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Université François Rabelais, Parc de Grandmont, 37200 Tours, France

3Laboratoire APC – Astroparticule et Cosmologie,
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In loop quantum gravity, a spherical black hole can be described in terms of a Chern-
Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures
are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area.
One can generalize this construction and model a rotating black hole by adding an extra
puncture colored with the angular momentum J in the 2-sphere. We compute the entropy
of rotating black holes in this model and study its semi-classical limit. After performing
an analytic continuation which sends the Barbero-Immirzi parameter to γ = ±i, we show
that the leading order term in the semi-classical expansion of the entropy reproduces the
Bekenstein-Hawking law independently of the value of J .

I. INTRODUCTION

Loop Quantum Gravity (LQG) provides a microscopic explanation of the entropy of black
holes. Different approaches have been developed the last twenty years within the framework of
LQG to propose a fundamental description of (mainly) spherical black holes with no angular
momentum (see [1] for a recent review). The very first model was introduced in [2] where it was
shown that intertwiners could be the good notion to describe microstates of black holes. The
introduction of isolated horizons [3–6] allowed for a description of the black hole microstates in
terms of a U(1) Chern-Simons theory [7, 8] on a 2-sphere representing the black hole horizon.
Later, it was shown in [9, 10] that black holes can be treated in terms of an SU(2) Chern-Simons
theory which further clarified the relation between the microstates of the black holes and the spin-
network states in the bulk outside the horizon. Furthermore, in that picture, counting the number
of microstates is remarkably simple and relies (at the semi-classical limit) on counting SU(2)
intertwiners between unitary irreducible representations [11–14]. While the understanding of the
black hole microstates has constantly improved in LQG, many different techniques to compute
their number were developed [15–22]. However, all these models have in common that counting
the microstates leads to recovering the Bekenstein-Hawking law [23, 24] provided that the Barbero-
Immirzi parameter γ is fixed to a special value. The fact that γ, which is classically irrelevant,
plays such an important role has raised some doubts and criticisms. In particular, one natural
question would be to ask whether or not the value of γ changes for rotating black holes in these
different approaches to recover the Bekenstein-Hawking law.

For reasons that will be explained below the rotating case has shown to be rather elusive.
To our knowledge, the first attempt to model rotating black holes in LQG was proposed in [25].

∗Electronic address: jibrilbenachour@gmail.com
†Electronic address: karim.noui@lmpt.univ-tours.fr
‡Electronic address: perez@cpt.univ-mrs.fr

http://arxiv.org/abs/1607.02380v1
mailto:jibrilbenachour@gmail.com
mailto:karim.noui@lmpt.univ-tours.fr
mailto:perez@cpt.univ-mrs.fr


2

Nonetheless, at the classical level, the concept of spherically isolated horizon was quickly generalized
to include rotation [26, 27], and also distortion [28] or couplings to fields [29]. Further investigations
were carried out in order to relate the rotating non expanding horizon concept to the well known
Kerr geometry in [30]. Although a quantization of the rotating isolated horizon following the
technics used for the static spherically isolated horizon was explored in [27], the problem is still
open. In some of these models [26, 27], it was argued that the resulting entropy matches the
Bekenstein-Hawking area law for the same peculiar value of the Immirizi parameter γ appearing
in the non rotating case. However, the isolated horizon definition breaks the diffeomorphism
symmetry on the horizon in the rotating case, which ,in the quantum model, makes the number
of states uncountably large. Another attempt to describe microstates and to compute the entropy
of a rotating isolated horizon was presented in [31], where a new angular momentum operator was
introduced. A different effective approach to compute the entropy of a rotating black hole based on
an analogy with the physics of polymer chain was also proposed in [22]. There is a way in which one
can resolve the conflict between the isolated horizon boundary condition and diffeomorphisms in
the rotating case [32]. The idea consists of using an enlargement of the field content on the horizon,
which account for the angular momentum, in order to restore the diffeomorphism invariance. The
resulting model and its quantization was introduced in [33]. The important feature of this model
is that the fundamental geometric degrees of freedom at the horizon are described in terms of
an SU(2) Chern-Simons theory which is locally indistinguishable from the theory describing the
non-rotating BHs. For that reason this model is the only quantum mechanical description that
is compatible, on the one hand, with diffeomorphim invariance and, on the other hand, with the
gauge properties of bulk quantum states of geometry represented by SU(2) spin network states.

