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1 INTRODUCTION 

Critical infrastructures (CIs) are essential in provid-
ing goods (such as energy and water) and services 
(such as banking and health care) for the welfare of 
modern society (Kröger and Zio, 2011). By means of 
a pervasive introduction of information technologies, 
CIs are becoming strongly automated and intercon-
nected. Although these new technologies have in-
creased the efficiency of CIs, they have also intro-
duced new unexpected accident scenarios: a failure in 
one system can propagate and cause failure in a con-
nected system, leading to cascade effects that can 
strike areas also very far from the impact zone.  

Identifying and uncovering these emerging behav-
iors, especially the most critical, can increase the 
knowledge on the system, and help defining of effec-
tive preventive and mitigating actions for the CI (Bier 
et al., 1999, Paté-Cornell, 2012, Zio, 2016, Zio and 
Aven, 2013). 

To this aim, mathematical models (and corre-
sponding computer codes) are used for reproducing 
the response of the CI to various perturbations and 
stresses. Due to the complexity, and the level of inter-
connectedness and interaction of modern CIs, such 

mathematical models can be: 1) complex, since the 
many relations between the variables can be nonlin-
ear; 2) large, since a high number of variables and pa-
rameters are introduced in the model; 3) dynamic, be-
cause the structure and behavior of the system 
evolves in time. As a result, the computer codes that 
numerically translate the mathematical models are 
computationally demanding, requiring a significant 
amount of time to run a single simulation of CI re-
sponse. In addition, since a large number of uncertain 
variables and parameters is contained in these models 
(e.g. parameters characterizing the CI structure, its 
failure and recovery dynamic characteristics, etc.), 
then a consistent amount of simulations is needed to 
explore the system state-space and obtain accurate 
and representative results of the system response be-
havior (Santner et al., 2003). 

In this context of highly dimensional parameter 
and variable spaces, and associated computationally 
demanding codes, one possible approach for explora-
tion is to resort to “guided” methods that intelligently 
search for conditions of interest (e.g. those that lead 
to the most severe outputs of the CI model) (Turati et 
al., 2016). However, the system response, including 
the emergence of critical conditions, is often most in-
fluenced by a limited subset of the model variables 
and parameters: identifying this subset and working 
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ABSTRACT: Modern Critical Infrastructures (CIs) are typically characterized by a large number of elements 
interconnected and interdependent. Their mathematical representation reflects these characteristics in models 
that typically turn out to be: 1) complex, since the relation between the variables can be nonlinear; 2) large, 
since a high number of variables is typically involved in the model; 3) dynamic, because the behavior of the 
system evolves in time. For this reason, the opportunities of exploring these models in order to extract infor-
mation, such as identifying the most critical events, is conditioned by the computational cost of a simulation 
run and by the number of variables to explore. In this paper, we investigate the possibility of reducing the 
dimensionality of a model by identifying the variables that affect it most, by means of the Elementary Effects 
(EEs) method, which is a sensitivity analysis method capable of screening the input variables resorting to a 
limited number of model evaluations. Since the performance of the method relies on its settings, we analyze 
them proposing at the same time possible improvements. A hybrid network for gas and power distribution is 
considered as case study. The objective is to rank the importance of some uncertain parameters of the network 
(e.g., its failure and recovery characteristics) with respect to the system resilience properties (i.e., the capability 
of mitigating the effect of components failures and/or recovering its performance). 



in the reduced state-space with the reduced model can 
significantly speed up the exploration process. 

In general terms, dimensionality reduction in-
cludes a number of strategies for identifying a lower 
dimensional variables subspace where it is possible to 
build a reduced and simplified, yet representative and 
understandable, model of the system behavior (Pudil 
and Novovicova, 1998, Liu and Motoda, 2012, Fodor, 
2002, Van der Maaten et al., 2009). Two main strate-
gies have been proposed: i) feature selection, which 
aims at selecting a subset of the available variables 
and parameters, input to the model, and ii) feature ex-
traction, which aims at identifying a subset of “new” 
features created by means of transformations of the 
initial ones. However, dimensionality reduction 
methods usually rely on a large set of input/output 
data examples, which is not typically available when 
the system model is computationally expensive to 
run. 

