
HAL Id: hal-01436511
https://hal.science/hal-01436511

Submitted on 16 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NEmu: A distributed testbed for the virtualization of
dynamic, fixed and mobile networks

Vincent Autefage, Damien Magoni

To cite this version:
Vincent Autefage, Damien Magoni. NEmu: A distributed testbed for the virtualization
of dynamic, fixed and mobile networks. Computer Communications, 2016, 80, pp.33-44.
�10.1016/j.comcom.2016.01.005�. �hal-01436511�

https://hal.science/hal-01436511
https://hal.archives-ouvertes.fr

NEmu: a Distributed Testbed for the Virtualization of Dynamic

Fixed and Mobile Networks

Vincent Autefage, Damien Magoni∗

University of Bordeaux, LaBRI

351, Cours de la Liberation

33400 Talence, France

Abstract

Experimentation is typically the last step before launching a network application on a large production scale. However,
it is often difficult to gather enough hardware resources for experimenting with a reasonably sized distributed appli-
cation inside a controlled environment. Virtualization is thus a handy technique for creating such an experimentation
testbed. We propose a tool called NEmu designed to create virtual dynamic networks by using emulation for testing and
evaluating prototypes of networked or distributed applications with a complete control over the network topology and
link parameters. NEmu leverages system emulators such as QEMU for virtualizing the hosts and the routers. It uses
vnd for virtualizing components such as links and switches. In addition, NEmu allows users to create such customized
topologies with limited hardware resources and without any administrative rights. We validate NEmu by replicating
two network experiments and by showing that NEmu gives results very similar to the original ones.

Keywords: Emulation, mobile, network, testbed, virtualization.

1. Introduction

Experimentation is important to realistically and ac-
curately test and evaluate network applications. Exper-
imentation on algorithms is usually made by simulation.
This technique is available through well known software
like ns [1] or OMNeT++ [2] and enables to evaluate the
efficiency and the scalability of algorithms or protocols.
Experimentation on a real program, i.e. implementation,
is different to the extent that it is more focused on execu-
tion time, processor usage, memory consumption, network
properties, etc.

It can be a difficult task when trying to experiment
with a network application involving dozens of machines or
more. Moreover, the mobility or the dynamics of scenarios
can drastically increase the difficulty of experimentation.
Using the Internet as a test bed is impractical as no pa-
rameters can be controlled. Setting up a hardware test
bed is expensive and cumbersome. Furthermore, network
applications can have very different ways of connecting
hosts to each others and changing the network topology
and network parameters of a hardware test bed is time
consuming and error prone. Virtualization techniques for
creating such an experimentation test bed can save re-
sources and ease manipulations. It is a proven method

∗Corresponding author: phone: +33-5-4000-3540, fax: +33-5-
4000-6669

Email addresses: autefage@labri.fr (Vincent Autefage),
magoni@labri.fr (Damien Magoni)

for reducing the equipment and space costs as well as the
energy consumption of using physical hosts [3].

Our solution to overcome the above hardware constraints
is thus to build a test bed able to set up virtualized net-
works. A virtual network uses virtual machines instead
of physical hosts and connects them with virtual links in
order to build a virtual network topology. The virtual ma-
chines of a virtual network can be hosted on one or several
physical hosts depending on the number of virtual ma-
chines needed and the resources capacities of the physical
ones.

We propose a tool designed to create virtual networks
for testing and evaluating prototypes of applications on
the top of static, dynamic or mobile networks with a com-
plete control over the network topology and link properties
(bandwidth, delay, bit error rate, etc.) and the mobility
of nodes. The goal of our tool is to enable the creation
of reasonably sized virtual networks while minimizing the
number of necessary physical hosts and network equip-
ment needed. It can build host-based overlay networks
by using emulators such as QEMU [4]. We have called
our tool NEmu which stands for Network Emulator for

mobile universes because it is able to create both fixed
and mobile emulated networks. It is also a tribute to the
name of the QEMU software which is a powerful machine
emulator heavily used by NEmu. The contributions of our
work are as follows:

• A detailed description of our NEmu software which
is able to manage a distributed set of virtual nodes

Preprint submitted to Computer Communications January 14, 2016

and links for emulating any arbitrary static, dynamic
or mobile network topology (Section 2).