However, a problem remains. Indeed the state counting for the model [33] (revisited in Section
III in this paper) but also for the models [21, 22] (which to our knowledge are the only models
compatible with the SU(2) gauge symmetry in the bulk) yields an entropy with an explicit

dependence on the angular momentum J of the black hole. This result is incompatible with the
Bekenstein-Hawking area law. In this paper we will show that this tension seem to disappear
when we implement the counting after analytically continuing the model [33] to γ = ±i. Such
an analytic continuation (suggesting a link between standard LQG and a self dual version of the
quantum theory) has been put forward recently in the context of black holes thermodynamics
[34–45]. This idea has been investigated further in the context of spinfoams [46], and in 2 + 1
dimensional LQG [47–50]. It was first shown that the black hole entropy, which is a function of γ,
can be analytically continued to γ = ±i in a consistent way [34, 35]. Then, remarkably, the black
hole entropy reproduces exactly the semi-classical area law with the right famous 1/4 factor. The
aim of this paper is to show that this construction works for rotating black holes as well.

For this purpose, we consider, as we said above, the model [33] of a rotating black hole in
LQG. In this approach, the black hole is still described in terms of an SU(2) Chern-Simons theory
on a punctured 2-sphere. The 2-sphere represents the black hole horizon at a given time. All the
punctures but one carry as usual quanta of area which add themselves to form the horizon area aH .
These punctures are colored with a spin jl. The remaining puncture carries the angular momentum
of the black hole which is therefore colored with the black hole spin J . One can easily adapt the
techniques developed for spherical black holes to compute the number of microstates when J is
non-vanishing. To simplify the calculation, we focus on the so-called one-color black holes where
jl = j for any puncture which carries quanta of area. The main result of this article would not be
affected if we have studied the most general situation. Then, we compute the black hole entropy
SBH when γ is real and show that to recover the Bekenstein-Hawking law one has to fix γ to a
value which is J-dependent. Such a condition is of course physically non-acceptable. However,
when we perform the analytic continuation to γ = ±i following the techniques developed in [35],
we show that the leading order term of the black hole entropy reproduces exactly the semi-classical
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law whatever the value of J is. More precisely, we show that (2.15)

expSBH ≃ P (aH , J) exp

(

aH
4ℓ2p

+ i2πJ

)

(1.1)

where ℓp is the Planck length and P is a function that is responsible for quantum corrections to
the entropy. As J is an integer, it does not affect the entropy of the black hole at the semi-classical
limit. There is a clear disentanglement between the angular momentum J and the black hole area
aH .

The paper is organized as follows. We start in Section II with the calculation of the rotating
black hole entropy when γ = ±i. We define the rules for the analytic continuation, then we
compute the number of microstates and we study its semi-classical limit using the saddle point
approximation. To compare with what happens when γ is real, we compute the entropy of the
black hole in that case in Section III. We show that, contrary to the complex black hole case, the
semi-classical analysis does not allow us to recover, in a physically consistent way, the expected
result. We close the article with a short discussion in Section IV.

II. ENTROPY OF A ROTATING BLACK HOLE

In this section, we extend the proposal of [35] to compute the entropy of a rotating black hole and
we study its semi-classical behavior. In a first part, we define the rules of the analytic continuation.
Then, in a second part, we construct the entropy of the black hole with γ = ±i. Finally, we
show that the leading order term in the semi-classical expansion of the entropy reproduces the
Bekenstein-Hawking law for any value of the black hole angular momentum J .

A. Rules for the analytic continuation

One crucial condition for the analytic continuation to γ = ±i to be consistent is that the
area eigenvalues remain real and positive. In other words, the area operator remains self-adjoint
after the analytic continuation process. This condition has been analyzed in [35] and leads to
the fact that the punctures associated to the horizon are no more colored with discrete spins
but with continuous real numbers. Thus, everything happens as if the discrete finite dimensional
SU(2) irreducible representations are turned into continuous infinite dimensional representations
of SU(1, 1) (see [49, 50] for a very similar phenomenon in 2+1 dimensional gravity). This can be
straightforwardly seen from the expression of the area of the black hole horizon aH as a sum of its
fundamental excitations al:

aH =
∑

ℓ

al with al = 8πℓ2pγ
√

jl(jl + 1) . (2.1)