In alternative, sensitivity analysis methods can be 
employed to achieve the same final objective as fea-
ture selection, by ranking the (input) variables and pa-
rameters according to their influence on the output of 
the model. Among several sensitivity analysis meth-
ods (Borgonovo and Plischke, 2016, Helton et al., 
2006, Saltelli, 2008), we resort to the Elementary Ef-
fects (EEs) method (Morris, 1991), which is a quali-
tative screening method that has recently regained at-
tention in light of i) its relatively low computational 
cost (comparable with local sensitivity analysis) and 
ii) its global interpretation of the results in identifying 
the inputs that most affect the model (Campolongo et 
al., 2007, Campolongo et al., 2011, Ge et al., 2014, 
Ge et al., 2015, Ge and Menendez, 2014, Ruano et al., 
2011, Ruano et al., 2012, Saltelli et al., 2009, Sin et 
al., 2009, Janssen et al., 2012). However, in spite of 
the extensive research on the topic, a unified and gen-
eral agreement on how to implement the method in 
practice has not been reached yet: a) different random 
sampling strategies have been proposed for the selec-
tion of the design points (i.e., the input configura-
tions) on which the EEs have to be evaluated; b) dif-
ferent criteria for identifying the important inputs of 
the model have been defined. 

A case study of a CI consisting of a hybrid gas and 
electric power transmission network is considered, in 
order to: i) show the potential of the above mentioned 
strategies, ii) draw some conclusions regarding their 
performance, iii) provide some guidelines for setting 
the sensitivity analysis methods from an engineering 
viewpoint and, ultimately, iv) evaluate the importance 
of some network parameters (e.g. the failure and the 
recovery characteristics of the components) with re-
spect to the resilience of the network (Liu et al., 
2016), to highlight which variables should be chosen 
for a possible guided exploration method. For the pur-
pose of having a countercheck, the results have been 
compared to those obtained by a total order sensitivity 
index computed by a large number of simulations. 

The rest of the paper is organized as follows. In 
Section 2, the main idea of the EEs is given. In Sec-
tion 3, a review of the settings regarding the EEs 
method is provided. In Section 4, some improvements 
are proposed. In Section 5, a case study and the cor-
responding results are presented. In Section 6, some 
conclusions are drawn and prospective research chal-
lenges are suggested. 

2 THE EEs METHOD 

The EEs method allows quantitatively identifying the 
effect that a given input variable or parameter (here-
after also called factors)  (!), ! = 1,� , " has on the 
model output #. The method is based on the calcula-
tion of a number of incremental ratios, called Elemen-
tary Effects, on the basis of which some statistics are 
evaluated and used to characterize the influence of the 
different input variables and parameters 
(Campolongo et al., 2007, Morris, 1991). Considering 
a given configuration of the input vector $%, the EE 
for the i-th input  (!) is defined as follows: 
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where & is a given variation on the input variable 
or parameter whose effect on the model output is be-
ing evaluated. Intuitively, the higher the value of 
'*($), the more important the i-th input is (see the 
following Section 3.2 for details). A sequence of One-
At-a-Time (OAT) input variable EEs calculations on 
random configurations of the input vector X provides 
the method with global sensitivity analysis features. 

The main advantages of the EEs method are: a) it 
demands a limited number of evaluations of the 
model, as compared to other global sensitivity 
measures; b) it is defined on a very simple criterion 
(incremental ratio), which is easy to compute and 
communicate to decision makers. For these character-
istics, it particularly suits the analysis of models with 
a large number of inputs and/or computationally ex-
pensive to run. 

3 SETTING THE EEs METHOD 

In this section, we recall the current state of the art 
regarding the EEs method, with a particular focus on 
the settings that most affect its performance. For a de-
tailed description the reader is referred to the refer-
ences hereafter given. 

