U1|Y ) + I(X1X2;U2|U1Y ).

We have clearly that A � 0 which implies the relevance
condition. Then, Q4 2 Rinner

CDIB(1). For every choice of the
distributions of U1 and U2 (with the appropriate Markov
chains), the extreme points of the outer bound are contained in
Rinner

CDIB(1), which implies that Router
CDIB(1) ✓ Rinner

CDIB(1) from which
the desired conclusion is obtained.

APPENDIX D
RINNER

CDIB(1) = R̃CDIB(1) WHEN X1 �⌦� X2 �⌦� Y .

As Rinner
CDIB(1) ◆ R̃CDIB(1) is trivial, we consider only

Rinner
CDIB(1) ✓ R̃CDIB(1). Consider (R1, R2, µ) 2 Rinner

CDIB(1). Then
9 V1, V2 auxiliary random variables such that

R1 � I(X1;V1|X2),

R2 � I(X2;V2|V1),

R1 + R2 � I(X1X2;V1V2),

µ  I(Y ;V1V2),
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and such that (15) is satisfied. For the given V1, V2, the above
region presents two extreme points:

Q1 = [I(X1;V1), I(X2;V2|X1), I(Y ;V1V2)] ,

Q2 = [I(X1;V1|X2), I(X2;V1V2), I(Y ;V1V2)] .

If we choose Ṽ1 = V1 and Ṽ2 = V2 we see that Q1 2
R̃CDIB(1). Let us analyze Q2. Consider the random variables
Ṽ1 = (V 0

1 , Z) and Ṽ2 = (V 0

2 , Z) where

V
0

1 = V11 {Z = 1}+ v11 {Z = 0} , v1 2 V1

V
0

2 = V21 {Z = 1}+ W1 {Z = 0} ,

where Z ⇠ Bern (�) is independent of everything else with
� 2 (0, 1) and W is random variable that satisfies W �⌦�X2�
⌦�X1Y . From these definitions we see that the following are
satisfied:

Ṽ1 �⌦� X1 �⌦� (X2, Y ) , Ṽ2 �⌦� Ṽ1X2 �⌦� (X1, Y ). (41)

Consider � = I(X1;V1|X2)
I(X1;V1)

= 1 � I(X2;V 1)
I(X1;V1)

. The following
relations are easy to obtain:

I(X1; Ṽ1) = I(X1;V1|X2),

I(X2; Ṽ2|Ṽ1) = �I(X1;V1|V2) + (1� �)I(X2;W ),

I(Y ; Ṽ1Ṽ2) = �I(Y ;V1V2) + (1� �)I(Y ;W ).

From these equations, and in order to show that Q2 2 R̃CDIB(1),
we can obtain the following conditions on random variable W :

I(X2;W )  I(X2;V1V2) + I(X1;V1|X2), (42)
I(Y ;V1V2)  I(Y ;W ). (43)

Consider the distribution pV1V2|X2
given by:

pV1V2|X2
(v1, v2|x2) =

X

x1

p(x1|x2)p(v1|x1)p(v2|v1x2).

We choose random variable W such that pW |X2
⇠ pV1V2|X2

.
With this choice we obtain I(X2;W ) = I(V1V2;X2) which
clearly satisfies condition (42). Up to this point we have not
used the condition X1 �⌦�X2 �⌦� Y . Using this condition we
can obtain pWY ⇠ pV1V2Y , which implies that I(Y ;W ) =
I(Y ;V1V2), satisfying condition in (43). So, we were able to
find (Ṽ1, Ṽ2) that satisfies (41) and

I(X1; Ṽ1) = I(X1;V1|X2),

I(X2; Ṽ2|Ṽ1)  I(X2;V1V2),

I(Y ; Ṽ1Ṽ2) = I(Y ;W ).

This shows definitely show that Q2 2 R̃CDIB(1). As for any pair
(V1, V2) we have that (Q1, Q2) 2 R̃CDIB(1), then Rinner

CDIB(1) ✓
R̃CDIB(1) and Rinner

CDIB(1) = R̃CDIB(1).