Indeed, imposing γ = ±i keeps the area real and positive only if the dimension dl = 2jl + 1
associated to each spin jl satisfies the condition d2l < 1. Solving this condition depends on whether
d2l < 0 or 0 < d2l < 1. The latter case is not relevant for our purposes and thus we focus on the
former case. If d2l ≤ 0, then there exists sl ∈ R such that dl = isl. Hence, the spin becomes a
complex number and the area remains real according to

jl 7→
1

2
(−1 + isl) , al 7→ 4πℓ2p

√

s2l + 1 , (2.2)

but the area has now a continuous spectrum. From the point of view of group representations
theory, the mapping (2.2) is interpreted as the mapping from unitary irreducible representations
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of SU(2) into those of SU(1, 1) which belong to the continuous series. Such an interpretation is
consistent with the observation that, after implementing the anayltic continuation, ie γ = ±i and
j = 1

2
(−1 + is), the level k of the Chern-Simons theory describing the non rotating black hole

has to becomes purely imaginary [35]. Indeed having a purely imaginary (or complex) level is
intimately related to the quantization of Chern-Simons theory with a non-compact gauge group.
On the contrary, it is very well-known that quantizing the theory with a compact gauge group
leads to a discrete level [52, 53].

Now we want to extend these rules to the case of rotating black holes whose angular momentum
is denoted J . Rotating black holes were modeled in terms of an SU(2) Chern-Simons theory on a
punctured 2-sphere with an extra puncture colored with the spin J [33]. This is the main difference
with the description of the spherical black hole. Another difference is that the level k depends now
not only on aH and γ but also on J and a novel free parameter γ̄. However, the definition of
k is ambiguous as it is illustrated by the presence of an extra parameter γ̄1. For this reason,
we will not pay too much attention on the exact expression of k when we perform the analytic
continuation. We will only assume that k becomes complex when γ = ±i: when J = 0, k is a
pure imaginary number [35], and we expect it to be complex when J 6= 0. Concerning the angular
momentum J itself, it is supposed to remain integer when γ = ±i, which is natural because an
angular momentum J is intimately related to an SO(3) symmetry. As a consequence, the analytic
continuation of the rotating black hole entropy is performed according to the following rules:

γ = ±i , dl = isl with sl ∈ R , k ∈ C , J ∈ N . (2.3)

Let us emphasize again that the explicit form of k is not needed for our purposes, but it becomes
large at the semi-classical limit.

B. Number of microstates

We start with the Verlinde formula which gives the dimension of the Chern-Simons theory
Hilbert space on a punctured 2-sphere whose gauge group is SU(2) and the level is k. When the
sphere is punctured by n links colored with jl and one extra link colored with J , this number is
given by

Nk(J, jl;n) ≡
2

k + 2

k+1
∑

d=1

sin (
πd

k + 2
) sin (

πddJ
k + 2

)
n
∏

l=1

sin ( π
k+2

ddl)

sin ( π
k+2

d)
(2.4)

where dJ = 2J + 1 and dl = 2jl + 1 are the usual dimensions of SU(2) unitary representations.
This well-known formula allows us to compute the number of (real) black holes microstates when
the condition (2.1) is imposed [11] which will be done in Section III.

When γ is complex, k becomes also complex and then the Verlinde formula above does not make
sense anymore. However, following the same strategy as in the non-rotating case [35], it is possible
to reformulate (2.4) as an integral on the complex plane in such a way that the analytic continuation
(2.3) is well-defined. After an analysis very similar to [35], we show that (2.4) transforms to

N∞(J, sl;n) =
1

iπ

∮

C

dz sinh z sinh (dJz)

n
∏

l=1

sinh (islz)

sinh z
(2.5)

1 In [33], one makes use of this ambiguity and fixes the free parameter γ̄ in such a way that the level k becomes
independent of the Barbero-Immirzi parameter γ and it vanishes for extremal black holes. However, one could
also find other arguments to fix these ambiguities.
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when (the real and imaginary parts of) k becomes large, as it is required at the semi-classical limit.
The contour C encloses the point z = iπ on the imaginary axe as shown in [35]. We consider this
function as the definition of the Verlinde formula when γ = ±i in the large k limit.

Let us remark that, contrary to the original formula (2.4), there is no reason to expect that
(2.5) produces a non-negative natural number which can be naturally interpreted as a dimension
of some Hilbert space. In general, (2.5) defines a complex number, and then its interpretation in
terms of a number or even a density of black holes microstates is not obvious. However, we found
in [35] a selection rule such that (2.5) is real. We expect such conditions to exist also when there
is a non-vanishing angular momentum and we are going to show in the section IIC below that
this is indeed the case at least at the semi-classical limit. We will also show that the semi-classical
expansion of (2.5) reproduces at the leading order the Bekenstein-Hawking law.