3.1 Design Of the Experiment (DOE) 

The values of the EEs (1) necessarily depend on the 
configurations of the input vector $ with respect to 



which they are evaluated. A number of proposals of 
design of experiments have been made in the litera-
ture for selecting such input configurations. They 
share the common goals of spanning as much as pos-
sible the input space in order to have a representative 
population of EEs (global analysis) and increasing, at 
the same time, the ratio between the number of EEs 
available and the number of evaluations of the model 
to limit CPU cost. In the Trajectory-Based (+-) de-
sign, trajectories of  + 1 steps are intelligently con-
structed in the state space by varying at each step only 
one input at the time, allowing the evaluation of an 
EE for each factor in each trajectory (Campolongo et 
al., 2007) and keeping the trajectories as far as possi-
ble from the other (Ruano et al., 2012, Ge et al., 
2014). In Cell-Based (!") design, a rectangular 
scheme for the system response evaluation allows the 
assessment of an additional index measuring the ef-
fects of the interaction between pairs of inputs 
(Saltelli et al., 2009). Finally, in the Radial-Based 
(RB) design, a set of well distributed base point is 
firstly designed and, then, the incremental ratio are 
computed radially around each point (see Appendix 
for details). 

3.2 Selection of the important factors 

A criterion for the identification of the important in-
put variables and parameters needs to be given. Since 
the number of important factors is unknown, the cri-
terion for the selection of the important factors must 
not only rank the factors according to their effects on 
the model output, but also identify the proper number 
of them. In practice, the selection is based on statistics 
evaluated on the population of EEs. Three main sta-
tistics are used: the mean of the EEs values 
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what follows, two ranking criteria are reported. 

3.2.1 Interval (Morris) 
The idea is to consider a factor as important if either 34 or 54 has a large value (Morris, 1991). To do so, 
the respective values of 34 and 54 are plotted on the 
same graph. In addition, the interval defined by two 
times the estimated Standard Error of the Mean 
6784 = 954 :;<>  is plotted. According to this plot, three 
regions can be identified (Figure 1): i) 34 large and 
outside ±9? @ 6784, i.e. the i-th factor is important and 
probably presents a linear relation with the output 
(dark grey); ii) 54 large and 34 A ±9? @ 6784, i.e. the i-th 
input is important, but probably presents a nonlinear 
relation with the output, or it has some interactions 

with the other inputs (light grey). It could be very 
promising during the exploration process to span 
more in detail this variable, since it can have both a 
positive and a negative effect on the output. iii) 34 and 54 are small, i.e. the i-th input does not affect the 
model (white) and, thus, they may be of no interest 
for the exploration method because, by assigning to 
them a fixed value, we are not going to lose a lot of 
variability in the model output.  

3.2.2 Average Of The Modulus (3B* 
In (Campolongo et al., 2007), the authors show em-
pirically that the ranking derived by using the mean 
of the modulus values of the Elementary Effects 34B 
agrees with the ranking based on the robust variance-
based total effect measure 6C (Homma and Saltelli, 
1996). Thus, as a possible rule-of-thumb, the factor i 
has an important influence on the model if 34B is larger 
than the average of 3B, i.e. if å =

>
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important factors can be conditioned by the presence 
of extremely important inputs, which can result in a 
misidentification of inputs that are important as well: 
as a consequence, a clustering method should be used 
for identifying different groups of inputs having pos-
sibly similar importance. 

Finally, it must be mentioned that in some practi-
cal cases, the number of inputs to be selected as im-
portant is set a priori, e.g. because they are the inputs 
for another model or because of some specific con-
straints. In this case, the ranking based on the above 
explained statistics is enough for selecting the desired 
number of important inputs. 

4 IMPROVEMENTS 

Regarding the Radial-Based strategy, we have ob-
served that if the approach  is applied as described in 
Appendix (Campolongo et al., 2011), some of the EEs 
may be evaluated with a null step, since the skip fac-
tor   does not guarantee that Sobol’ sequences asso-
ciated to different inputs always get different values 
(Sobol, 1967, Sobol, 1976). Table 1 reports the max-
imum percent number of points !" involving at least 
one equal value in the corresponding point #"$% lead-

Figure 1 Representation of the Morris intervals. 
 
Figure 1 Representation of the Morris intervals



ing, thus, to a useless EE evaluation, for 1000 differ-
ent starting points of Sobol’ sequences of 500 num-
bers and 20 inputs. Different values of the skip factor 
 = {4, 16,64,256,1024} have been tested recurring to 
different matrices of dimensions [500+s, 40]. A high 
percentage value means a large inefficiency in the se-
lection of the input configurations to be evaluated: the 
ideal result is zero, i.e. no repetitions. 