APPENDIX E
PROOF OF THEOREM 11

As the proof relies heavily on convex analysis notions, we
begin recalling basic facts of convex analysis that will be used
during the proof. These results are presented without proofs
which can be consulted in several well-known references on
convex analysis as [26]. The works by Witsenhausen and
Wyner [6], [33] provide a good summary of convex analysis

for information-theoretic problems. Consider a compact and
connected set A 2 Rn. We define C , co (A) to be the
convex hull of A. Let m  n be the dimension of C (that
is, the dimension of its affine hull). We say that x 2 C is an
extreme point of C if there not exist � 2 (0, 1) and x1, x2 2 C
such that x = �x1 + (1 � �)x2. We say that f : Rn ! R
is convex if its effective domain (the set where f(x) < 1) is
convex and:

f(�x1 + (1� �)x2)  �f(x1) + (1� �)f(x2),

with � 2 [0, 1] and x1, x2 2 Rn. When the inequality is strict
for every � 2 (0, 1), x1, x2 2 Rn we say that f(x) is strictly

convex. When �f(x) is convex (strictly convex), we say that
f(x) is concave (strictly concave). Some useful results are
presented without proof:

(i) C is compact;
(ii) Every extreme point of C belongs to A and it is on the

boundary of C;
(iii) Fenchel-Eggleston’s theorem [34]: If A has m or less

connected components, every point of C is the convex
combination of no more that m points A;

(iv) Dubin’s theorem [35]: Every point of the intersection of
C with k hyperplanes is the convex combination of no
more that k + 1 extreme points of C;

(v) Krein-Milman’s theorem [36]: C is the convex hull of its
extreme points;

(vi) Supporting hyperplanes [26]: On every point of the
boundary (relative boundary if m < n) of C there exists
a supporting hyperplane of dimension m � 1 such that
C is contained in one of the half-spaces determined by
that hyperplane. Indeed, C is the intersection of all half-
spaces that contain C;

(vii) Consider the functions f : Rn�1 ! R and g : Rn�1 !
R defined as

f(y) , inf {x : (x, y) 2 C},
g(y) , sup {x : (x, y) 2 C}.

Then f(y) is convex and g(y) is concave. Moreover, the
points in the graphs of f(y) and g(y) are extreme points2

of C;
(viii) Be {f↵(y)} and {g�(y)} families of convex and concave

functions respectively. Then sup↵ f↵(y) and inf� g�(y)
are convex and concave functions;

(ix) Let f : Rn�1 ! R be an arbitrary lower semi-continuous
function that nowhere has the value �1. We define the
convex envelope cvx(f)(y) of f(y) as the point-wise
supremum of all affine functions that are smaller than
f(y). Similarly, if f : Rn�1 ! R is an arbitrary upper
semi-continuous function that nowhere has the value +1

2For the points y 2 Rn�1 where f(y) and g(y) are strictly convex and
concave respectively it is immediate to show that (y, f(y)) and (y, g(y)) are
extreme points of C. If they are simply convex and concave, it means that
they could be affine functions over some closed set of their effective domains.
In such a case, that part of the graph of f(y) and g(y) constitutes a non-zero
dimensional face [26] of the set C which can thought as the set of points of
C where a certain linear functional achieves its maximum over C. But any
linear functional achieves its maximum over a compact and convex set C at
an extreme point of C.
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we define the concave envelope conc(f)(y) of f(y) as
the point-wise infimum of all affine functions that are
greater than f(y).

Let us consider the set P (U) where U is an arbitrary finite
alphabet (cardinality equal to 3 suffices). From Theorem 1, it
is clear that we can write:

RD
TW-CIB(1/2) = {(R, µ) : R � I(X1;U |X2), µ  I(Y ;UX2),

U ⇠ p(u) 2 P(U), U �⌦� X1 �⌦� X2Y } .