C. Semi-classical limit and Bekenstein-Hawking law

This section is devoted to study the asymptotic behavior of (2.5) at the semi-classical limit.
To simplify this analysis, we restrict our study to the one-color model where the punctures are all
colored with the same representation sl = s. In this model, the black hole horizon area aH and the
angular momentum J are given by

aH = 4πℓ2pns and J =
1

2
a⋆ns , (2.6)

where a⋆ ≡ 8πJℓ2p/aH ∈ [0, 1] (a⋆ = 1 for an extremal black hole). With this simplification, (2.5)
reduces to the following integral

In(J, s) ≡
1

iπ

∮

C

dz sinh z sinh (dJz)

(

sinh (isz)

sinh z

)n

. (2.7)

As it was shown in [35] when J = 0, the semi-classical limit corresponds to n and s large (this
relies on a statistical analysis in the canonical ensemble using the quasi-local approach [54–56]).
Introducing an angular momentum does not change this condition, hence we are going to compute
the asymptotic expansion of (2.7) when n ≫ 1 and s ≫ 1.

To apply the saddle point approximation, it is useful to write (2.7) as follows

In(J, s) =
∮

C

dz µ+(z) exp [nΦ+(z)] +

∮

C

dz µ−(z) exp [nΦ−(z)] (2.8)

with the measures µ± and the “actions” Φ± defined by

µ±(z) ≡ ± 1

2iπ
e±z sinh z and Φ±(z) ≡ ±a⋆sz + ln

(

sinh(isz)

sinh z

)

. (2.9)

The asymptotic of each integral in the sum (2.8) is evaluated by the saddle point approximation.
This method relies on the computation of the critical points z± of the functions Φ± which are
solutions of the equations

Φ′
±(z±) = 0 with Φ′

±(z) =
s

tan(sz)
− 1

tanh z
± a⋆s . (2.10)

The location of the critical points was precisely analyzed when a⋆ = 0 in [35]. The generalization
to a⋆ 6= 0 is immediate. Obviously, there are no exact solutions to the equation (2.10). However,
one easily sees that there is an infinite number of solutions located on the real axe and an infinite



6

number of solutions located at the vicinity of the points zp ≡ piπ (p ∈ Z) when s ≫ 1. As in the
case J = 0 [35], only the critical point located at the vicinity of iπ contributes to the semi-classical
limit of (2.8). If we denote this critical point by z± = iπ + ǫ±, we easily find that

ǫ± =
1

s

(

1

±a⋆ − i
+ o(1)

)

= ±1

s

(

e±iϕ

√

1 + a2⋆
+ o(1)

)

with tanϕ ≡ 1

a⋆
. (2.11)

We used the notation o(x) for any function o(x) ≪ x. Hence, the evaluation of the actions Φ± at
the critical points z± gives

Φ±(z±) = Φ0
± +Φ1

± with Φ0
± ≡ sπ(1± ia⋆) and (2.12)

Φ1
± ≡ log s+ 1± i(

π

2
− ϕ)− i

π

2
+ log

√

1 + a2⋆ + o(1) . (2.13)

Only the leading order term in this expansion (2.12) will contribute to the leading order term of
the semi-classical expansion of the entropy. We focus mainly on this leading order term and we
will shortly discuss the sub-leading corrections (2.13) latter. As a consequence, the leading order
term in the semi-classical expansion of the entropy SBH is given by the leading order term of the
function

I0
n(J, s) ≡ µ+(z+) exp(nΦ

0
+) + µ−(z−) exp(nΦ

0
−) . (2.14)

Using (2.6), we show immediately that

exp(nΦ0
±) = exp(πns± iπnsa⋆) = exp

(

aH
4ℓ2p

± i2πJ

)

(2.15)

where the phase disappears because J is an integer. Hence, the leading order term in the semi-
classical expansion of the entropy is

SBH =
aH
4ℓ2p

+ o

(

aH
ℓ2p

)

. (2.16)

We recover the Bekenstein-Hawking law whatever the value of the angular momentum J is.

