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We show that the non-Abelian nature of geometric fluxes—the corner-stone in the definition of
quantum geometry in the framework of loop quantum gravity (LQG)—follows directly form the
continuum canonical commutations relations of gravity in connection variables and the validity of
the Gauss law. The present treatment simplifies previous formulations and thus identifies more
clearly the root of the discreteness of geometric operators in LQG. Our statement generalizes to
arbitrary gauge theories and relies only on the validity of the Gauss law.

The phase space of general relativity admits a parametrization in terms of an SU(2) connection Ai
a (called the

Ashtekar-Barbero connection) and a canonically conjugated two-form Ei
ab = ǫijke

j ∧ ek—defined in terms of the

frame one-forms eia encoding the geometry of the spacelike hypersurface Σ that are proper to the 3 + 1 Hamiltonian
decomposition of spacetime [1, 2]. The commutation relations are

{Ei
ab(x), E

j
cd(y)} = 0

{Ai
a(x), A

j
b(y)} = 0

{Ei
ab(y), A

j
c(y)} = κγǫabcδ

ijδ(3)(x, y), (1)

where γ is the Barbero-Immirzi parameter [3, 4]. Phase space fields must satisfy first class constraints associated
with the gauge symmetry content of general relativity in connection variables. Here we only explicitly use the Gauss
constraint

dAE
i = 0, (2)

which arises from the local SU(2) gauge symmetry associated with the freedom of choosing the frame field eia(x) on
Σ. There is a basic set of functionals of Ei

ab that enter the construction of loop quantum gravity. These are given by
the flux operators across a 2-dimensional surface S ⊂ Σ which are defined as

Elqg(S, α) =

∫

S

αiE
i, (3)

where αi is a smearing field, here assumed to have compact support in Σ. In apparent contradiction with (1) the
Elqg(S, α) do not Poisson commute in a suitable sense, namely

{Elqg(S, α), Elqg(S, β)} ≈ κγElqg[S, [α, β]], (4)

where [α, β]i = ǫijkα
jβk and the ≈ sign is used in order to emphazise the central role of the Gauss constraint on the

appearance of such non-Abelian structure.
A key point of these notes is to point out the fact that the definition (3) is singular in the sense that these observables

do not generate a well defined Hamiltonian vector field in phase space. However, equation (4) can still be given a
meaning by noticing that there exist a closely related well-defined family of observables E(S, α) (in the sense that
they are generators on non-singular Hamiltonian vector fields in phase space) that coincide with the Elqg(S, α) on the
constraint surface defined by (2); i.e. Elqg(S, α) ≈ E(S, α). Moreover, for all well defined gauge invariant observables
O one has that

{Elqg(S, α), O} = {E(S, α), O}. (5)

As the gauge non-invariant fluxes (3) are of interest in LQG only because they can be used as fundamental building
blocks in the construction of the gauge invariant quantum geometry operators (such as area and volume [5, 6]), the
previous property amounts for equivalence between Elqg(S, α) and E(S, α) in physical applications.
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Non-commutativity of fluxes

Here we show that (4) is a simple consequence of the fact that the fluxes are 2-dimensional smearings of a 3-
dimensional distributional field. More precisely, is just the singular character of the smearing (3) that misleads to the
naive inappropriate expectation that these fluxes should commute. Equations (1) define the Poisson brackets between
suitably smeared observables in three dimensions. Thus, it is only after expressing (3) in terms of well defined
Hamiltonian functions—which involves an integral of a local density on a 3-dimensional region—that its genuine
dependence of the connection becomes discernible. Moreover, we will also uncover a clear geometric meaning of (4)
emerging naturally from our perspective.
Thus, the key is to provide a definition of the 2-dimensional integral in (3) in terms of a 3-dimensional observable

which is functionally differentiable in the phase space and coincides with the singular 2d smearing on the constraint
surface defined by (2). We assume, without loss of generality, that S is a closed surface—if the 2-surface S were not
closed we could always extend it to a new surface S′ in some arbitrary way in the region outside the support of α to
have it closed in a way such that Elqg(S, α) = Elqg(S

