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ABSTRACT

The technical problem addressed in the present psplee assessment of the safety criticality afrgg
production systems. An empirical classification loid developed, based on the Majority Rule Sorting
method, to evaluate the class of criticality of ghent/system of interest, with respect to safétye model

is built on the basis of a (limited-size) set ofadeepresenting the characteristics of a numbefaofts and
their corresponding criticality classes, as assigneexperts.

The construction of the classification model maisaatwo issues. First, the classification examples
provided by the experts may contain contradictianszalidation of the consistency of the considered
dataset is, thus, required. Second, uncertaintgctffthe process: a quantitative assessment of the
performance of the classification model is, thaspiider, in terms of accuracy and confidence incthes
assignments.

In this paper, two approaches are proposed to daitid first issue: the inconsistencies in the data
examples are “resolved” by deleting or relaxingpextively, some constraints in the model constct
process. Three methods are proposed to addressdabed issue: (i) a model retrieval-based apprdagh,
the Bootstrap method and (iii) the cross-validateehnique.

Numerical analyses are presented with referenam tartificial case study regarding the classifamatof
Nuclear Power Plants.

KEYWORDS: Safety-criticality, classification model, data sistency validation, confidence estimation,

MR-Sort, nuclear power plants



1. INTRODUCTION

The ever-growing attention to Energy and EnvirontakefE&E) issues has led to emphasizing a systemic
view of the trilemma of energy systems’ safety aseturity, sustainable development and cost
effectiveness?. In particular, the assessment of the level dicality of existing energy production
systems in relation to safety is strongly demandgus has sparked a number of efforts to guide
designers, managers and stakeholders in (i) thitiefi of the criteria for the evaluation of safet
criticality, (i) its qualitative and quantitativassessmen?® and (iii) the selection of actions to reduce
criticality. In this paper, we mainly address tlemiral issue (ii) above, i.e., the quantitativeeasment of
the level of safety-related criticality of energyoguction systems. We use Nuclear Power Plants §NPP
as reference systems, as the study is motivatetthdoyeed of the Research and Development (R&D)
Department of Industrial Risk Management of Elettii de France (EdF) of developing a methodology
for aiding decisions on the selection of alterrmtafety barriers, maintenance options etc, whiske fan
impact on different system attributes and perforreandicators.

In practice, it is unavoidable that the analysistloé safety criticality of a system be affected by
uncertainty®, due to the long time frame considered, the intensnvestment of capital and the
involvement of multiple stakeholders with differeviews and preferenceé8®. Thus, it is difficult to
proceed with traditional risk/safety assessmenthodd, such as statistical analysis or probabilistic
modeling.

In this paper, we adopt an empirical classificatimproach and develop a classification model based
the Majority Rule Sorting (MR-Sort) meth& (which is a simplified version of the ELECTRE-Tri
method®®), The MR-Sort classification model contains a eeparameters that have to be calibrated
based on a set @mpirical classification examples (also called training ,set), a set of systems (called
alternatives in the terminology of the method) witiown classifications to which correspond critityal

classes, as assigneddwperts



Two practical issues may arise in the constructibrthe classification model. First, the classifioat
provided by the experts on the systems of theitrgiset may contain contradictions: a validatiorthef
consistency of the dataset is, thus, requiredhik gaper, two approaches are introduced to adthess
issue: the inconsistencies in the training data“mesolved” bydeletingor relaxing respectively, some
constraints in the process of model construétfinrSecond, due to the finite (typically small) sifethe
training set of classification examples usuallyilmde for the analysis of real systems, the penfomce

of the classification model may be affected bya(lpw (resp., high) classificatiaccuracy(resp., error);
(i) significant uncertainty, which affects tle@nfidenceof the classification-based evaluation model. In
our work, we define the confidence in a classif@manssignment as in Ref. 10, i.e., asphabability that
the class assigned by the model to a system isaoifhe performance of the classification model. (i
the classification accuracy — resp., error — ardcddnfidence in the classification) needs to besse:
this is of paramount importance for taking robustidions informed by the evaluation of the level of
safety criticality*?®?). In this paper, three different approaches arpgsed to assess the performance of
a classification-based MR-Sort evaluation modethim presence of small training datasets. The irat
model-retrieval based approaéH, which is used to assess the expected percentameéreassigning new
alternatives. The second is Cross-Validation (GV@iven number of alternatives from the entire sktta
is randomly selected to form the training set aeegate the corresponding model, which is, thesd trs
classify the rest of the alternatives in the dataBg so doing, the expected percentage model ésror
estimated as the fraction of alternatives incolyeassigned (as an average over the left-out dats.
third, is based ombootstrappingthe available training set in order to build arsemble of evaluation
models®®; the method can be used to assess both the agcamdcthe confidence of the model: in
particular, the confidence in the assignment ofvargalternative to a class is given in terms & fhll
(probability) distribution of the possible clas$esthat alternative (built on the bootstrappedeenisie of

evaluation models}?.



The methods are applied on an exemplificative stisgdy concerning the assessment of the overall leve

of safety criticality of NPPs: the characteristafshe plants as well as their categorizationspaovided

by experts of the R&D Department of Industrial Ridanagement of EdF.

The contribution of this work is threefold:

. classification models are used in a variety ofdeincluding finance, marketing, environmental
and energy management, human resources managenetitine, risk analysis, fault diagnosis
etc. @ to the best of the authors’ knowledge, this ie finst time that a classification-based
framework is applied for the evaluation of the safelated criticality of complex energy
production systems (e.g., Nuclear Power Plants);

. two approaches are developed for the verificatioth® consistency of the classification examples
provided by the experts: on the basis of the \@ifon, the training dataset is modified before
model construction;

. to the best of the authors’ knowledge, it is thstftime that the confidence in the assignments
provided by an MR-Sort classification model is ditatively assessed by the bootstrap method,
in terms of the probability that a given alternatis correctly classified.

The paper is organized as follows. The next Seqii@sents the basic framework for system critigalit

evaluation. Section 3 shows the classification rhagglied within the proposed framework. Section 4

describes the learning process of a classificatiodel by the disaggregation method. Section 5 deitths

the inconsistency study of the pre-assigned datas8ection 6, three approaches are proposedalyzan
the performance of the classification model. Thag, proposed approaches are applied in Sectioma7 to
case study involving a set of nuclear power plafitsally, Sections 8 and 9 present the discussfaheo

results and the conclusions of this research, otispdy.