• A detailed description of our nemo tool which im-
plements the mobility inside NEmu and enables to
create a complete autonomous mobile network by
following a predefined scenario (Section 4).

• A performance validation experiment by making a
comparison between NEmu and Mininet [5] (Section
5).

• A state of the art on related and previous work tar-
geted at networking emulation and a comparison of
the features provided by NEmu with the ones offered
by similar alternative virtual networking testbeds
(Section 6).

This paper is an extended and revised version of our pre-
vious work published in [6].

2. Description of NEmu

2.1. Overall Design

NEmu is a python program consisting of 6000 lines
of code which allows to build a dynamic and distributed
virtual network infrastructure. It is based on the concept
of Network Virtualization Environment (NVE) introduced
by N. Chowdhury and R. Boutaba in [7]. The main charac-
teristic of a NVE is that it hosts multiple Virtual Networks
(VN) that are firstly not aware of one another, and that
are secondly completely independent of each other. A VN
is a set of virtual nodes connected by virtual links in order
to form a virtual topology. NEmu provides the possibility
of creating several virtual network topologies with the cen-
tral property that a VN is strictly disjoint from another in
order to ensure the integrity of each VN.

Thus, NEmu integrates characteristics that are funda-
mental to a NVE: First, the flexibility and heterogeneity

allows the user to construct a customized topology, with
custom virtual nodes and virtual links. The scalability al-
lows different virtual nodes to be hosted by different phys-
ical hosts in order to avoid limitations of a unique physical
machine. The isolation decouples the different virtual net-
works which run on the same infrastructure. It also guar-
anties a strict separation between the host and the virtual
networks. The stability ensures that faults in a virtual
network would not affect another one. The manageabil-

ity ensures that the virtual network and the physical in-
frastructure are completely independent. Therefore, a VN
created on an infrastructure A can be deployed on another
infrastructure B. The legacy support ensures that the NVE
can emulate former devices and architectures. Finally, the
programmability provides some optional network services
to simplify the use of the virtual network (such as DHCP,
DNS, etc.). It also implies that the user can develop and
integrate his own additional services.

In addition, NEmu includes three important extra prop-
erties:

• The accessibility which means that NEmu can be
fully executed without any administrative rights on
the physical infrastructure. Indeed, the major part
of public infrastructures, like universities and lab-
oratories, does not provide administrative access to
their users in order to ensure the security and the in-
tegrity of the whole domain. Therefore, the user ex-
ecution would allow most people to use NEmu freely.

• The dynamicity of the topology enables node hot-
connections which means that a virtual node can join
or leave the topology dynamically without perturb-
ing the overall virtual network.

• The mobility of nodes provides a way to create a self
defined topology evolution through time and space.
In other words, it is possible to create an autonomous
connectivity scenario.

• The community aspect of the virtual network pro-
vides the possibility for several people to supply vir-
tual sub-networks in order to build a community net-
work like the Internet is.

2.2. Network Elements

NEmu is a distributed virtual network environment
which allows users to create arbitrary and dynamic topolo-
gies. To this end NEmu is based on different building
blocks. NEmu uses virtual nodes connected by virtual links

in order to create a virtual network topology. A virtual
topology can be hosted by one or several physical hosts.
The part of the virtual topology laying on a given physical
host represents a NEmu session which is configured by the
NEmu manager.

2.2.1. Virtual Node

A virtual node for NEmu is an emulated machine that
requires a hard disk image to work. This image is typically
provided as a regular file on the physical host machine.
Two types of virtual nodes currently exist in NEmu:

• A VHost is a virtual host machine (i.e., end-user ter-
minal) on which the hardware properties and the op-
erating system can be fully configured by the user.