′, α). Now we define a new quantity E(S, α) as

E(S, α) ≡

∫

Int[S]

dAαi ∧ Ei

≈

∫

S

αiE
i = Elqg(S, α), (6)

where Int[S] ⊂ Σ is the region with S as its boundary, and in the second line the symbol ≈ reminds us that we
have used the Gauss law (2). Thus, on the constraint surface, E(S, α) coincides with Elqg(S, α): the singular two
dimensional smearing (3) of the Ei. One has succeeded in writing the flux variables as the three dimensional smearing
of local fields, now one can proceed and safely compute the Poisson bracket between different fluxes. Direct calculation
using (1) yields

{E(S, α), E(S, β)} =

∫ ∫

dx3dy3
{

dαi ∧ Ei + ǫijkA
j ∧ αk ∧ Ei, dβl ∧El + ǫlmnA

m ∧ βn ∧ El
}

= κγ

∫

dx3dA([α, β])k ∧Ek

= κγE[[α, β], S], (7)

where [α, β]k ≡ ǫkijα
iβk. This is the sought result.

1. Relation with the generators of gauge transformations in the presence of boundaries

Here we make an observation that leads to a clear geometric interpretation of the observables E(S, α). This
observation uses a general feature of gauge systems in the presence of boundaries that was first noticed in the context
of gravity some time ago [7]. The observation is that in the presence of boundaries the smeared Gauss constraint

GR(α) ≡
1

κγ

∫

R⊂Σ

αi dAE
i (8)

fails to be functionally differentiable due to the appearance of boundary terms. More precisely, computing its variation
we get

κγδGR(α) ≡

∫

R⊂Σ

αi dA(δE
i) + αi[δA,E]i

=

∫

R⊂Σ

−dAαi ∧ δEi + αi[δA,E]i +

∫

∂R

αiδE
i, (9)

with the appearance of a boundary contribution breaking functional differentiability. We can relate the above generator
to a functionally differentiable one ḠR(α) by appropriately subtracting a boundary term as follows:

ḠR(α) ≡ GR(α)−
1

κγ

∫

∂R

αiE
i

= −
1

κγ

∫

R

(dAαi) ∧ Ei. (10)
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The generators ḠR(α) satisfy the SU(2) local gauge algebra

{ḠR(α), ḠR(β)} = −ḠR([α, β]). (11)

However, in contrast with the Gauss law—which must vanish on-shell of the first class constraints GR(α) ≈ 0 for all
suitable smearings—ḠR(α) does not need to vanish 1. In fact it represents a non trivial SU(2) charge on the boundary
which is precisely related to the flux variables (6) by the equation

E(∂R, α) = −κγḠR(α). (12)

The previous equation explains why the algebra (4) is directly related to the symmetry algebra associated with the
generators ḠR(α) of the SU(2) gauge symmetry in the presence of a boundary. This completes the presentation of the
statements in these notes in the context of LQG. We hope this clarifies the geometric origin for the non-commutativity
of fluxes in loop quantum gravity which is especially important as can be shown to be the root from which discreteness
of quantum geometry stems [5, 6, 8].
Of course the status of (4) is well understood from previous works; however, we believe our demonstration—in the

form of the off-shell algebra (7) and in view of (5)—sheds a more direct light on the simple nature of this property
and its relationship with the symmetry algebra. For instance, in reference [9] the authors study the commutation
relations of an ensemble of observables that also includes the smearing of the connection Ai

a along one dimensional
paths via holonomies, and show that (4) follows from the consistency requirements imposed by the Jacobi identity.
This is a beautiful result but it makes strong use of the commutation relations between fluxes and holonomies and
thus somewhat obscures the simple nature of (4) which is valid with no need of discretization. In a more recent work
[10] the authors present a modification of the definition (3) that explicitly depends on the connection Ai

a in order to
give a ‘more natural’ account of (4). This analysis is certainly a valid way to proceed in the definition of fluxes in a
gauge theory. Nevertheless, we believe that our present treatment is simpler when aiming at illustrating the source
of non-commutativity in quantum-geometry. One additional reason for this is that, historically, the definition (3) has
been the most generally applied in LQG.