The desired function µ
D
TW-CIB(R) can be obtained from

µ
D
TW-CIB(R) = sup

�
µ : (R, µ) 2 RD

TW-CIB(1/2)
 
.

We define the following functions:

g(r) , h2(r ⇤ q)� h2(r)

= h2(q)� (1� q ⇤ r)h2

✓
qr

1� q ⇤ r

◆

�(q ⇤ r)h2

✓
(1� q)r

q ⇤ r

◆
(44)

f(r) , h2(p ⇤ q)� (1� q ⇤ r)h2

✓
p ⇤ qr

1� q ⇤ r

◆

�(q ⇤ r)h2

✓
p ⇤ (1� q)r

q ⇤ r

◆

= h2(r ⇤ q)� (1� p ⇤ q)h2

✓
r ⇤ pq

1� p ⇤ q

◆

�(p ⇤ q)h2

✓
r ⇤ p(1� q)

p ⇤ q

◆
(45)

where p, q 2 (0, 1/2) and r 2 [0, 1]. It can be easily shown
that these functions are strictly convex, continuous and twice
continuously differentiable as functions of r. In addition, they
are symmetric with respect to r = 1

2 and 0  f(r)  g(r) for
all r 2 [0, 1]. In fact, it is not difficult to check that:

g(r) = I(X1;U |X2), f(r) = I(Y ;U |X2),

when (X1, X2, Y ) ⇠ Bern(1/2), U �⌦� X1 �⌦� X2Y and
X1 = U � V with V ⇠ Bern(r), U ⇠ Bern(1/2) and U?V .
The following lemma can be easily proved:

Lemma 6 (Alternative characterization of RD

TW-CIB
(1/2) for

Binary sources): Consider Binary sources (X1, X2, Y ) ⇠
Bern(1/2) with X2 �⌦� X1 �⌦� Y such that X1 = X2 � Z

with Z ⇠ Bern(q), q 2 (0, 1/2), Z?X2 and Y = X1 � W

with W ⇠ Bern(p), p 2 (0, 1/2), W?(X1, X2) . Region
RD

TW-CIB(1/2) is equivalent to:

RD
TW-CIB(1/2) =

(
(R, µ) : R �

X

u2U

p(u)g(r(u)),

µ  1� h(p ⇤ q) +
X

u2U

p(u)f(r(u)),

1

2
=
X

u2U

p(u)r(u), r(u) 2 [0, 1] 8u 2 U
)

Proof: Consider (R, µ) 2 RD
TW-CIB(1/2). Then, it should

exist U �⌦� X1 �⌦� (X2, Y ) with p(u) 2 P (U) such that

R � I(X1;U |X2) and µ  I(Y ;UX2). In a first place, we
consider I(X1;U |X2):

I(X1;U |X2) = H(X1|X2)� H(X1|UX2)

= h(q)� H(X1|UX2)

= h2(q)�
X

(x2,u)2X2⇥U

p(x2, u)H(X1|U = u, X2 = x2)

Using the fact that U �⌦�X1 �⌦� (X2, Y ), it is not difficult to
check that:

p(X1 = 1|U = u, X2 = 0) =
qr(u)

1� q ⇤ r(u)
,

p(X1 = 1|U = u, X2 = 1) =
(1� q)r(u)

q ⇤ r(u)
,

p(X2 = 0, U = u) = (1� q ⇤ r(u))p(u),

p(X2 = 1, U = u) = (q ⇤ r(u))p(u),

where r(u) , p(X1 = 1|U = u). Using these equations, and
from the fact that X1 conditioned on X2 and U is a binary
random variable we have that:

H(X1|U = u, X2 = x2) = h2

⇣
p(X1 = 1|U = u, X2 = x2)

⌘
,

from which I(X1;U |X2) =
P

u2U
p(u)g(r(u)) is easily

obtained. For I(Y ;UX2) we have:

I(Y ;UX2) = I(Y ;X2) + I(Y ;U |X2)

= 1� h2(p ⇤ q) + I(Y ;U |X2).