• A VRouter is a virtual router directly configured by
NEmu and provides ready-to-use network services.

Each virtual node uses a virtual storage which can be
either a real media (cdrom, hard drive, etc.), a raw file or
a host directory. A raw file can be privately dedicated or
shared by several other virtual nodes. A modification of
a shared file by one virtual machine will affect the others
which may be troublesome if the file contains the operating
system. To solve the problem, NEmu uses Copy-on-Write

(CoW) operations on the original file. A CoW file (also

2

known as a sparse file) only stores the differences with its
original file. The advantage, compared to a regular copy,
is that the CoW file is much smaller. In addition, NEmu

can use a regular directory on the physical host (without
building a CoW), as a storage media in four different ways:

• by making a Sparse file which only stores the differ-
ences with its original file;

• by making a Squash file system which is a read-only
raw image;

• by using a FAT16 emulated interface which enables
a direct access to a host’s file system;

• by using a Virtio interface [8] which also enables a
direct access to a host’s file system;

• by using a Network Block Device which enables a
virtual node to remotely access to a block device
through the real IP network [9];

• by using a SSH tunnel which enables a virtual node
to remotely access to a block device through a se-
cured connection.

As said before, a VHost needs a disk image which must
be supplied by the user. This image must be prepared
prior to creating the virtual network. Furthermore, one
image can be used by many VHosts by using sparse files.
NEmu provides a network topology visualization option
by processing its topology data file through Graphviz [10].

A VRouter is directly configured by NEmu and pro-
vides several services to simplify the virtual network man-
agement: DHCP, DNS, NFS, HTTP, SSH, NTP, Netfil-
ter, dynamic routing protocols (RIP and OSPF), and QoS
management with Traffic Control [11]. Moreover, it is
easily possible to add some new services through a plug-in
system available in NEmu. A router is running a cus-
tomized image version of TinyCore which is a lightweight
and highly configurable Linux distribution [12]. Such a
system typically requires about ∼30 MBytes on disk and
∼100 MBytes in memory with all services running. Ser-
vices provided by a VRouter are optional and can be en-
abled or disabled before or during runtime.

2.2.2. Virtual Link

A virtual link for NEmu is an emulated network con-
nection between virtual nodes. This emulated connection
can either be performed inside the machine emulator of
a node (the link thus being attached to this node) or be
performed by a dedicated emulation program (not running
any system image in this case). Three types of virtual links
currently exist in NEmu:

• A VLine is a virtual point-to-point link interconnect-
ing two nodes.

• A VHub is a virtual multi-point hub emulating a phys-
ical Ethernet hub and interconnecting several nodes.

• A VSwitch is a virtual multi-point switch emulat-
ing a physical Ethernet switch and interconnecting
several nodes.

Virtual links typically carry Ethernet frames from one vir-
tual Network Interface Card (NIC) to one or more other
virtual NICs. This Ethernet traffic is tunneled between
virtual nodes by using TCP or UDP connections. NEmu

can also use a VDE [13], a virtual switch which inter-
connects virtual machines through the shared memory sys-
tem inside the Linux kernel, in order to create a local
multi-point switch. Alternatively, NEmu can use our vnd
program to emulate a network component. vnd stands for
v irtual network device. The vnd is a C++ program which
consists in 6k lines of code that can emulate a VLine, a
VHub or a VSwitch (defined as modes). The advantages
of using a vnd is that the user can set the bandwidth, de-
lay, jitter and bit error rate on any interface in any mode
whereas QEMU offers no control over its hub emulation.
In addition, NEmu also provides a Slirp which is a spe-
cial type of link whose purpose is to provide an Internet
access to the virtual node. It is an emulation of a NATed
access to the real Internet by using the physical host NIC.
Also, NEmu is able to interconnect a virtual NIC to a
TUN/TAP kernel interface or to any UNIX socket.