We can make the analysis of the semi-classical behavior more precise pushing further the saddle
point approximation. Indeed, after a direct calculation we show that (2.5) is equivalent, at the
semi-classical limit, to

In(J, s) ≃
√

2

nπ

1

s2(1 + a2⋆)
exp

(

aH
4ℓ2p

+ n[log
√

1 + a2⋆ + 1 + log s]

)

e−inϕ + (−1)neinϕ

2i
. (2.17)

Hence, the analytic continuation of the number of microstates for a one-color black hole with a
fixed color s becomes a priori complex when γ = ±i. However, one can easily cure this problem
and make (2.17) real assuming that only odd number of punctures are allowed. This condition can
be interpreted as a selection rule. In that case, (2.17) is real

In(J, s) ≃ −
√

2

nπ

sin(nϕ)

s2(1 + a2⋆)
exp

(

aH
4ℓ2p

+ [log
√

1 + a2⋆ + 1 + log s]n

)

(2.18)

but it oscillates. We expect that such oscillations disappear when we compute the partition function
of the black hole in the canonical ensemble. The difficulty to show precisely this is indeed the case
is that one cannot give a close formula of the partition function starting from the exact expression



7

(2.8). Nonetheless, to illustrate how the oscillations would disappear in a canonical ensemble, we
highly simplify the expression of (2.8) and we replace it by its asymptotic expression (2.18) where
we keep only the holographic term and the oscillating term. Hence, following [35] we compute the
partition function and we obtain

ZBH(β) =
∞
∑

n=1

sin(nϕ)

∫ ∞

0

ds exp

(

π
βu − β

βu
ns

)

(2.19)

where β is the inverse temperature and βu the Unruh temperature [35, 54–56]. In this simple
example, one can easily integrate over s and then perform the sum over n to obtain

ZBH(β) =
βu

π(βu − β)

∞
∑

n=1

sin(nϕ)

n
=

βu(π − ϕ)

2π(βu − β)
. (2.20)

As a conclusion the oscillations disappears and the partition function behaves as we expected with
a divergence at β = βu. It follows from this that the canonical ensemble entropy for a macroscopic
BH is given by the Bekenstein-Hawking formula at leading order. The angular momentum appears
in the subleading terms [35, 54–56].

Before closing this Section, let us give few remarks. First, we recall that we studied exclusively
one-color black holes to make the calculations simpler and clearer. We expect the same result
to hold with many-colors black hole exactly as in [35]: the leading order term of the entropy
would lead to a Bekenstein-Hawking area law. The calculation of the canonical partition function
(2.19) has been oversimplified as well to illustrate the fact that the oscillations we encounter in
the microcanonical analysis disappear in the canonical ensemble (which is the right ensemble to
consider to show that the semi-classical limit is governed by n and s large). The exact partition
function can be formally written but its calculation cannot be done exactly.

III. THE REAL BARBERO-IMMIRZI PARAMETER CASE

To compare with the real case, we finish with the computation of the entropy for γ real. We are
going to see that this case does not allow us to recover in a consistent way the Bekenstein-Hawking
law, contrary to what happens when γ = ±i. A similar calculation was proposed in [21, 22]. To
make the comparison between the two situations (γ real and γ imaginary) simpler, we focus only
on one-color black holes where all spins are equal to the same value jl = j. We denote by d = 2j+1
the dimension of the common representation.

When the spins are discrete, it is well-known that the Verlinde formula (2.4) reduces at the
semi-classical limit (with the level k large) to the integral

Jn(J, d) ≡
∫ π

0

dθ

2π
sin θ sin (dJθ)

(

sin (dθ)

sin θ

)n

. (3.1)

It can be easily shown that the Verlinde formula is nothing but the Riemann sum of (3.1).
The most important difference with the complex case is that the semi-classical limit is reached

when the spins are small. Hence, there is no reasons here to assume that d is large. On the
contrary, we fix d to a finite value, and to simplify the analysis we take d = 2 (the main results of
this Section is not affected if we consider a different value of d). Then, we study the semi-classical
limit of

Jn(J) ≡ Jn(J, 2) = 2n
∫ π

0

dθ

2π
sin θ sin (dJθ) cos

n θ , (3.2)
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when n and J become large. To do so, we first simplify the integral which, after direct calculations,
can be reformulated in terms of binomial coefficients as follows

Jn(J) =
1

2

[(

n/2 + J
n

)

−
(

n/2 + J + 1
n

)]

=
2(J + 1)

n+ 2(J + 1)

(

n/2 + J
n

)

. (3.3)

From this expression, we see that necessarily 2J ≤ n otherwise the number of microstates vanishes.
Hence, evaluating the semi-classical limit relies on computing the asymptotic of the binomial
coefficient in (3.3) when n and J become large. It is easy to show that, for any α ∈ [0, 1],

log

(

αn
n

)

= −[α log α+ (1− α) log(1− α)]n + o(n) . (3.4)

This is an immediate consequence of the Strirling formula. Hence, the leading-order term of the
entropy for a rotating black hole is

SBH = −α log α+ (1− α) log(1− α)

πγ
√
3

aH
4ℓ2p

+ o

(

aH
ℓ2p

)

with α ≡ 1

2
+

J

n
≤ 1 . (3.5)

As a consequence, the requirement that SBH reproduces the Bekenstein-Hawking law fixes γ to a
value which depends on J . Of course, such a condition is not physically acceptable.