The analysis of I(Y ;U |X2) is similar to that of I(X1;U |X2),
obtaining:

I(Y ;U |X2) =
X

u2U

p(u)f(r(u)).

The requirement that
P

u2U
p(u)r(u) = 1

2 follows from the
fact that p(X1 = 1) = 1

2 .
Consider the continuous mapping L : [0, 1] ! [0, 1] ⇥
[0, h2(q)]⇥ [0, 1�h2(p)] given by L(r) = (r, g(r), 1�h2(p⇤
q) + f(r)). Consider the image of this mapping to be A.
As [0, 1] is a compact and connected subset of R and L(r)
is continuous, A is compact and connected. Let us consider
C = co(A). This set, thanks to Fenchel-Eggleston theorem,
we have:

C =

(
(r, ⇠, ⌘) : {�i, ri}3

i=1 2 [0, 1],
3X

i=1

�i = 1,

r =
3X

i=1

�iri, ⇠ =
3X

i=1

�ig(ri),

⌘ = 1� h2(p ⇤ q) +
3X

i=1

�if(ri)

)
.

We also define the convex set

C1/2 = C \
⇢
(r, ⇠, ⌘) : r =

1

2

� ���
(⇠,⌘)

,

that is the projection of C \
�
(r, ⇠, ⌘) : r = 1

2

 
onto the plane

(⇠, ⌘). Define the concave function µ̃(R) as:

µ̃(R) = sup

⇢
⌘ :

✓
1

2
, R, ⌘

◆
2 C
�

= sup
�
⌘ : (R, ⌘) 2 C1/2

 
.
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As C is compact, C1/2 is also compact. Moreover, it is easy
to see that it is not empty for R 2 [0, h(q)]. This means that:

µ̃(R) = max
�
⌘ : (R, ⌘) 2 C1/2

 
.

As the graph of µ̃(R) is the upper boundary of the convex
set C1/2, by (vii), each point (R, µ̃(R)) is a extreme point
of C1/2 or a convex combination of extreme points of C1/2.
From Dubin’s theorem, as C1/2 is the intersection of C with
one hyperplane, every extreme point of C1/2 is a convex
combination of no more that 2 extreme points of C which
also belong to A. This means that there exist �⇤ 2 [0, 1] and
r
⇤

1 , r
⇤

2 2 [0, 1] such that:

µ̃(R) = 1� h2(p ⇤ q) + �
⇤
f(r⇤1) + (1� �)f(r⇤2)

with R = �
⇤
g(r⇤1) + (1 � �

⇤)g(r⇤2). Notice that is not
necessarily true that 1

2 = �
⇤
r
⇤

1 + (1� �
⇤)r⇤2 . However, using

the symmetry of functions f(r) and g(r) it is not difficult to
show that:

µ̃(R) = max
n
1� h2(p ⇤ q) + �f(r1) + (1� �)f(r2) :

�g(r1) + (1� �)g(r2) = R, (�, r1, r2) 2 [0, 1],
1

2
= �r1 + (1� �)r2

o
,

obtaining an alternative characterization for µ̃(R), from which
it is easy to show that is an upper semi-continuous function.
From the Lemma 6 and the definition of C it is clear that we
can write:

RD
TW-CIB(1/2) =

�
(⇠, ⌘) : 9(⇠0, ⌘0) 2 C1/2, ⇠ � ⇠

0
, ⌘  ⌘

0
 

.

