Architectural style classification of Mexican historical buildings using deep convolutional neural networks and sparse features
Résumé
We propose a convolutional neural network to classify images of buildings using sparse features at the network’s input in conjunction with primary color pixel values. As a result, a trained neuronal model is obtained to classify Mexican buildings in three classes according to the architectural styles: prehispanic, colonial, and modern with an accuracy of 88.01%. The problem of poor information in a training dataset is faced due to the unequal availability of cultural material. We propose a data augmentation and oversampling method to solve this problem. The results are encouraging and allow for prefiltering of the content in the search tasks.