2 GENERAL FRAMEWORK FOR THE EVALUATION OF SYSTEM

SAFETY-RELATED CRITICALITY



Without loss of generality, we consider that theeradl level of criticality of the system can be
characterized in terms of a set of six critefia= {x;', x,’, x3', x4/, x5", x¢'}: its level of safety, its level of
security and protection, its possible impact ongheironment, its long-term performance, its opere
performance and its possible impact on the comnatinitc and reputation of the operating company
(Figure 1.). These six criteria are used as théshasassess the level of criticality of the systé&tach
criterion is evaluated by experts in 4 grades, irap§rom best (grade ‘0") to worst (grade ‘3’). Huer
details about the “scoring” of the criticality of&h criterion are given in Appendix A. Four levéls
categories) of criticality are considered: satisfac (0), acceptable (1), problematic (2) and se3i@3).
Then, the assessment of the level of criticality ba performed within a classification frameworikdf
the criticality category (or class) correspondiaghe evaluation of the system in terms of thecsiteria

above. A description of the algorithm used to thigpose is given in the following Section.

Level of safety

Level of security and radioprotection
Possible impact on the environment
Level of system criticality
' Long-term performance

Operational performance

Impact on the communication and
reputation of the Operating Company

Figure 1. Criteria used to characterize the ovéeail of criticality of an energy production syster plant.

3 CLASSIFICATION MODEL FOR THE EVALUATION OF THE SYSTEM

CRITICALITY: THE MAJORITY RULE SORTING (MR-SORT) METHOD



The Majority Rule Sorting Model (MR-Sort) method & simplified version of ELECTRE Tri, an
outranking sorting procedure in which the assigrnoéran alternative to a given category is deteadin
using a complex concordance non-discordance®(fleWe assume that the alternative to be classified (
this paper, a safety-critical energy productiorteays e.g., a nuclear power plant) can be evaluattd
respect to am-tuple of elements’ = {x;’, x,’, x3', x4, x5", x¢'} (see the previous Section 2 and Figure 1),
in 4 grades, from best (‘0’) to worst (‘3"). In tipeesent paper, the n=6 criteria used to evalbhatsafety-
related criticality of NPPs include safety, segyrimpact on the environment etc, as describeceti@n
2 and shown in Figure 1).
The MR-Sort model allows assigning an alternaz = {z1,2,...., %5 ..., 7o} € X = X1 X X X ... x X; X ... x X, {0
a particular pre-defined category (in this papeclass of overall criticality), in a given orderedt of
categories{4": n=12,..,k} . As mentioned in Section 2, k = 4gmies are considered in this woa: =
satisfactory42 = acceptab4’, = problemeA®, ross.
The model is further specialized in the followingyw
-We assume tha: is a subseTf for € N and tieirgtervals(x?, x?,... xt....xF) oX; are
compatible with the order on the real numbers, ficg.all =} € x},«? € X, ....2} € X}, ...,=f € X}, we have
o} >} >..>al>..>2F, We assume, furthermore, that each intex!,h=23, ..k hasnallest
element! , which implies the! >bt:>2! . The vecy = {v},85, ...} ... br} (coritagnthe lower
bounds of the intervax? of critee =1,2,...,n in correspamce of categori) represents the
lower limit profile of categona” .
-There is a weighw:; associated with each critet =1,2,..,n, quantifying the relative

importance of criterioni in the evaluation assessment process; notice ttieatweights are

n

Zwizl

normalized such thi=
In this framework, a given alternatiz = {z1, 22, .7, ...z} IS assigteedategona®,h=1,2,...k , iff

WA Z w; <A
€Nz >bb and iev:z, >+ ) 1)

where) is a threshol0<A<1) chosen by the analyst. Reearhcan be considered as an



indicator of how confident the experts would likelte in the assignment: the higher the value of
A the stronger the evidence supporting the assignmesds to be. Actually, rul@) is interpreted

as follows. An alternativz belongs to categ4”y : (1) its evaluations in correspondence of the
n criteria (i.e., the valug{z1,22,...z;,...z.} ) are at least as gmbf (lower limit of categora*
with respect to criteriom),?=1,2,...,7, on a subset of criteria that has sufficienportance (in
other words, on a subset of criteria that has &l'teeight” larger than or equal to the thresthld
chosen by the analyst); and at the same time &dattal weight of the subset of criteria on which
the evaluation{z1,z2, .., =;,...,z,} are at least as goo”fﬁs (lowwitr ¢if the successive category

A1 with respect to criterion), : = 1,2,...,n, is not sufficient to justify the assignmentzatfo the

successive categor4™t! . Notice that alternaive dsigaed to the best categcdy if
UJZZ/\ Z wi < A
i€Nw; 2b} and it is assigned to the worst categAdxyy ien.>v:

The parameters of the model are tfthe— 1) -n lower limit profiles @ limits for the k-1
categories, since the worst category does not rme), the n weights of the criteria

wi,wa, .., Wi, -, wn, @and the thresholkl for a total ofk - n + 1 parameters.

For illustration purpose, a numerical example ¢égary assignment with=6 criteria anch=2 categories

is described in what follows, as shown in Figure 2:

Category2 Categoryl
A=0.9 b,
w,=0.15 nCritl = | X >
w,=0.25  nCrit2 } >
w=0.4  nCrit3 | >
w,=0.05 nCrit4 — 4 >
w=0.1 nCrit5 =~ =
we=0.15  nCrit6 - L P

Figure 2. Representation of illustrative exampl®/t-Sort model



For each of th@=6 criteria, a weighfw;,i = 1,2, ...,6} is assigned to represent its importance. The lower
boundb, is used to “separate” the=2 categories. The points connected by lines repteébervaluesx;)

of the 6 criteria describing the alternative to dbessified. In order to judge if this alternativancbe
assigned to “Categoryl” (best category, as inditaiethe arrows), we have to compare the valudef t
thresholdl = 0.9 with the sum of the weightsu{) of the corresponding points (criteria) that aaegér
than the profileb,. If the sum is larger, then the alternative shdmdassigned to the best category,
“Categoryl”, otherwise “Category2”. In this partiau case (Figure 2), the sumuw{ + w, +
w3=0.15+0.25+0.4=0.8) is smaller than the pre-defitimesholdi (= 0.9): the alternative is, thus,

assigned to “Category2”.

4 CONSTRUCTING THE MR-SORT CLASSIFICATION MODEL

In order to construct an MR-Sort classification mlpdwe need to determine the setkofn + 1
parameters, i.e., the weightw={wi,ws, ..., ws} , the lower profilb={s"¢,..0"...b*} | with

b = (83,85, .., b8, bR h=1,2,..k, @nd the threshol\ ; in this papAr, is considexeiiked, constant value
chosen by the analyst (e.)., =0.9 provides a sttonfidence in the assignments, as suggesté.in

To this aim, the expert provides a training setotdssification examplesPrr = {(@.T5).p=1,2,..Nrr} | .., @
set of Nrr alternatives (in this case, NPPs of givknpwn characteristicse, = (a1,43,..af,...a%) |
p=12,..,Nrg, together with the corresponding real pre-assigragdgories (i.e., criticality class&t:)
(the superscriptt” indicates thal» represents the true, a priorivinelass of alternativty ).