This clearly implies that µ̃(R)  µ
D
TW-CIB(R). It is easy to show

that if R 7! µ̃(R) is not decreasing then µ̃(R) � µ
D
TW-CIB(R),

which implies that µ̃(R) = µ
D
TW-CIB(R). The following lemma

establish the non-decreasing property of µ̃(R).
Lemma 7: Consider random binary sources (X1, X2, Y ) ⇠

Bern(1/2) with X2 �⌦� X1 �⌦� Y such that X1 = X2 � Z

with Z ⇠ Bern(q), q 2 (0, 1/2), Z?X2 and Y = X1 � W

with W ⇠ Bern(p), p 2 (0, 1/2), W?(X1, X2). Then, for all
R 2 [0, h2(q)],

1�h2(p⇤q)+
h2(p ⇤ q)� h2(p)

h2(q)
R  µ̃(R)  1�h2(p⇤q)+R

and µ̃(R) is not decreasing in R.
Proof: From the assumptions, Lemma 6, definitions of C

and µ̃(R), we have

µ̃(R) = max {I(Y ;UX2) : I(X1;U |X2) = R,

U ⇠ p(u) 2 P(U), U �⌦� X1 �⌦� (X2, Y )} .

From data processing inequality it is easy to show that
for all variables U such that U �⌦� X1 �⌦� (X2, Y ),
I(Y ;UX2)  I(Y ;X1X2)  1 � h2(p) and I(X1;U |X2) 
H(X1|X2) = h2(q). This implies that µ̃(R)  1 � h2(p)
for all R 2 [0, h2(q)]. Consider U = X1. In this case
R = h2(q) and I(Y ;UX2) = 1 � h2(p), allowing us to
conclude that µ̃(h2(q)) = 1� h2(p). When U is constant, we
obtain I(X1;U |X2) = 0 and I(Y ;UX2) = 1 � h(p ⇤ q). In
fact, it is not hard to check that µ̃(0) = 1�h(p⇤q). As µ̃(R) is
concave, the lower bound on µ̃(R) follows immediately. The

proof of the upper bound is straightforward and for that reason
is omitted. To prove the non-decreasing property consider any
R 2 [0, h2(q)] and R1  R. Then, exists � 2 [0, 1] such that
R = �R1+(1��)h2(q). As R 7! µ̃(R) is concave, we have:

µ̃(R) � �µ̃(R1) + (1� �)µ̃(h2(q)) � µ̃(R1),

from which the result follows.
From the previous results we can conclude that:

µ
D
TW-CIB(R) = max

(�,r1,r2)2[0,1]
1� h2(p ⇤ q) + �f(r1)

+ (1� �)f(r2) s.t. �g(r1) + (1� �)g(r2) = R.

This problem can be solved numerically to obtain, for each R,
the exact value of µ

D
TW-CIB(R). However, more can be said of

µ
D
TW-CIB(R). As the graph of µ

D
TW-CIB(R) is an upper boundary

of C1/2, which is convex and compact, on each point of
this boundary exists a supporting hyperplane. Consider point
(R0, µ

D
TW-CIB(R0)). The supporting hyperplane for this point is

defined by the pair (↵, (↵)), such that µ
D
TW-CIB(R0) = ↵R0 +

 (↵) and µ
D
TW-CIB(R)  ↵R +  (↵) for other R 2 [0, h2(q)].

This implies that:

 (↵) = max {µD
TW-CIB(R)� ↵R : R 2 [0, h2(q)]}

= max
�
⌘ � ↵⇠ : (⇠, ⌘) 2 C1/2

 
,

= max {⌘ � ↵⇠ : (1/2, ⇠, ⌘) 2 C}. (46)

From (viii) above is immediate to see that  (↵) is a convex
function of ↵. From its concavity and upper semi-continuity
we know that µ

D
TW-CIB(R) can be expressed alternatively as the

point-wise infimum of affine functions that are greater that
µ

D
TW-CIB(R). In fact, it is not difficult to show that:

µ
D
TW-CIB(R) = min { (↵) + ↵R : ↵ 2 R}. (47)

From the results of Lemma 7 is not difficult to see that in (47),
it suffices to restrict ↵ to the interval [0, 1]. Consider now a
fixed value of ↵ 2 [0, 1] and define ⌫̃(r,↵) = 1� h2(p ⇤ q) +
⌫(r,↵) where ⌫(r,↵) = f(r)� ↵g(r) with r 2 [0, 1]. Define
A