Figure 1 shows an example of a NEmu managed virtual
network. On the left side, two VHosts are connected to a
VRouter through a VSwitch by using UDP tunnels. On the
right side, two VHosts are connected to the above VRouter
through a VHub by using TCP tunnels. Here, virtual links
are created and managed inside vnd processes.

2.3. Management of Virtual Networks

We explain below the notion of a NEmu session and
we describe the physical resources needed to run a virtual
network.

2.3.1. Session

As already said above, a NEmu session represents a
complete configuration of a network topology which lays
on a physical host (storages, virtual nodes configurations
and links). A distributed virtual network on n physical
hosts consists in n NEmu sessions at least. A session is
represented by an auto-generated directory in order to be
saved and re-used. A session can be saved as a sparse

archive which compresses all elements and which is com-
patible with sparse files unlike traditional archives.

2.3.2. Manager

The NEmu manager is the command line user interface
to manipulate a session. Sessions are independent even if
they are part of the same network topology. The manager

can be used in three ways :

• as a python module to be integrated in another script
or program;

• as a dynamic python interpreter;

3

vnd

switch mode

Debian linux

VHost VSwitch VRouter

Tinycore linux

Debian linux

QEMU

system

emulation

QEMU

system

emulation

QEMU

system

emulation

TCP between virtual hosts Debian linux

QEMU

system

emulation

VHost VHost

Ethernet over UDP unicast
Ethernet over

TCP unicast

NEmu managed network elements

Debian linux

VHost

QEMU

system

emulation

Ethernet over UDP unicast

vnd

hub modeEthernet over

TCP unicast

Ethernet over

TCP unicast

Ethernet over

TCP unicast

VHub

Figure 1: Network elements in action.

• as a python script launcher.

TheNEmu manager provides a remote accesses, through
SSH connections, to manipulate NEmu sessions laying on
other distant hosts. The python language is upgraded in
order to interact with other distant sessions.

2.4. Example of a Topology

We present in Figure 2 the Python script that generates
the network topology previously shown in Figure 1.

2.5. Accuracy and Scalability

NEmu does not currently provide any specific primi-
tives or tools for measuring backend side performances or
for collecting results from all the nodes in the virtual net-
work. The measurement tools available are all the usual
system tools that can be installed and run either inside the
virtual machines or on the physical hosts. Typical network
performance evaluation tools include: iperf, netperf, etc.
The accuracy of NEmu is mainly limited by the underly-
ing network characteristics (e.g., bandwidths, delays, error
rates, etc) of the backend connections between the phys-
ical hosts. It is obvious that the virtual bandwidth set
between two virtual nodes will never be able to be above
the real physical bandwidth available between the physical
machines hosting those virtual nodes. Finally, the scala-
bility of NEmu is mainly limited by QEMU’s requirements
for the virtual machines. The needs for each VM is typi-
cally at least one dedicated core (if possible) and at least
a few hundred megabytes of RAM per VM. Thus, on a
single regular machine, a virtual network could scale to a
dozen nodes. On a group of regular machines or on a big
server or cluster, it could scale to a hundred nodes.

Creates a new session
InitNemu()

New switch with 3 ports
VSwitch(’switch’, niface=3)

New hub with 3 ports

VHub(’hub’, niface=3)

New router with DHCP and SSH services
VRouter("router", nics=[VNic(), VNic()], services=[

Service("ipforward"),

Service("ifup", "0:192.168.1.1", "1:192.168.2.1"),
Service("dnsmasq", domain="local1", net="192.168.1.0/24",

start="192.168.1.10", end="192.168.1.20"),
Service("dnsmasq", domain="local2", net="192.168.2.0/24",

start="192.168.2.10", end="192.168.2.20"),

Service("sshd")])