 
Table 1 Maximum percentage of degenerate EEs due to null 
steps occurring in the Radial-Based strategy for different values 
of the skip factor s and for different starting points of the Sobol’ 
sequences. 

% 4 10 16 64 256 1024 2048 

% of overlapping 15,2 12,4 16,4 6,4 6,4 3,2 1,6 

In order to tackle this problem, two novel strate-
gies are proposed in this paper: the first proposal 
(named, strategy 1) is to look for a Sobol’ sequence 
(initial point) and a proper value of the skip factor s 
that guarantee no degenerate EEs, i.e. no overlap be-
tween !" and #"$% for a desired number of samples R 
and dimension K. This can be achieved through a 
trial-and-error strategy that tests several initial points 
for the Sobol’ sequences and various skip factors. 
This verification is conducted without running the 
computationally demanding model, allowing the ex-
ploration of many configurations at a limited compu-
tational cost. 

In alternative (named, strategy 2), a matrix of 
Quasi-Monte Carlo QMC (e.g. Sobol’ sequences) 
values having & columns and 2' rows can be sam-
pled. Indeed, the first   rows guarantee a uniform se-
lection of the input points around which the screening 
analysis is developed (i.e., assuring a global sensitiv-
ity analysis); the last   rows guarantee the selection 
of other   values for each input, avoiding repetition. 
In order to guarantee that the selection of the design 
points is uniform in the input space (efficient global 
exploration), they have to be taken consecutively in 
the Sobol’ sequences. Thus, if the number   of EEs 
is not known a priori a practical solution is to overes-
timate the requested number  !"#$ of EEs and/or to 
set a maximum number  %&' of EEs to be evaluated, 
given the computational resources available. In this 
case, the matrix of QMC samples has dimensions 
(2 (min( !"#$,) %&'), *). 

5 ANALYSIS OF THE RESILIENCE OF A 
HYBRID GAS AND ELECTRICITY 
DISTRIBUTION NETWORK 

We consider a case study proposed in (Nozick et al., 
2004) and further developed in (Ferrario et al., 2015, 
Liu et al., 2016). It concerns a hybrid network Figure 
2 involving gas distribution (solid lines) and a power 
grid (dash-dotted lines), with real time flux optimiza-
tion provided by a Model Predictive Control. 

The gas network is composed of two gas suppliers,)+, 
and +-; two buffers (gas reservoirs), .+, and .+-; 
five transporters /, 0, 1, 3 and 4; and two users ., 
and .-. The electric power network has two convert-
ers (electric power generators),)5, and 5-, with a con-
stant conversion coefficient 6 = 78MWh 7)Mcf9 ; 
two transporters, :, and :-; and two users <, and <-. 
The objective of the system is to provide the neces-
sary amount of gas, .>, and .>-, and electricity, .?, 
and .?-, to the demand nodes. We refer the readers to 
(Liu et al., 2016) for further details concerning the 
model. 

The main objective of the analysis is to study the 
resilience of the system, i.e. the capability of mitigat-
ing the consequences of failures (hereafter called mit-
igation resilience) and of recovering system perfor-
mance upon having taken proper (repair) actions 
(hereafter called recovery resilience). We refer here 
to the definitions given in (Liu et al., 2016). These can 
enable us to understand which factors most character-
ize the system behavior in failure scenarios and that, 
thus, should be the objects of a thorough exploration. 
However, for the sake of brevity, we report in this pa-
per only the analysis concerning the recovery resili-
ence. 

 
Table 2 Set of the factors consider in the network failure. 

Factor Interval Factor Interval 

@$  [0 30 ]h  !  [50 120 ]h 

"#$ [0 3000] Mcf "#% [0 6000] Mcf 

&$: '$ [0 90] Mcf h-1 ($ [0 1.8] Mcf h-2 

&%: '% [0 180] Mcf h-1 (% [0 3.6] Mcf h-2 

&): * + , [0 300] Mcf h-1 () [0 6] Mcf h-2 

&-: , + . [0 170] Mcf h-1 (- [0 3.4] Mcf h-2 

&/: . + 0 [0 100] Mcf h-1 (/ [0 2] Mcf h-2 

&1: 0 + 2 [0 100] Mcf h-1 (1 [0 2] Mcf h-2 

&3: 4$ + 5$ [0 800] MW (3 [0 8] MW h-1 

&6: 4% + 5% [0 400] MW (6 [0 4] MW h-1 

Figure 2 Integrated gas distribution and power network. 
 