↵ to be the graph of ⌫̃(r,↵) and C
↵ = co(A↵). It is not

hard to see that:

C
↵ = {(r, ⌘ � ↵⇠) : (r, ⇠, ⌘) 2 C} ,

and that the upper-boundary of C
↵ (which is compact) is the

graph of the concave envelope of ⌫(r,↵). In fact, if we define
 (r,↵) as:

 (r,↵) = max {! : (r,!) 2 C
↵}

= max {⌘ � ↵⇠ : (r, ⇠, ⌘) 2 C},

we have that conc(⌫̃)(r,↵) =  (r,↵). It is clear that
 (1/2,↵) is equal to  (↵) defined in (46). That is:

 (↵) = conc(⌫̃)(r,↵)
���
r=1/2

= 1� h2(p ⇤ q) + conc(⌫)(r,↵)
���
r=1/2

.

Note that ⌫(r,↵) is symmetric with respect to r = 1/2 for
every ↵ and that ⌫(1/2,↵) = 0. This symmetry implies that:

conc(⌫)(r,↵)
���
r=1/2

= max
r2[0,1/2]

⌫(↵, r)
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Figure 7: Graph of  (↵).

= max
r2[0,1/2]

{f(r)� ↵g(r)}.

and using (47) we have

µ
D
TW-CIB(R) =1� h2(p ⇤ q)

+ min
↵2[0,1]

max
r2[0,1/2]

{f(r) + ↵(R � g(r))}. (48)

It can also be shown that ⌫(r,↵) is a continuous and twice
continuously differentiable as function of r and ↵. Moreover,
when ↵ = 1 we clearly have that ⌫(r, 1) = f(r) � g(r)  0
for all r 2 [0, 1/2] and when ↵ = 0, ⌫(r, 0) = f(r) � 0 for
all r 2 [0, 1/2]. In both extreme cases the equality is obtained
only when r = 1/2. It is not difficult to obtain the second
partial derivative of ⌫(r,↵) with respect to r:

@
2
⌫(r,↵)

@r2
= � (1� ↵)(1� 2q)2

(q ⇤ r)(1� q ⇤ r)
� ↵

r(1� r)

+
(1� p ⇤ q)(1� 2�)2

(� ⇤ r)(1� � ⇤ r)
+

(p ⇤ q)(1� 2�)2

(� ⇤ r)(1� � ⇤ r)
,

where

� , pq

1� p ⇤ q
, � , p(1� q)

p ⇤ q
.

As f(r) is strictly convex it is clear that @2⌫(r,0)
@r2 > 0 for all

r 2 [0, 1/2]. On the other hand, p, q 2 (0, 1/2) implies that
(1�2�)2 < 1, (1�2�)2 < 1 and (� ⇤r)(1�� ⇤r) � r(1�r),
(� ⇤ r)(1� � ⇤ r) � r(1� r) for all r 2 [0, 1/2] which leads
us to:

(1� p ⇤ q)(1� 2�)2

(� ⇤ r)(1� � ⇤ r)
+

(p ⇤ q)(1� 2�)2

(� ⇤ r)(1� � ⇤ r)
<

1

r(1� r)
,

for all r 2 [0, 1/2], implying that @2⌫(r,1)
@r2 < 0 for all r 2

[0, 1/2], and thus r 7! ⌫(r, 1) = f(r) � g(r) is an strictly
concave function. In fact, as ↵ 7! @2⌫(r,↵)

@r2 is a continuous
function, this strict concavity should hold for ↵ in an open
interval around 1, where as a consequence, ⌫(r,↵)  0 for
any r 2 [0, 1/2]. Consider ↵⇤ 2 (0, 1) to be the minimal
value such that for all ↵ 2 [↵⇤

, 1]:

⌫(r,↵)  0 , 8r 2 [0, 1/2].