The calibration of thé - n parameters is done through the learning processlete in ®. In extreme
synthesis, the information contained in the trajnéetDrr is used to restrict the set of MR-Sort madel
compatible with such information, and to finallylest one among thenf. The a priori-known
assignments generate constraints on the paranwéttte MR-Sort model. I, such constraints have a
linear formulation and are integrated into a MiXateger Program (MIP) that is designed to sele&t on

(optimal) set of such parametw®  &9d (in othemdgioto select one classification moM(- |w”,b*) )



that is coherent with the data available and masésiia definedbjective functionin ©, the optimal
parameterw™* arb* are those that maximize the véline aninimal slack in the constraints generated by
the given set of daiDrr . Once the (optimal) classiibn modeM (- |w*,b") is constructed, it can be used
to assign a new alternaticz  (i.e., a new nucleawegp plant) to one of the performance classes
AMh=12,.,k: in other wordsM(z|w*b)=T¥ wherr¥ s the class assignedmmdel M(-|w*,b") to
alternativer and assumes one value an{4":h=1,2,...k} . Furtaitematical details about the training
algorithm are not given here for brevity: the readeeferred t¢® for more detailed information.

There are two main issues related to this disagdiey process and to the construction by the MR-Sor
classification model. First, for the given set oéjassigned alternatives, it is possible that sofmine
class assignments are not consistent, due toHattlifferent experts may give different judgmemthich
causes an internal inconsistency); for obtainingoenpatible classification model, the given training
dataset must be made consistent. Second, in masapelications, because of the finite (and typycal
small) numbelNrr of classification examples availalthe modeM(-|«*,b") can only give a partial
representation of reality and its class assignmemetsffected by uncertainty, which needs to bentified

to build confidence in the decision process basethe criticality level assessment.

In the following Section, the methods used in théger to study the consistency of a given training
dataset are described in detail; then, in Sectighrée different methods are presented to assess th

performance of the MR-sort classification model.

5 CONSISTENCY STUDY: VALIDATION AND MODIFICATION OF
THE SET OF CLASSIFIED ALTERNATIVES PRE-ASSIGNED BY

EXPERTS

As explained before, a sorting model assigns atems to ordered categories based on the evatuatio
a set of criteria. To develop such a model, itésessary to set the values of the preference psrene

used in the model, by inference from class assigmnexamples provided by experts. However,

10



assignment examples provided by experts candmnsistenunder two perspectives: either the examples
provided contradict each other, or it is the prfee model that is not flexible enough to accoanttie
way alternatives are classified. In the first cabe,expert would acknowledge a misjudgment andiavou
agree to reconsider his/her examples; in the secasd, the expert would not agree to change the
examples and the preference model should be chamgedoth cases, we refer to an inconsistency
situation. In any case, the expert needs to knoat whuses inconsistency, i.e., which judgmentsldhou
be changed if the aggregation model is to be kepich is the perspective taken in our cake)

The MIP algorithm summarized in the previous Sectimy prove infeasible in case the class assigranent
of the alternatives in the training set are incotilp@with all MR-sort models. In order to help tbeperts

to understand how their inputs are conflicting amdjuestion previously expressed judgments to learn
about their preferences as the interactive progestyes, we formulate two MIPs that are able tpfixid

one MR-sort model that maximizes the number ohing set alternatives correctly classified and (ii)

propose accordingly a possible modification forteatthe conflicting alternatives.

5.1 Inconsistency resolution via constr aints deletion

Resolving the inconsistencies can be performed éietidg a subset of constraints related to the
inconsistent alternatives. As shown in Figure Zhealternative’» can provide one or two constraints
with respect to its assignment: for example, altbves assigned to extreme categories, i.e.amd A,
provide one constraint, whereas alternatives asditm intermediate categories, i.e;,ad A, introduce
two constraints. Let us introduce a binary vari¢Ypléor each alternativy , which is equal to “1"aif

the constraints associatec»  are fulfilled, aspabéto “0” otherwise.

11
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A, Xy G Ya

Figure 3. Representation of constraints deletigorihm

The algorithm proceeds by “deleting” (i.e., rem@jithose constraints (i.e., those alternatives)dbanot
allow the creation of a compatible classificatiomdel, while maximizing the number of alternatives
retained in the training set (i.e., minimizing tember of alternatives that are not taken into aatjo by

so doing, we maximize the quantity of informatidratt can be used to generate a classification model

correctly. In other words, we obtain a MIP thatlgéea subsePTr € Drr  of maximal cardinality that

can be represented by an MR-sort model. The réadeferred td'® for more mathematical details.

5.2 Inconsistency resolution via constraintsrelaxation

Based on the algorithm presented in the previobsesttion, a subset of maximal cardinality that lban
represented by an MR-sort model is obtained. At dhme time, its complementary setdsleted
However, in order to help the experts understandhat way the identified inconsistent inputs cantfli
with the others, and guide them to reconsider arsdiply modify their judgments, a constraints raton

algorithm is here proposed.

12
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Figure 4. Representation of constraints relaxagigorithm

As presented in Section 5.3, each alterne’pre  pramide one or two constraints with respect to its
assignment. As presented in Figure 4, we introdlnedollowing binary variable<'r , for the alternats
originally assigned to extreme categories, i.ei, afvd A; % and?» for the alternatives originally
assigned to intermediate categories, i.e.,afdd A: In particular,’Yp+ refers to the fulfillment of the
constraint associated to the best category lowilespfwheread» refers to the fulfillment of the
constraint associated to the worst category loviilpso

As in the previous case, the algorithm identifiesubsePTr € DR of maximal cardinality that can
generate an MR-sort model with proper formulationaddition, for each of the alternatives that ao¢
accepted into the subsDrr , the corresponding ifgtens constraints are also targeted: for exaniple,
for one alternativ®» we obta?s =0 (res’]f?, =0 ), then #iternative should be classified in the best
(resp., worst) category; in other words, its or@jinssignment is underestimated (resp., overegiat

The same criterion is applied to the alternatiyes &are originally assigned to the best or wortdgrary.