The factors affecting system resilience are both 
system parameters and the variables representing the 
magnitudes of the component failures characterizing 
the failure scenarios. In details, they are: the response 
time  7, i.e. the time needed to discover the failure 
and deploy the proper repair actions; the time horizon 
 !: from (Ouyang et al., 2012), we assume that a CI 
can recover to its nominal operational state after 2-5 
days from the occurrence of a failure; the initial stor-
age of the buffer "#$ and "#%: we assume that the 
buffers with initial storage at their highest level are 
capable of substituting the suppliers in servicing the 
system during the highest response time (i.e., 30 
hours); the magnitude of failure of a generic node or 
link 8, &9, which is limited by its maximum capacity; 
the recovery rate of a failed component (9. The 
ranges of variability of these factors are synthetized 
in Table 2. 

5.1 Recovery resilience 

Recovery Resilience, ;7, measures the rapidity of the 
system in recovering once the failure has been identi-
fied and proper repair actions are taken. The analyti-
cal expression taken from (Liu et al., 2016) is reported 
in what follows: 
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Since the case study tackles a hybrid network, the two 
flows (gas and electricity) have to be converted to a 
unique unit of measure, to allow comparison. To this 
aim, a conversion coefficient  !"#$

%  (1 if &% refers to 
gas flow, 0.1 if &% refers to power flow) has been in-
troduced for each user. The computational time for 
running a simulation of the model on a personal com-
puter (processor Intel(R) Core(TM) i5-4300 CPU @ 
1.90GHz 2.50 GHz) is around 8 sec. 

5.2 Sensitivity analysis 

A sensitivity analysis based on the EEs has been con-
ducted for identifying the variables and parameters 
that most affect '(. All three strategies for imple-

menting the EEs method (Section 3.1) have been ap-
plied. Only the plots of the results by the RB strategy 
are reported, for the sake of brevity. For each method 
both selection criteria of Section 3.2 have been uti-
lized and compared. The computational resources 
have been set for the different EEs strategies as simi-
lar as possible by resorting to similar numbers of 
model simulations, in order to allow a comparison be-
tween them. A fixed number of EEs is evaluated for 
the purpose of controlling the computational cost and 
time. In this respect, the number of EEs has been fixed 
according to the optimal criterion proposed for the CB 
approach in (Saltelli et al., 2009), leading to 376 
model runs and 16 EEs evaluations. For the other 
DOEs a similar number of model runs (i.e., 378) has 
been considered, leading to the evaluation of 18 EEs 
for each input. The experiments and the correspond-
ing assessments of the indicators for the selection of 
the important factors have been repeated 10 times, in 
order to account for the variability of the DOEs and 
explore the robustness of the results.  

By looking at Figure 3, it can be noticed that the 
factor that most affects '( is the failure )* of link + ,
-, followed by the factors .( / .0/ )1/ 2*/ )3/ )4. Fi-
nally, the factors )5/ 21/ 23/ 24 are identified as im-
portant only in some experiments: this means that 

Figure 3 Values of 67 for all inputs for 10 experiments. The dark 
marks identify the inputs having 67 larger than the average 
within the experiment. 
 

Figure 4 Morris representation of the statistics 6 and 8. Bold crosses represent the average value of the two statistics over 
10 experiments. 



they have a lower impact on '( than the parameters 
listed above, but they can still be taken into account 
in the modeling and in the corresponding exploration 
methods, according to the level of detail required by 
the analysis and depending on the associated compu-
tational constraint. Moreover, it can be observed that 
some recovery rates are important, especially those 
associated to important failures, suggesting that in the 
exploration of possible critical scenarios, the recovery 
rate of the most critical links must be considered as 
an influential variable to furtherly check. 