Another example: the Poisson sigma model

We have emphasized the role of the previous mathematical objects in the context of loop quantum gravity. The
reason is that the definition (3) is crucial in the construction of the kinematical structures that are at the foundations
of the Hilbert space of the theory that carry a unitary representation of spatial diffeomorphisms [11]. However, our
remark is general: it applies to lattice gauge theories and lies at the heart of the discreteness of the electric field
spectrum for gauge theories with a compact gauge group. Indeed, the above construction is pretty general. Other
interesting, nontrivial examples occur in BF theories [12, 13] and in the Poisson sigma model (PSM) [14, 15]. As the
case of BF theory is very similar to what we have discussed above, we would like to focus on the PSM to have an
example of different nature.
The PSM is a sigma model with target a Poisson manifold. To simplify the description, we work in coordinates

(that is, we assume the target to be R
n). The target data is a bivector field π, i.e., a collection of skew symmetric

matrices πij(x) depending smoothly on x ∈ R
n and satisfying

πij∂iπ
kl + πil∂iπ

jk + πik∂iπ
lj = 0. (13)

The fields of the PSM on a surface Σ, with local coordinates (σ1, σ2), are a set of functions X i and of one-forms
ηi = ηiµdσ

µ, i = 1, . . . , n. The action is

S =

∫

Σ

(

ηiµ∂νX
i +

1

2
πij(X)ηiµηjν

)

dσµ ∧ dσν .

A boundary component of a surface is a circle. It is however more interesting to fix boundary conditions η ≡ 0 on part
of the boundary, so the remaining boundary components are intervals. Let us fix an interval, say [0, 1]. If we denote

1 The algebra (7) can be completed to the holonmy-flux algebra in a standard way; see for instance Section 9.1.1 in [2] where the
quantization of ḠR(α) is defined.
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by ζi(t)dt the restriction to the boundary of ηi, the boundary fields are functions X i and ζi on [0, 1] with canonical

commutation relations {ζi(t1), X
j(t2)} = δ

j
i δ(t1 − t2) (all other brackets vanishing) and Gauss constraints

Ẋ i + πij(X)ζj = 0. (14)

An interesting observable is YPSM(α) := αiX
i(0), where α is a vector in R

n. We might naively expect
{YPSM(α), YPSM(β}) to vanish but this is incorrect [16]. In fact, using the Gauss constraints we may write

YPSM(α) = −

∫ 1

0

d(αiX
i) ≈

∫ 1

0

(αiπ
ij(X)ζj − α̇iX

i)dt =: Y (α),

where now α denotes a function on [0, 1] that reduces to the original constant α at 0 and vanishes and 1. We now
have

{Y (α), Y (β)} =

∫∫

{(αiπ
ij(X)ζj − α̇iX

i)(s), (βkπ
kl(X)ζl − β̇kX

k)(t)}ds dt =

=

∫ 1

0

[α̇iβkπ
ki(X)− αiπ

ij(X)β̇j + αiβk(π
ij(X)∂jπ

kl(X)ζl − ζj∂lπ
ij(X)πkl(X))]dt. (15)

By (13) and (14), and also renaming the indices, we then have

{Y (α), Y (β)} = −

∫ 1

0

(α̇iβkπ
ik(X) + αiβ̇kπ

ik(X) + αiβkπ
lj(X)∂jπ

ik(X)ζl)dt

≈ −

∫ 1

0

(α̇iβkπ
ik(X) + αiβ̇kπ

ik(X) + αiβkẊ
j∂jπ

ik(X))dt (16)

= −

∫ 1

0

d(αiβkπ
ik(X)) = αi(0)βk(0)π

ik(X(0)), (17)

which in general does not vanish. (Roughly speaking we may read this formula by saying that the correct value of
the bracket {X i(0), Xk(0)} is πik(X(0)).)