6 METHODS FOR ASSESSING THE PERFORMANCE OF THE

CLASSIFICATION-BASED MODEL FOR CRITICALITY EVALUATION

6.1 Mode Retrieval-Based Approach

The first method of performance assessment is basdtie model-retrieval approach propose®inA

13



fictitious setpi? olNTr alternativel=;*:»=1.2...Nrz}  is generated &gdom sampling within the ranges
x, of the criterie¢¢ =1,2,...,» . Notice that the siNrr  of thetifious seipz? has to be the same as the
real training seDrr available, for the comparisonbt fair. Also, a MR-Sort classification model
M(-Jwmmdpend) i constructed by randomly sampling possible valud the internal parameters,
{wiri=1,2,..,n} and{b»:h=1,2,...,k—1} . Then, we simulate the behavior of an expgrtletting the
(random) modeMm(- |5 assign the (randomly generatedyraltivesiz;*:»=12..Nz:} . In other
words, we construct a training ox* by assigning ffandomly generated) alternatives using the
(randomly generated) MR-Sort model, iPi%* = {43 p=1,2,...Nra} | WIT)r&s the class assigned by
modelM( |,y to alternatives”™ | i.erd =M@ v red | Subsequently, a MdR-Sort model
M'(-]',b), compatible with the training sp¢ | is inferredngsthe MIP formulation summarized in
Section 3. Although modenm(: [wmmd brend)  aM'(-|o,b)  may be quite difig they coincide on the way
they assign elements p* |, by construction. In otdecompare models M and 'Mwe randomly
generate a (typically large) spiz?  obw alternativespiai = {sp*tm:p=1,2,..Nre} @and we compute the
percentage of “assignment errors”, i.e., the progorof theseNr.s: alternatives that models M and M
assign to different criticality categories.

In order to account for the randomness in the gaiver of the training sers? and of the model
M(-Jwmnsrend)and to provide robust estimates for the assighmearse, the procedure outlined above is
repeated for a large numkNse..  of random training pz%*.5 =1,2,...N.s; in @ddition, for each sgtthe
procedure is repeated for different random mows(|wrentbrendt) i =1,2,.., Nmoaets  The sequence of
assignment errors thereby generae;i, j = 1,2, ..., Nsets; L = 1,2, ..., Nimodeis , is, themaged to obtain a robust
estimate foe. The procedure is sketched in Figure 5.

Notice that this method does not make any use efotiginal training seDrr (i.e., of the training set
constituted by real-world classification examplés)this view, the model retrieval-based approzeh loe
interpreted as a tool to obtain an absolute evialiaif the expected error that an ‘average’ MR-Sort
classification modeM (- |w,b) witlk categoriesn criteria and trained by means of an ‘average’ skdtaf

given sizeNrr makes in the task of classifying a geweric (unknown) alternative.

14
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Figure 5. The general structure of the model-retiapproach

6.2 Cross-Validation Technique 919

This technigue characterizes the performance ofMReSort model in terms of average classification
accuracy (resp., error).

The procedure is as follows:

0. Set the iteration number g=1;

1. For a dataselr={@=T).r=12..Nua}  With pre-assigned alternativeslecs a learning set

D= {(@, T, 5= 1,2,... Nra} - (With %NM“NT“NTOM’) by performing random sampling without lsgement
from the giverD . The remaining alternatives aredugeform a test s&fs={(z..T}).s=12,...Nrs} , with
NTS = NTntal - NTR,.

2. Build a classification modfMa(-lwq,bg)}  on the basis @ thaining sebrx = (@, 1), s = 1,2,... Nex} .

3. Use the classification moc{Ma(-lwg:b4)} o provide a clids the elements of the corresponding
test seDrs = {(z,,I7),s=1,2,.... Nrs} .

4. The classification erre? on test Dis is coraguhs the fraction of alternatives b7s  that are
incorrectly classified.

Steps 1-4 are repeated ¢=1,2,..., B times (in this papet000). Finally, the expected classification

15



error of the algorithm is obtained as the averdgbeclassification error’.¢=1,2,...B , obtained on the

B test setPrs ¢=1,2,..,B . The general structure of the alyoris as shown in Figure 6.

Nrotat  assigned alternatives

Begin of loop

Nrgr  alternatives as training set | Nrotai — Nrr = Nrs alternatives as test set

compatible classification model

comparison of “new”
assignments with original
ones

End of loop
Expected accuracy of assignment

Figure 6. The general structure of the Cross-Vébdarechnique

6.3 The Bootstrap Method

A way to assess both the accuracy (i.e., the eggdéfcaction of alternatives correctly classifieddahe
confidence of the classification model (i.e., theb@bility that the category assigned to a givéserahtive

is the correct one) is by resorting to the boopstraethod®®, which is used to create an ensemble of
classification models constructed on different sets bootstrapped from the original dfi¢ The final
class assignment provided by the ensemble is laséte combination of the individual output of cles
provided by the ensemble of modéf

The basic idea is to generate different trainintaskets by random sampling with replacement from the
original one®, The different training sets are used to buildedént individual classifications. The
individual classifiers of the ensemble perform waksibly in differentegions of the training space and,

thus, they are expected to make errors on alteasatwith differentcharacteristics; these errors are

16



balanced out in the combination, so that the peréoice of the ensemble is, in general, superidrabdf
the single classifier$2),
In this paper, the output classes of the singlssifiers are combined byajority voting the class chosen
by most classifiers is the ensemble final assignmEne bootstrap-based empiriadiktribution of the
assignments given by the different classificatiardeis of the ensemble is used to measure the eoid
in the classification of a given alternatize , thapresents the probability that such alternatwe i
correctlyassigned¥@?),
In more details, the main steps of the bootstrgprahm here developed are as follows (Figure 7):
1. Build an ensemble oB (typically of the order of 500-1000) classificatiomodels
{M,(- | (wg,bg) : ¢ =1,2,..., B} by random sampling with replacement from the oa$jidataseDrr and
use each of the bootstrapped mo®y(- | wg,bg) to assigmasssl,q = 1, 2,...,B, to a given
alternativer of interest (notice tiT% takes a ®dludsn, h=1,2,..,k). By so doing, a bootstrap-
based empirical probability distributicP(4x|z),h=1,2,...k  for cabeg A~ of alternativer is
produced, which is the basis for assessing theidemfe in the assignment of alternatire . In
particular, repeat the following steps tpe 1, 2, ... B:
a. Generate a bootstrap dataPra.={(z,I}):p=1.2,... Nra} , by performing ranskmmpling
with replacement from the original data®rre={(T};):p=12..N}  Npp  Uihputput
patterns. The datasPrr. is, thus, constituted bysdme numbeNrr of input/output
patterns drawn among thoseDrr , although due tesdhepling with replacement some of
the patterns iDrr  will appear more than oncPrre  emghs some will not appear at all.
b. Build a classification moddM,(- |wq,b,) : ¢=1,2,..,B} | on the basis of lw®tstrap dataset
Drpg={(zp,T}) :p=1,2,.... Ny},
c. Use the classification modd(-|w,,b,)  to provide a clls,¢=1,2,..,B 0 at given