IV. CONCLUSION

In this note, we considered the model of a rotating black hole which was introduced in [33] in
the context of Loop Quantum Gravity. Adapting the methods developed in [35] for spherical black
holes, we computed the analytic continuation of the number of states when the Barbero-Immirzi
parameter γ takes the complex value γ = ±i. We studied its semi-classical behavior and found
that the leading order term of the BH entropy SBH reproduces exactly the expected Bekenstein-
Hawking law for any values of the angular momentum J . This situation strongly contrasts with
the case γ real where a non trivial dependence on J affects the leading order of the entropy. Let us
recall that we studied exclusively one-color black holes where the punctures which cross the horizon
are colored with the same representation. We expect, exactly as in [35], that considering multi-
colors black holes should not affect the main result of the paper: their entropy should reproduce
the expected law at the semi-classical limit.

This result strengthens and confirms the indication that the quantum theory with (anti-)self dual
variables (foreshadowed through the analytic continuation to γ = ±i) could be better behaved that
the theory defined in terms of real connection variables in view of its consistency with semiclassical
expectations. Until now, the analytic continuation technique was efficient to analyze symmetry
reduced models only (black holes, cosmology and 2+1 dimensional gravity). Adapting this method
to have a better understanding of the full theory with (anti-)self-dual variables is a very important
problem that we hope to address in the future.

[1] J.F. Barbero and A. Perez, Quantum Geometry and Black Holes, arXiv:1501.02963 [gr-qc].
[2] C. Rovelli, Black hole entropy from loop quantum gravity, Phys. Rev. Lett. 77 3288 (1996), arXiv:

9603063 [gr-qc].
[3] A. Ashtekar, C. Beetle and S. Fairhurst, Isolated horizons: A Generalization of black hole mechanics

Class.Quant.Grav. 16 (1999) L1-L7, arXiv: 9812065 [gr-qc].



9

[4] A. Ashtekar, A. Corichi and K. Krasnov, Isolated horizons: The Classical phase space,
Adv.Theor.Math.Phys. 3 (1999) 419-478 , arXiv:9905089 [gr-qc].

[5] A. Ashtekar, C. Beetle and S. Fairhurst, Mechanics of isolated horizons, Class.Quant.Grav. 17 (2000)
253-298, arXiv: 9907068 [gr-qc].

[6] A. Ashtekar, S. Fairhurst and B. Krishnan Isolated horizons: Hamiltonian evolution and the first law,
Phys.Rev. D62 (2000) 104025, arXiv: 0005083[gr-qc] .

[7] A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Quantum geometry and black hole entropy,
Phys.Rev.Lett. 80 (1998) 904-907 , arXiv: 9710007 [gr-qc]

[8] A. Ashtekar, J. C. Baez and K. Krasnov, Quantum geometry of isolated horizons and black hole entropy,
Adv.Theor.Math.Phys. 4 (2000) 1-94, arXiv: 0005126 [gr-qc]

[9] J. Engle, A. Perez and K. Noui, Black hole entropy and SU(2) Chern–Simons theory, Phys. Rev. Lett.
105 031302 (2010), arXiv:0905.3168 [gr-qc].

[10] J. Engle, K. Noui, A. Perez and D. Pranzetti, Black hole entropy from an SU(2)-invariant formulation
of type I isolated horizons, Phys. Rev. D 82 044050 (2010), arXiv:1006.0634 [gr-qc].

[11] J. Engle, K. Noui, A. Perez and D. Pranzetti, The SU(2) black hole entropy revisited, JHEP 1105
(2011), arXiv:1103.2723 [gr-qc].

[12] R. K. Kaul and P. Majumdar, Quantum black hole entropy, Phys. Lett. B 439 (1998) 267 arXiv:

9801080 [gr-qc]

[13] R. K. Kaul and P. Majumdar, “Logarithmic correction to the Bekenstein-Hawking entropy,” Phys. Rev.
Lett. 84 (2000) 5255 arXiv: 0002040 [gr-qc].