Figure 4 shows the values of the statistics 9 and : 
as for the Morris criterion. According to the values 
taken by 9, it can be seen that all the failures )% and 
the response time .( have a negative impact on '(, 
being 9% < ;; indeed, the more severe the failures and 
the later in time their detections, the larger the losses. 
On the other side, the recovery rates 2% as well as the 
time horizon .0 have a positive impact on '(. Indeed, 
on one side, the larger the recovery rate, the faster the 
system returns to a normal condition; on the other 
side, the longer the time horizon, the longer the time 
available to recover.  

The results obtained by the EEs method have been 
compared with the results obtained from the evalua-
tion of the total order sensitivity => values, which ac-
count for the total effects of a factor, including all its 
possible interactions with other factors (Homma and 
Saltelli, 1996). 
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where the numerator is estimated as in (Campolongo 
et al. 2011) with the same design matrices used for 
the design of experiment as in Appendix (Saltelli et 
al., 2010). In order to achieve a satisfactory conver-

gence of the estimated =>%, we set ' ? @;;, consid-
ering as important factor having =>% A B CD , similarly 
to the criterion described in Section 3.2.2. 

Regarding the improved sampling strategies pro-
posed in Section 4 for the selection of EF and GF, both 
have been implemented. In Figure 5, the convergence 
of the total order sensitivity indices is verified (at least 
for the most important factors), and the results are 
plotted in HIJ5K scale. It can be stated that apart from 
)*, three “clusters” can be identified: i) 
 !, "#, "$, "%, &'; ii)  #, &( ,  $; iii) the remaining 
factors. According to the criterion utilized, all the fac-
tors down to  # are identified as important (bold dark 
lines). However, by looking at Figure 5, it is more 
reasonable either to consider only "! and the factors 
of cluster i) or to add also all the factors of cluster ii), 
since they have similar importance among them. 

The results regarding strategy 2, here not reported, 
are affected by a bias in the estimate of one of the total 
order sensitivity indices )*+. An accurate analysis of 
the bias has shown that it is due to possible depend-
ences between -. and /. that are introduced in the 
sampling strategy when the sequel of the same Sobol’ 
sequence of -.012 is used for the selection of /.012. 
This dependence implies a limited extension of the 3 
steps defined by the difference /.012 4 -.012, that, in 
turn, could lead to a biased estimate of )*+. Figure 6 
reports the length of a fraction of the steps proposed 
by strategy 2 for &( (left), which has a limited exten-
sion, and for &' (right) whose steps, instead, are cor-
rectly distributed over the entire domain. Neverthe-
less, it must be pointed out that this drawback is 
relevant only if we are interested in evaluating the to-
tal order sensitivity index, while it does not affect the 
estimate of the EEs, since they are normalized by the 
length of the step during the evaluation (Eq. I). 

To conclude, we compare the factors that have 
been identified as important by the EEs method ac-
cording to the criterion proposed in Section 3.2.2 to 
those that have been selected by the total order sensi-
tivity indices. Table 3 reports the results obtained in 
10 runs with the all three designs of experiments dis-
cussed in Section 3.1 and those produced by the total 
order sensitivity analysis. The factors have been 
ranked according to the value of )*, which is taken as 

Figure 6 Convergence plots for the total order sensitivity indi-
ces. Factors having 567 > 89: are represented in bold. 

Figure 5 Length of the . steps utilized to evaluate 567, according 
to strategy 2 for factors ;. and ;<. 
 



the “reference index” for the importance of the fac-
tors. All the EEs designs are capable of identifying 
the most influential factors. However, it must be 
pointed out that in almost all the experiments, all the 
EEs methods identify &( as important, even if accord-
ing to )*+ it is less important than other factors. This 
might be related to the fact that according to Figure 4, 
&( has a lower value of =, i.e. the EEs of &( are less 
dispersed than those of "$ and  #; in other words, the 
EEs of &( depend less on the configurations selected 
by the design of the experiments. This could justify 
why &( has been identified in all the experiments has 
important, whereas "$ and  # have not. 