alternative of interest, i.€l'; = My(z | wq, bq)
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learning set -
DTR = {(Q:P!F;J)Jp = 1:2: wy NTR}

q=1 q=2 q=B=1000
erl, Xl, XZ'
xl: XZ! X_J’;
Drpgq X2 X3 e Xa
X5 ° Xg X7
¢ ¥ ¥
Iy [’y 1000
(Wyq,W5,Wy3, (W51, W5, W (Wgy, W2 W3,
W14, W15,W56) R, | Wpy, Wps, Wge)
14+ 15’. 16 w24’w25’w26)
14 ¥ '
T My(z | wy,b1)  Ma(z | wa,bs) M000( | w0005 P1000)

Figure 7. The bootstrap algorithm

2. Combine the output clas<%q¢=1,2,..,B  of the individuaksifiers by majority voting: the
class chosen by most classifiers is the ensembigramentz™ | i.e I = argmaznfcard,{TS = A*}]

3. As an estimation of the confidence in the majeroting assignmerl;™ (step 2, above),
consider the bootstrap-based empirical probabitiigtribution P(Ax |2),h=1,2,...k | i.e., the

probability that categor4, is the correct categgiyen that the (test) alternative #59; the

25:1 Ty = Ap}

Ap|z) = B , Whi{ly=4}=1 T,=A4, , and

estimator 0P(4x |z) here employed” (
0 otherwise.

4. Finally, the accuracy of classification is regmated by the estimatP(4x» |z)  (ratio of the number
of alternatives correctly assigned by the classiift;m models to the total number of alternatives).

The error of the classification model is definedresscomplement to 1 to the accuracy.

7 APPLICATION

The methods presented in Sections 4 - 6 are appliedn exemplificative case study concerning the

assessment of the overall level of safety-relateticality of Nuclear Power Plants (NPPS). The

18



characteristics of the plants and their categddmatire provided by experts belonging to the R&D
Department of Industrial Risk Management of EdF. Méntify n = 6 main criterii=1,2,..,n=6 by
means of the approach presented®irfsee Section 2):1x= level of safety, x= level of security and
radioprotection, x= possible impact on the environment,=long-term performancesx operational
performance andsx impact on the communication and reputation efdbmpany. Then, k = 4 criticality
categoriedn,h=1,..., k=4 are defined 4 = satisfactdey, =em@ableAs = problematic atd, =
dangerous (Section 2). The entire original datésetonstituted by a group of 35 NPTz with the
corresponding a priori-known categcr_éy (Table I).

In what follows, first we apply the two approacliesdata consistency validation (Section 7.1); thee
use the three techniques of Section 6 to assegetf@mance of the MR-Sort classification-basediaho

built using the training sDrr  (Section 7.2).
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Table I. Original training dataset

Criticality evaluation criteria
Alternatives Safety Secrurity and Impact on Long-term = Operational Communication and Category
the reputation of the Assignment
[NFPs) Radioprotection Environment Performance Performance  Operating Company (original set)

¥l 3 ] 3 3 0 2 3
x2 1 0 1 1 0 2 1
x3 1 o 1 2 0 1 2
x4 2 2 3 0 0 i 2
x5 3 1 2 3 0 1 3
X6 1 3 2 2 0 1 2
7 2 0 3 2 0 3 4
x8 2 2 3 2 o 0 1
¥9 1 0 2 0 0 0 1
*10 a ] 3 ] 0 2 3
x11 3 0 3 3 0 2 3
x12 1 1] 3 1 0 i 3
%13 1 1] 2 0 0 i 1
x14 2 0 0 0 0 1 2
%15 1 0 0 1] 0 o 1
16 1 ] ] ] 0 1 3
x17 2 0 0 2 0 1 3
x18 1 2 2 (1] 0 1 2
®15 o 0 1] o 0 1 3
x20 1] 3 0 0 i 0 4
%21 1 1] 2 1 i 0 4
%22 1 3 0 0 E 0 2
%23 1 0 1 o 1 0 1
x24 1 1] 2 1] 0 0 4
%25 1 0 0 0 i 0 1
*26 1 0 0 (] 0 0 2
x27 1 0 1] 1] 0 1 2
x28 1 1] 1] 0 0 i 2
x259 2 2 3 (1] 0 0 3
%30 2 2, 3 ‘] 0 0 2
x31 2 2 2 1 0 o 1
x32 3 ] 3 (1] o 3 2
%33 1 0 1 0 0 0 3
x34 3 0 0 1 0 3 3
%35 3 0 0 1] 0 3 2

7.1 Consistency study results

The application of the MR-sort disaggregation atppon on the given set of alternatives
D ={(z,T}) :p=1,2,...N =35} (Taple 1) does not lead to the generation of alagsification model
(infeasible solution by the MIP algorithm), becatisere are inconsistencies within the given dakerg

may exist different types of inconsistencies, lsttated in Table Il by two examples:
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Case 1:

Table Il. Examples of inconsistent assignments

Criticality evaluation criteria
Alternatives Safety Secrurity and Impact on Long-term  Operational Communication and Category
the Reputation of the Assignment
(NPPs) Radioprotection Environment Performance Performance  Operating Company (original set)
x16 L 0 0 0 0 1 3
x27 1 0 0 0 0 1 2
Case 2:
Criticality evaluation criteria
Alternatives Safety Secrurity and Impact on Long-term = Operational Communication and Category
the Reputation of the Assignment
[NPPs) Radioprotection  Environment Performance Performance Operating Company (original set)
%13 1 0 2 0 ] 1 1
x19 0 0 0 0 0 1 3

In Case 1, two alternatives:pand x%7) with same value for all the six criteria are gasid to different
categories (resp., 3 and 2). In Case 2, an alteeng&g) with better characteristics than anotheag)(with
respect to the six criteria, is assigned to a woasegory (3).

Such inconsistencies are solved below via consgralaletion (Section 7.1.1) and constraints relarat

(Section 7.1.2).

7.1.1 Inconsistency resolution via constraints deletion

We first consider finding out the consistent datagith maximized number of pre-assigned alternative
We analyze the given dataset by the constrainetidelalgorithm. In the given sD  of 35 alternasiy
14 are deleted, which leaves a consistent dataBePlo alternatives. The new consistent set
Daa = {(2pT}) :p=1,2,...Naa = 21} jg then, used to generate a compatible classditamodel
{Maa(-l(waa, baa)} by the MR-sort disaggregation algorithm. Thentladl alternatives in the original dataDst

. such assignmergs agth the results of the constraints deletion

are assigned a class by moM.q

process, i.e., only the deleted alternatives atecoorectly assigned (see Table lll, where the tedle
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alternatives are highlighted).