[14] S. Das, R. K. Kaul and P. Majumdar, “A new holographic entropy bound from quantum geometry,”
Phys. Rev. D 63 (2001) 044019 arXiv: 0006211 [hep-th/].

[15] I. Agullo, J. Fernando Barbero, E. F. Borja, J. Diaz-Polo and E. J. S. Villasenor, Detailed black hole
state counting in loop quantum gravity, Phys. Rev. D 82 (2010) 084029 arXiv:1101.3660 [gr-qc].

[16] I. Agullo, G. J. Fernando Barbero, E. F. Borja, J. Diaz-Polo and E. J. S. Villasenor, The combinatorics of
the SU(2) black hole entropy in loop quantum gravity, Phys. Rev. D 80 (2009) 084006 arXiv:0906.4529
[gr-qc].

[17] J. F. Barbero G. and E. J. S. Villasenor, On the computation of black hole entropy in loop quantum
gravity, Class. Quant. Grav. 26 (2009) 035017 arXiv:0810.1599 [gr-qc].

[18] J. F. Barbero G. and E. J. S. Villasenor, Generating functions for black hole entropy in Loop Quantum
Gravity, Phys. Rev. D 77 (2008) 121502 arXiv:0804.4784 [gr-qc].

[19] I. Agullo, J. F. Barbero G., J. Diaz-Polo, E. Fernandez-Borja and E. J. S. Villasenor, Black hole state
counting in LQG: A number theoretical approach, Phys. Rev. Lett. 100 (2008) 211301 arXiv:0802.4077
[gr-qc].

[20] K. A. Meissner, Black hole entropy in loop quantum gravity, Class. Quant. Grav. 21 5245 (2004),
arXiv: 0407052 [gr-qc].

[21] E. R. Livine and D. R. Terno, Entropy in the Classical and Quantum Polymer Black Hole Models,
Class.Quant.Grav. 29 (2012) 224012, arXiv:1205.5733 [gr-qc]

[22] E. Bianchi, Black Hole Entropy, Loop Gravity, and Polymer Physics, Class.Quant.Grav. 28 (2011)
114006, arXiv:1011.5628 [gr-qc]

[23] J. Bekenstein, Black holes and entropy, Phys. Rev. D 9 2333 (1973).
[24] S. Hawking, Particle creation by black holes, Comm. Math. Phys. 43 199 (1975).
[25] K. Krasnov, Quanta of Geometry and Rotating Black Holes, Class.Quant.Grav. 16 (1999) L15-L18,

arXiv: 9902015 [gr-qc]

[26] A. Ashtekar, C. Beetle and J. Lewandowski, Mechanics of Rotating Isolated Horizons, Phys.Rev. D64
(2001) 044016 , arXiv: 0103026 [gr-qc]

[27] A. Ashtekar, J. Engle and Chris Van Den Broeck, Quantum horizons and black hole entropy: Inclusion
of distortion and rotation, Class.Quant.Grav. 22 (2005) L27-L34, arXiv:0412003 [gr-qc]

[28] A. Ashtekar, A. Corichi, Laws governing isolated horizons: Inclusion of dilaton couplings,
Class.Quant.Grav. 17 (2000) 1317-1332, arXiv: 9910068 [gr-qc]

[29] A. Ashtekar, A. Corichi and D. Sudarsky, Nonminimally coupled scalar fields and isolated horizons,
Class.Quant.Grav. 20 (2003) 3413-3426, arXiv: 0305044 [gr-qc]

[30] J. Lewandowski and T. Pawlowski, Geometric Characterizations of the Kerr Isolated Horizon,
Int.J.Mod.Phys. D11 (2002) 739-746, arXiv:0101008[gr-qc]

[31] M. Bojowald, Angular Momentum in Loop Quantum Gravity, e-Print, arXiv: 0008054[gr-qc]



10

[32] A. Perez and D. Pranzetti, Static isolated horizons: SU(2) invariant phase space, quantization, and
black hole entropy, Entropy 13 (2011) 744-777, arXiv: arXiv:1011.2961 [gr-qc]

[33] E. Frodden, A. Perez, D. Pranzetti and C. Roken, Modelling black holes with angular momentum in
loop quantum gravity, Gen. Rel. Grav. 46 (2014) 1828. arXiv:1011.2961 [gr-qc]

[34] E. Frodden, M. Geiller, K. Noui and A. Perez, Black hole entropy from complex Ashtekar variables,
accepted to Eur. Phys. Lett. (2014), arXiv:1212.4060 [gr-qc].