Again as r 7! ⌫(r, 0) is strictly convex and ↵ 7! @
2
⌫(r,↵)

@r2

is continuous, it must exists a maximal value ↵⇤⇤
< ↵

⇤ such
that for all ↵ 2 [0,↵⇤⇤]

@
2
⌫(r,↵)

@r2
� 0 , 8r 2 [0, 1/2],

which implies the convexity of ⌫(↵, r) for all r 2 [0, 1/2]
for ↵ 2 [0,↵⇤⇤]. For every ↵ < ↵

⇤ we must have that there
exists r 2 (0, 1/2) such that ⌫(r,↵) > 0. This, jointly with
the continuity of (r,↵) 7! ⌫(r,↵), implies that for ↵⇤ there
must exist r↵⇤ 2 (0, 1/2) with ⌫(r↵⇤ ,↵

⇤) = 0. Similarly,
it can be argued that @⌫(r,↵⇤)

@r

���
r↵⇤

= 0. This means that for

↵ 2 [↵⇤
, 1], maxr2[0,1/2] ⌫(↵, r) = 0 and  (↵) = 1�h2(p⇤q).

When ↵
⇤⇤

< ↵ < ↵
⇤, maxr2[0,1/2] ⌫(↵, r) > 0 and  (↵) >

1�h2(p ⇤ q). Consider r↵ 2 (0, 1/2) to be the point at which
the maximum is achieved. At this point @⌫(r,↵)

@r

���
r↵

= 0. We
have, by the implicit function theorem, that:

↵ =
f
0(r↵)

g0(r↵)
,

 (↵) = 1� h2(p ⇤ q) + f(r↵)� ↵g(r↵),

 
0(↵) = �g(r↵) < 0.

At point ↵⇤, the derivative of  (↵) could not exist, but the
limit from the left exists and satisfies:

lim
↵"↵⇤

 
0(↵) = �g(r↵⇤) < 0.

Finally, when ↵ 2 [0,↵⇤⇤], as ⌫(r,↵) is convex, its maximum
value has to be achieved at a boundary point of [0, 1/2]. It
is clear that this point should be r = 0. In this manner
maxr2[0,1/2] ⌫(↵, r) = f(0) � ↵g(0) = h(p ⇤ q) � h2(p) �
↵h2(q) and  (↵) = 1 � h2(p) � ↵h2(q), which is an affine
function in ↵ with slope h2(q). With these results, we see that
 (↵) must have the shape shown in Fig. 7. From (47) and
(48), the obtained properties of  (↵) and the fact that beyond
R > h2(q), µ

D
TW-CIB(R) takes the value of 1� h2(p), it is easy

show that:

µ
D
TW-CIB(R) =8
<

:

1� h2(p ⇤ q) + ↵
⇤
R 0  R  g(r↵⇤),

1� h2(p ⇤ q) + f
�
g
�1(R)

�
g(r↵⇤) < R  h2(q),

1� h2(p) R > h2(q).

Let us define Rc , g(r↵⇤). As µ
D
TW-CIB(R) is concave it is not

difficult to see that Rc and ↵⇤ should satisfy:

f
0
�
g
�1(Rc)

�

g0 (g�1(Rc))
=

f
�
g
�1(Rc)

�

Rc
, ↵

⇤ =
f
�
g
�1(Rc)

�

Rc
.

From the final expression in (??), it is pretty clear how
should be the scheme to be used to achieve µ

D
TW-CIB(R). When

R > Rc, auxiliar random variable U should be chosen
such that: U = X1 � V, where V ⇠ Bern

�
g
�1(R)

�
.

When R  Rc a time-sharing scheme should be used. It
is not difficult to show that U should be chosen as: U ,
1 {T = 0}+ Vc1 {T = 1} , where Vc ⇠ Bern

�
g
�1(Rc)

�
and

T ⇠ Bern
⇣

R
Rc

⌘
. When R > h2(q), U , X1.
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