7.1.2 Inconsistency resolution via constraintsrelaxation

In the previous Section, we succeeded in obtainicgnsistent dataset from a given inconsistentbgne
deleting the inconsistent alternatives of a “wromgsignment. However, from the point of view of the
experts, it would be ideal to retain as many aétéves as possible in the training set, especialign the
size is limited (as is always the case for reatesys). This can be done by modifying the pre-define
(wrong) assignments of the inconsistent alternative

We examine the same Dt by means of the constnalaxation algorithm presented in Section 5.2.

After the application of the algorithm, we obtaimetsetPer = {(#pT}) :p =12, Nop =21} \hich is
identical to the sePaa={(zpT7):p=12,...Naa =21}  gptained in the previous eatisn (for the
alternatives in this set, the corresponding geadrabnstraints are consistent). The remainingredtares

form the sep.=p-p«r . However, this algorithm also allothe identification of two more sets: (i)

Dyp = {(mp,l“;)h; =0} (i.e., the set of alternatives whose assignmehtaild be better than the
original one, indicated in Table lll by a “+" in édhshadowed Table cells in column “Constraint
relaxation”); (ii) Paown = {(zp, Ty, =0} (i.e., the set of alternativedose assignments should be worse
than the original one, indicated in Table Ill by“d in the shadowed Table cells in the column
“Constraints relaxation”).

Based on the indications given by the Pws  Dicuwn € hawe modified each of the alternative:D.n
by one category in the direction suggested bydlaxation algorithm. Combining the alternatives &y
modified in D, with the ones inD.. , we obtain a new adet of 35 alternatives
Dretar = {(@p T,1*) i p = 1,2, ... Nriar = 35} A group ofNrg = 25 data CDretar  (Mmarked SER” in the first
column of Table Ill) is wused to build the trainingget Drr for the model, i.e.,
Drp = {(2p, ;" : p=1,2,.... Nrr = 25)}: the remaining 10 alternatives (marked“®S” in the first column

of Table Ill) are used for testing the model getestaln what follows, we consider the classificatio
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model generated using dataD:cia: and we assessfasence in terms of accuracy and confidence in

the assignments.

Table Ill. Original inconsistent dataset and theegponding modifications operated by the condt@gtetion and relaxation

algorithms

Criticality evaluation criteria
Alternatives Safety Secrurity and Impact on Long-term = Operaticnal Communication and Category Constraints | Constraints

the Reputation of the Assignment

[NPPs) Radioprotection Environment Performance Performance  Operating Company (original set) deletion relaxation
«1 (TR} 0 3 3 0 3 3 3

%2 (TR}
%3 (TR}
x4 (TR}
5 (TR}
6 (TR}
x7 (TR}
%8 (TR}
%9 (TR}
%10 (TR)
x11 (TR)
x12 (TR)
x13 (TR)
x14 (TR)
x15 (TR)
¥16 (TR)
x17 (TR}
¥18 (TR)
*18 (TR)
%20 (TR)
%21 (TR}
x22 (TR)
%23 (TR)
x24 (TR)
%25 (TR}
x26 (TS)
%27 (TS)
X2B (TS)
%29 (T5)
X30 (TS)
x31 (TS)
x32 (T5)
%33 (T5)
x34 (TS)
%35 (TS)

2

L]

Wow W e

T N S T R A S S SR Tr R SRR

L e e e e e e e e — B = e e e e R R R e T R e e
OHOOHNOODOD 000 HDODMNDO00KMDORMMMLWLDNE
0000000000 R0KRERMEMLO00000000000000000
WWwoWwe ooH LoD 0000 - H-OGERKER_RMDEWH B - B R
L T T R e T R I R E — R R R T B e e R T R e el - e R B R R
L T e = R B i S R R R E R R PR PRy PR PR S R R N )

DD oD NNNDDD DD D WD WO NDD D0 DD DD DN D W N oD
0D N W WD 0D 0MNMDNDONOD 00 MWW WA WA R W e

7.2 Assessment of the classification performance

7.2.1 Application of the Model Retrieval-Based Approach

We generatdVse:s = 1000 different training soi*,i=1.2,..Ne , and for esstp) we randomly generate
Nimodets = 100 modelsm(- | wrendt prandt) 1 =1,2, ., Nmosers = 100 . By SO doing, the expected accuracy) (@f the

corresponding MR-Sort model is obtained as the a@&0fNsets + Nmodets = 1000 - 100 = 100000 values

rand

(1—eu),j =1,2,..., Nsets,l = 1,2, .., Nmodets (S€€ Section 6.1). The SiNiest of the random tesDTz" is

Nyiesr = 10000, Finally, we perform the procedure of Section fd different sizeNrr of the random
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training sepsz* (even if the chosen size of the tngjrset in our following case studyNrr =25 | see
Section 7.1.2): in particular, we choNrr = 5,11,20,25,50,100 and 200 . Thislysia serves the purpose
of outlining the behavior of the accuracy&)las a function of the amount of classification rapées
available.

The results are summarized in Figure 8, where tleeage percentage assignment etr@ shown as a
function of the siz&Vrr  of the training set (fromdb200). As expected, the assignment esrtands to
decrease when the size of the trainincNrr ineeedbe higher the cardinality of the training seg
higher (resp. lower) the accuracy (resp. the exgketror) in the corresponding assignments. Comgatri
these results with those obtained by Leroy & aking MR-Sort models witk= 2 and 3 categories and

= 3-5 criteria, it can be seen that for a givere 9if the learning set, the error rate (resp. thiracy)
grows (resp. decreases) with the number of modanpeters to be determined, equaktm + 1. It can

be seen that for our model with= 6 criteria andk = 4 categories, in order to guarantee an error rate
smaller than 10% we would need training sets ctingi®f more thaiVzr = 100 alternatives. Typically,
for a learning set Nvr = 25 alternatives (as chdae®ection 7.1.2), the average assignment erisr
around 24%; correspondingly, the accuracy of the- 3R classification model trained with the dataset
Drr of sizeNrr =25 available in the present case is aroung € 76%: in other words, there is a
probability of 76% that a new alternative (i.e.,new NPP) is assigned to the correct category of

performance.
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Figure 8. Average Assignment ergof%) as a function of the siNrz  of the learningasmtording to the model retrieval-based

approach of Section 5.1

In order to assess the randomness intrinsic ipitheedure used to obtain the accuracy estimatecabay
have also calculated the 95% confidence intenalghie average assignment ewraf the models trained
with Nrr = 11, 20, 25 and 100 alternatives in thenireg set. The 95% confidence interval for the error
associated to the models trained with 11, 20, 2b1890 alternatives in the training set are [25.3%%],
[22.2%, 29.3%], [12.8%, 27.6%] and [10%, 15.5%]spectively. For illustration purposes, Figure 9
shows the distribution of the assignment mismatclit busing the Nsess - Nmodets = 100000  values