[35] J. Ben Achour, A. Mouchet and K. Noui, Analytic continuation of black hole entropy in loop quantum
gravity, JHEP 1506 (2015) 145, arXiv:1406.6021 [gr-qc]

[36] J. Ben Achour and K. Noui, Analytic continuation of real Loop Quantum Gravity : Lessons from black
hole thermodynamics, PoS FFP14 (2015) 158, arXiv:1501.05523 [gr-qc]

[37] J. Ben Achour, Towards self dual Loop Quantum Gravity, (2015), arXiv:1511.07332 [gr-qc]

[38] M. Geiller and K. Noui, Near-Horizon Radiation and Self-Dual Loop Quantum Gravity, Europhys. Lett.
105 (2014) 60001, arXiv:1402.4138 [gr-qc]

[39] D. Pranzetti, Geometric temperature and entropy of quantum isolated horizons, Phys.Rev. D89 (2014)
no.10, 104046, arXiv:1305.6714 [gr-qc]

[40] D. Pranzetti, H. Sahlmann, Horizon entropy with loop quantum gravity methods, Phys.Lett. B746
(2015) 209-216, arXiv:1412.7435 [gr-qc]

[41] D. Pranzetti, Black hole entropy from KMS-states of quantum isolated horizons, arXiv:1305.6714
[gr-qc].

[42] E. Frodden, M. Geiller, K. Noui and A. Perez, Statistical entropy of a BTZ black hole from loop
quantum gravity, JHEP 5 139 (2013), arXiv:1212.4473 [gr-qc].

[43] Y. Neiman, The imaginary part of the gravity action and black hole entropy, JHEP 71 (2013),
arXiv:1212.2922 [gr-qc].

[44] Y. Neiman, The imaginary part of the gravity action at asymptotic boundaries and horizons, Phys.
Rev. D88 024037 (2013), arXiv:1305.2207 [gr-qc].

[45] M. Han, Black hole entropy in loop quantum gravity, analytic continuation, and dual holography,
(2014), arXiv:1402.2084 [gr-qc].

[46] N. Bodendorfer and Y. Neiman, Imaginary action, spinfoam asymptotics and the ‘transplanckian’
regime of loop quantum gravity, Class. Quant. Grav. 30 195018 (2013), arXiv:1303.4752 [gr-qc].

[47] M. Geiller and K. Noui, Testing the imposition of the Spin Foam Simplicity Constraints, Class. Quant.
Grav. 29 135008 (2012), arXiv: 1112.1965[gr-qc].

[48] S. Alexandrov, M. Geiller and K. Noui, Spin foams and canonical quantization, SIGMA 8 055 (2012),
arXiv:1112.1961 [gr-qc].

[49] J. Ben Achour, M. Geiller, K. Noui and C. Yu, Testing the role of the Barbero–Immirzi parameter and
the choice of connection in loop quantum gravity, (2013), arXiv:1306.3241 [gr-qc].

[50] J. Ben Achour, M. Geiller, K. Noui and C. Yu, Spectra of geometric operators in three-dimensional
LQG: From discrete to continuous, accepted to Phys. Rev. D (2013), arXiv:1306.3246 [gr-qc].

[51] M. Geiller and K. Noui, A note on the Holst action, the time gauge, and the Barbero-Immirzi parameter,
Gen. Rel. Grav. 45 1733 (2013), arXiv:1212.5064 [gr-qc].

[52] E. Witten, Quantum Field Theory and the Jones polynomial, Comm. Math. Phys. 121 351 (1989).
[53] E. Witten, Analytic continuation of Chern–Simons theory, (2010), arXiv:1001.2933 [hep-th].
[54] A. Ghosh and A. Perez, Black hole entropy and isolated horizons thermodynamics, Phys. Rev. Lett.

107 241301 (2011) arXiv: 11071320 [gr-qc].
[55] E. Frodden, A. Gosh and A. Perez, Quasilocal first law for black hole thermodynamics, Phys. Rev. D

87 121503 (2013), arXiv:1110.4055 [gr-qc].
[56] A. Ghosh, K. Noui and A. Perez, Statistics, holography, and black hole entropy in loop quantum gravity,

Phys. Rev. D (2014), arXiv:1309.4563 [gr-qc].

http://arxiv.org/abs/1011.2961

	I Introduction
	II Entropy of a rotating black hole
	A Rules for the analytic continuation
	B Number of microstates
	C Semi-classical limit and Bekenstein-Hawking law

	III The real Barbero-Immirzi parameter case
	IV Conclusion
	 References
	 References