 
Table 3 Synthesis results produced by TB, CB and RB EEs meth-
ods for 10 experiments. The fraction of times that a factor is 
identified as important is reported. The final row represents the 
total order sensitivity indices )*+ for the same factors. 
  "!  ! "# "$ "% &'   # &(   $ "? @A#  % "B 

TB 1 0.8 0.8 0.8 1 1 0.4 0.9 0.3 0.5 0 0 0 

CB 1 0.9 0.9 0.8 1 1 0.5 1 0.2 0.2 0 0 0 

RB 1 1 1 0.7 1 1 0.7 1 0.1 0.2 0 0.1 0 

ST [10-²] 47 16 15 12 9 8 5 4 4 3 2 1 1 

 
In accordance with the analysis performed, we 

might claim that the EEs method is a practicable 
means for retrieving knowledge and information con-
cerning the model under analysis. In particular, it pro-
vides insight on the model factors that must be ana-
lyzed with higher attention. In contrast to the total 
order sensitivity analysis, the EEs method not only 
identifies the factors that most affect the model, but it 
also provides insights on the relation between each 
factor and the output. This information can be ex-
tremely useful in the context of accident scenario ex-
ploration. For example, if we are looking for the worst 
conditions the system could undergo in terms of resil-
ience, it is reasonable to focus the exploration on 
those factors having a large negative effect on  ! (e.g. 
the failure magnitudes "#, "$, "%, "& and the response 
time '(!) and to set to small values those that have a 
positive effect (e.g. the recovery rates )#, )$, )&,)%' 
and the time horizon (*). 

6 CONCLUSIONS 

In the present paper, we have addressed the problem 
of identifying, by means of sensitivity analysis, the 
factors that most affect the output of a CI model, 
providing insights for a proper dimensionality reduc-
tion and for a further exploration of the accident sce-
narios. In particular, we have analyzed the perfor-
mance of the EEs method with respect to its 
parameters settings, by application to a CI model of a 
hybrid network involving a gas distribution and a 
power grid. 

We suggest that the RB design of the experiments 
be employed, since it provides more robust results 

than the other designs and, at the same time, it easily 
allows incrementing the number of EEs evaluations, 
whenever more accurate results are needed. In this re-
spect, the strategies proposed in this paper aid the RB 
EEs method to avoid wasting computational re-
sources in the simulation of configurations that do not 
provide any additional information. Also, while +-' 
provides a synthetic and intuitive result of the im-
portance of a factor, the Morris representation pro-
vides some additional information regarding the pos-
sible input-output relations (e.g. linear, nonlinear, 
dependencies, etc.), and about the positive or negative 
effects of a factor on the output. 

Finally, with respect to the CI analyzed we ob-
served that half of the factors have been identified as 
important and among them a number of factors seem 
to have a nonlinear relation with the output, which re-
inforces the interest in further exploring their role in 
the model in order to find the most critical system 
configurations. 
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APPENDIX 

The radial-based strategy takes this name from the 
fact that the incremental ratios are evaluated radially, 
one input at the time, around a chosen base point 
(Campolongo et al., 2011). For each base point, one 
EE is assessed for each input. The desired cardinality 
of EEs,  , is achieved by choosing an equivalent 
number of base points. Quasi-Monte Carlo sequences 
(e.g. quasi-random Sobol’ numbers (Sobol, 1967, 
Sobol, 1976)) have been used for sampling the base 
points (Campolongo et al., 2011) and the correspond-
ing radial movements necessary to assess the incre-
mental ratios, because of their ability in spanning the 
input state space (!-dimensional hypercube). In de-
tails, the sampling strategy utilizes a matrix of 
( + ", 2!) quasi-random Sobol numbers, where the 
left half a of the matrix represents the base points and 
the right half b represents the corresponding radial 
movements. In order to guarantee that the movements 
are not null around the base points, a skip factor s is 
introduced (e.g. " = 4 in the referenced paper), see 
Figure 7 for a visual explanation. 

Given the r-th base point #$, the i-th EE is evalu-
ated as follows: 
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where the movement is obtained by changing the 
i-th component of the base point with the i-th compo-
nent of the corresponding row  !"#$ of the matrix b. 
It must be noticed that, in contrast with other design 
strategies, the radial-based one uses non-fixed varia-
tions of the inputs to evaluate the incremental ratios, 
being %!"#(&) ' *!(&) not constant. 

 Figure 7 Visual representation of the design matrices. 
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