€, J = 1,2, .., Noets = 1000,1 = 1,2, ..., Nmoge1s = 100, generated as described in Section 5.1 for the c&25

alternatives.
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Distribution of Assignment Mismatch (25 alternatives)
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Figure 9. Distribution of the assignment mismatwha MR-Sort model trained wivrr = 25 alternatiyég

7.2.2 Application of the Cross-Validation Technique

A loop of B (=1000) iterations is performed, as presenteckicti®n 6.2. We takD.... as the training set
and generate a training €27z = {(z, ;") :p=1,2,.. Nrp =25} for each loop by peifg random
sampling without replacement from it. The testisdbrmed by the corresponding complimentary set of

Drr. The average error calculated is around 18%.

7.2.3 Application of the Bootstrap Method

A numberB (= 1000) of bootstrapped training sPrr.q:9=1,2,...,1000 of Nrr  25=is built by
random sampling with replacement frilDrr ~ (see Sedi@rR). The setDrrq are, then, used to tBain
= 1000 different classification modeMi, Ma, ..., Mo} . Then,th# data available (both the training and
test elements) are classified by the ensemble.

Notice that all the training patterns are assigmgdajority voting to the correct cla8®: in other words,
the accuracy of the ensemble of models on theitigiset is 100%. Then, a confidence in the assighme
is also provided. In this respect, Table IV repthts distribution of the confidence values assediab the

class to which each of the 25 alternatives has besigned.
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Table IV: Number of patterns classified with a givanfidence value

Confidence (0.6,0.7] (0.7,0.8] (0.8,0.9]
range
3 1 11 9

Number of 1
patterns

Thus, a fraction @20/25=80% of all the alternatives (ithe critical plants) of the training set are cotie
assigned with confidence bigger than 0.8.

The ensemble of models can also be used to classifyalternatives, e.g., the alternatives in tisé et
Drs (see Section 7.1.2). Figure 10 shows the probgbiiistributions of the 10 elements of
P(Aplzp),h=1,2,...k—4,p=1,2,..,Nrs = 10, empirically generated by the ensembleBof 1000 bootstrapped
MR-Sort classification models in the task of cl@gsg the Nrs = 10 alternatives of the test set
Drs ={x1,22,...,on:5}. The categories highlighted by the rectanglesttaecorrect ones, as obtained by the
constraints relaxation algorithm (Section 7.1.2hl€dll). It can be seen that six alternatives, (X7, Xzs,

X20, X30 and x%3) over 10 are correctly assigned: in other words,accuracy of the informed bootstrapped
ensemble is arours/10 = 60%

Then, for each specific test pattegnthe distribution of the assignments by e 1000 classifiers is
analyzed to obtain the corresponding confidencewBy of example, it can be seen that alternaves |
assigned to Clas4? (the correct one) with a confideof P(4*z) =0.931 , whereas alternativizs  is
assigned to Clas4!  but with a confidence of (A![zs) = 0.856

More importantly, it can be seen that the 4 altévea incorrectly classified §x Xs2, X1 and %s) are
assigned a class close to the correct one; iniaddithe “true” class is given the second highest
confidence in the distribution. For example, alédivezss is assigned to clad%  insteau®f  with 68%

confidence; however, the true Clia® s still gimezonfidence of 32%.

27



X26 X27 X8 X29 X39
pp— 4 0_.93.1| g 0931 g .tl?.?li g m&f]
3-. 0.8 (=] 3 0.8 ; | 3- 0.8 | 3-. 0.8 1 | 3-. 0.8 1 |
S 06 1 S 06 S 06 - i S 06 B S 06 i
3 3 i1 2 | 3 8 |
2 0a T 8 04 i 2 04 - i - B oa i 2 04 m
a ‘ 0.144 a ‘ | a I = I a I
02 T 02 “goes | | 02 0068 | 02 I 02 9
‘ f 0o o0 \ﬂ |o.001 o | 0.001 0 o 0.026 0.003 0 0.009 |D.006
0 I p = 0 L 0 L 0 H 1
1 2 3 4 12 3 4 1 2 3 4 1 2 3 4 12 3 4
Category Category Category Cateigory Category

confidence = 0.856 confidence =0.931 confidence=0.931 confidence =0.971 confidence = 0.985

X31 X3z X33 X34 X35
1 1 1 s 1 1
0.773 |
2z 08 5EEE 08 Z 08 | | 08 068 3 08 0:68
S 06 5 06 S 06 S 06 5 06
A 2 ol | 2 o | 2
g 04 o1e i g 04 T g 04 - g 04 .32 g 04 | : ‘
B 02 =T - 802 8 02 ‘ 2 02 i ¥ ‘ ‘
0 0 o | 0o 0 ) o o
il 18 N UL IN RS i i | e 1 I
1 2 3 4 i 2 3 4 1 2 & 4 1 2 3 4 1 2 3 a
Category Category Category Category Category

confidence =0.18  confidence =0.227 confidence=0.838 confidence=0.32  confidence = 0.32

Figure 10. Probability distributions examplesl(An|zp), h =1,2,....k —4,p =1,2,..., Nrs = 10 obtained by the ensemble®E

1000 bootstrapped MR-Sort models in the classificadf the alternative?»  contained in the trainsetDrz

8 DISCUSSION OF THE RESULTS

The analysis of the inconsistencies of the origifeihset has ensured the generation of a coheaanng
set and, correspondingly, of a compatible classifin model for system criticality evaluation:
Dy ={(2p, ;7" : p=1,2,... Nrr = 25)} generated by constraints relaxation.

Then, three methods have been used to assess rioenaamce of the classification model thereby
generated: the three methods provide conceptuatlypsactically different estimates of the perforcan
of the MR-Sort classification model.