Note that in case the Poisson bivector field is linear—i.e., πij(x) = f
ij
k xk with f

ij
k the structure constants of a Lie

algebra—we are back to the case of BF theory and we can write the above Poisson bracket in the form {Y (α), Y (β)} =

Y ([α, β]), where [α, β] denotes the Lie bracket of the Lie algebra elements α and β (i.e., [α, β]i = f
jk
i αjβk).

We conclude with a brief general explanation of the above phenomena. Let us first recall the usual framework of
symplectic geometry. Here one starts with a closed, nondegenerate two-form ω (e.g., the usual dpidq

i) and associates
to every function f its Hamiltonian vector field Xf via the equation

ιXf
ω = df. (18)

Nondegenerate means precisely that for every f there is a unique Xf solving this equation. (In the usual case
ω = dpidq

i we get Xf,idq
i −X i

fdpi = ∂ifdq
i+ ∂ifdqi and hence Xf,i = ∂if , X

i
f = −∂if .) The Poisson bracket {f, g}

of two functions f and g is then defined as Xf (g), or equivalently as −Xg(f) or as ιXf
ιXg

ω.
We now move to the case when ω is possibly degenerate [17]. In this case, a function f such that (18) has solution is

called Hamiltonian and a vector field Xf solving it is called a Hamiltonian vector field for f . In the infinite dimensional
case there is also the interesting possibility of a weakly nondegenerate form (which is what usually occurs on spaces
of fields) with the property that the Hamiltonian vector field is uniquely determined, when it exists. If f and g
are Hamiltonian we still have {f, g} := Xf (g) = ιXf

ιXg
ω = −Xg(f), no matter which Hamiltonian vector fields we

choose. Also note that {f, g} is also Hamiltonian (with Hamiltonian vector field, e.g., [Xf , Xg]).
Let us now suppose that we have first class constraints, i.e., Hamiltonian functions φµ satisfying {φµ, φν} = fρ

µνφρ

for some structure functions fρ
µν . We denote by Xφµ

(a choice of) the Hamiltonian vector fields of the functions
φµ (recall however that in the weakly nondegenerate case this choice is unique). A function f is called invariant if

Xφµ
f = fν

µφν for some functions fν
µ . Note that if f is invariant, then so is f̃ = f + fµφµ for every choice of functions

fµ. We consider f and f̃ as equivalent. Note that, if f and g are invariant and Hamiltonian, then their Poisson
bracket {f, g} is also invariant; moreover, changing f and g to equivalent Hamiltonian functions changes {f, g} to
an equivalent function. Now the important point is that equivalence does not always preserve the property of being
Hamiltonian. In particular, it is possible that a non Hamiltonian, invariant function f is equivalent to a Hamiltonian
(and automatically invariant) function f̃ . We may then replace f with f̃ if we want to compute Poisson brackets, and

the particular choice of f̃ , as long as it is Hamiltonian, is irrelevant.
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In the examples coming from field theory, the form ω is local (and weakly nondegenerate). This in particular means
that local functionals are Hamiltonian. However, nonlocal functionals such as those obtained by integrating on a
submanifold (as in the above examples) are not Hamiltonian (their Hamiltonian vector field may formally be defined
in terms of a delta function with support on the submanifold, but this is not a smooth vector field on the space of
fields; moreover, applying a distributional vector field such as this one to a non local functional may generally lead to
a product of delta functions). The general trick, as explained above, is to replace the nonlocal functional at hand (if
possible) by an equivalent local one.
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