The model retrieval-based approach provides a geteeral indication of the classification capaypitiff

an evaluation model with given characteristics. uatly, in this approach the only constant, fixed
parameters are the siNrr  of the training set (dwethe number of real-world classification exansple
available), the number of criteffaand the number of categorieggiven by the analysts according to the

characteristics of the systems at hand). On thsssbthe space of all possible training sets zdNrr
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and the space of all possible models with the almeationed structuren(criteria andk categories) are
randomly explored (again, notice that no use is anaflthe original training set): the classification
performance is obtained as an average over thébfmsandom training sets (of fixed size) and rando
models (of fixed structure). Thus, the resultinguaacy estimate is a realistic indication of thpented
classification performance of an ‘average’ modélgi@en structure) trained with an ‘average’ traipiset

(of given size). In the case study consideredatlerage assignment error (resp. accuracy) is ard4¥d
(resp. 76%).

The cross-validation method has also been usedidatify the expected classification performance in
terms of accuracy. In order to maximally exploit tmformation contained in the available dataset,
B=1000 training sets of si:Ntr =25 are generated byamngampling without replacement from the
original set. Each training set is used to builch@del whose classification performance is evaluated
the ten elements correspondingly left out. The ayererror rate (resp. accuracy) turns out to be 18%
(resp. 82%).

On the contrary, the bootstrap method uses thairngniset available to build an ensemble of models
compatible with the dataset itself. In this case,d® not explore the space of all possible traisiets as

in the model retrieval-based approach, but ratiesspace of all the classification models compatitith
that particular training set constituted by reakd@xamples. In this view, the bootstrap approsetves
the purpose of quantifying the uncertainty intrinisi the particular (training) dataset availableewhused

to build a classification model of given structuiiee., with given numbers and k of criteria and
categories, respectively). In this case study,abeuracy evaluated by the bootstrap method istbligh
lower than that estimated by the model retrievaelsapproach, with an error (accuracy) rate eqli¥s
(60%). However, notice that differently from the deb retrieval-based approach, the bootstrap method
does not provide only the global classification fpenance of the evaluation model, but also the
confidence that for each test pattern a class@sdigy the model is the correct one: this is giveterms

of the full probability distribution of the perfolance classes for each alternative to be classified.
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9 CONCLUSIONS

In this paper, the issue of assessing the critycalf energy production systems (in the case study
considered, nuclear power plants) with respectfferdnt safety-related criteria has been tacklethiv
an empirical framework of classification. An MR-8anodel has been trained by means of a small-sized
set of training data representing a priori-knowiticality classification examples provided by exgefin
our case study, from the Research and Developm®&D) Department of Industrial Risk Management of
Electricité de France (EdF)).
Inconsistencies and contradictions in the initiataget have been resolved by resorting to constrain
deletion and relaxation algorithms that have maz@dithe number of consistent examples in the trgini
set that can be coherently used to build a conpatlbssification model.
The performance of the MR-sort model has been ateduwith respect to: (i) its classificatiancuracy
(resp., error), i.e., the expected fraction of gratt correctly (resp., incorrectly) classified;) (the
confidenceassociated to the classification assignmentsr(edfas the probability that the class assigned
by the model to a given system is the correct olme)particular, the performance of the empirically
constructed classification model has been assdssedsorting to three approaches: a model retrieval
based approach, the cross-validation techniquetlaadootstrap method. To the best of the authors’
knowledge, it is the first time that:

. a classification-based framework is applied for thigicality assessment of energy production
systems (e.g., Nuclear Power Plants) from the pifisiew of safety-related criteria;

. the confidence in the assignments provided by the-3drt classification model developed is
assessed by the bootstrap method in terms of tigapility that a given alternative is correctly
classified.

From the results obtained in the case study, itbmegoncluded that although the model retrievatbas

approach may be useful for providing an upper boandthe error rate of the classification model

(obtained by exploring the space of all possibladoam models and training sets), for practical
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applications the bootstrap method seems to be auleifor the following reasons: (i) it makes usetaf
training dataset available from the particular casgly at hand, thus characterizing the uncertainty
intrinsic in it; (ii) for each alternative (i.e.afety-critical system) to be classified, it is abbeassess the
confidence in its classification by providing theolpability that the selected performance classhés t
correct one. This seems of paramount importantesimecision-making processes performed on tha basi
of the assessed safety-criticality, since it presid metric for the ‘robustness’ of the decision.

In the future, the methodology could be furtheraedeped for applications applied to other probleeng,

the NRC's Risk-Informed Regulatory Oversight Pragran which reactors are assigned to different

classes with reference to the amount of regulatweysight performed.
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APPENDIX A. Criticality levels associated to the criteria used for theintegrated assessment of a
system from the point of view of safety criteria (Section 2)
In what follows, the criticality “scores” associdt® each classification criterion introducedsection 2

are specified.

Level of Safety

T

! ' ] 1
Update Acceptable:
conformity only preventive

action needed

|

2 : 3
Problematic: Serious:
Mandatory action Mandatory action
needed with possible needed without
delay delay

Figure A.1 “Scoring” of criticality for criterionlievel of Safety”
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Level of Security
and
Radioprotection

T

3 3
Serious: Serious: Potential Update Acceptable:
mandatory observed event radiation conformity on other
action needed with serious exposure non-replaceable radioprotection
¥ ; radiation components issues
exposure
3 2 3 2
Serious: Problematic: Serious: Problematic:
improvement no improvement improvement no improvement
in radiation in radiation in radiation in radiation
exposure level exposure level exposure level exposure level
needed needed needed | needed

Figure A.2 “Scoring” of criticality for criterionllevel of Security and Radioprotection”

Possible Impact
on the

Environment
F

I ] 1
Update Acceptable:
conformity only preventive

action needed

F

2 3
Problematic: | Serious:
mandatory action mandatory action
needed with possible needed without
delay delay

Figure A.3 “Scoring” of criticality for criterionl’evel of Possible Impact on the Environment”
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Long-term
performance

[ 1
Update conformity on
non-replaceable

Acceptable:
updatt conformity on

components
P . replaceable components
2 3
Problematic: Serious:
mandatory action mandatory action
needed with possible needed without
delay delay

Figure A.4 “Scoring” of criticality for criterionllevel of Long-term performance”

Operational
Performance
1 2 ’ 3
Acceptable: Problematic: Serious:
potential impact on potential impact on potential impact on
plant unavailability plant unavailability plant unavailability
< 2 days 2< U< 7days > 7 days

Figure A.5 “Scoring” of criticality for criterionlevel of Operational performance”

Impact on the
communication and

reputation of the operating
company
1 2 [ 3
Acceptable: Problematic: Serious:
potential impact on potential impact on potential impact on
communication commumcahon 3"‘_1_ communication and
within the operating reputation for a specific reputation for the
company group site operating company

Figure A.6 “Scoring” of criticality for criterionLl:evel of Impact on the Communication and reputatibthe Operational

Enterprise”
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