New host configuration (French keyboard, SDL display and 512MB of RAM)
VHostConf(’chost’, sdl=None, k=’fr’, m=512)

New hosts with the chost common configuration and 2 NICs
VHost(’a’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])

VHost(’b’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])
VHost(’c’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])

VHost(’d’, conf=’chost’, hds=[VFs(’debian.img’, type=’cow’], nics=[VNic()])

Connects nodes to links

Link(’router:0’, ’switch:0’)
Link(’router:1’, ’hub:0’)

Link(’a’, ’switch:1’)
Link(’b’, ’switch:2’)

Link(’c’, ’hub:1’)
Link(’d’, ’hub:2’)

Starts the virtual network
StartNemu()

Figure 2: A example of a topology script written for NEmu.

4

VND

INTERFACE 1

INPUT QUEUE

OUTPUT QUEUE

FORWARDING

ENGINE
INTERFACE 2

INPUT QUEUE

OUTPUT QUEUE

Figure 3: Architecture of a vnd .

3. The Virtual Network Device (vnd)

This section presents our software program called vnd .
It is a program which is able to emulate network devices
such as a link, hub, switch or an access point from a high
level point of view. This is by far not the first software
able to emulate network devices but it has some unique
features which may prove useful in the network virtualiza-
tion domain:

• it runs as a lightweight stand-alone process and can
fail without killing virtual machines,

• it can support dynamic connections and reconnec-
tions as well as disconnections and is immune to the
failures of virtual machines,

• it provides many networking backends, such as the
sockets API, which is available on any platform, to
connect to the virtual machines,

• it can dynamically set the link properties such as
bandwidth, delay, jitter and bit error rate,

• it can coarsely emulate wireless interface cards in
infrastructure and ad hoc modes as well as access
points.

3.1. Architecture

A vnd contains an engine and several interfaces. It can
contain any number of interfaces as long as system mem-
ory is available. Interfaces can be created and destroyed
at runtime. Each interface owns an input queue and an
output queue. Each queue has a number of buffers which
can be set at runtime. Interfaces are internally connected
through the engine. Figure 3 shows the architecture of a
vnd with two interfaces. Data coming in or out of a vnd

can be interpreted in two ways:

• raw: data is considered as an uninterpreted flow of
bytes and each buffer can contain data bytes up to
its maximum size,

• Ethernet: data is considered as Ethernet frames and
each buffer can contain only one frame whose size
shall be less or equal than the buffer’s maximum size.

INTERFACE 1

INPUT QUEUE

OUTPUT QUEUE

INTERFACE 2

INPUT QUEUE

OUTPUT QUEUE

INTERFACE 3

INPUT QUEUE

OUTPUT QUEUE

INTERFACE 4

INPUT QUEUE

OUTPUT QUEUE

link mode

VND

FORWARDING

ENGINE

Figure 4: Link mode.

A vnd can be set to one of six different working modes
depending on the network component that it emulates.
The first four modes are typical network components which
are independent from any virtual machine. The last two
modes are used to emulate aWireless Interface Card (WIC)
in either infrastructure or ad hoc mode. Thus in the last
two modes, the vnd is not used as a separate network com-
ponent but it is used in conjunction with a virtual machine
to form a mobile node. When the vnd is used as a wireless
card emulator, it is connected to its virtual mobile node
by a specific and unique interface called a direct inter-
face. If the mobile node is considered using infrastructure
mode (BSS or ESS), then the vnd also has another spe-
cific and unique interface called an access interface which
is connected to the access point that the mobile node is
currently associated with. A vnd can be set to one of the
six possible modes:

1. link: each interface is directly bound to another in-
terface, which means that any data going into the
input of the first interface is forwarded to the out-
put of the second interface in this given direction
(i.e., it is one way as shown on Figure 4),

2. hub: each interface is bound to all others, which
means that any data going into the input of an in-
terface is forwarded to the output of all the other
interfaces except itself as shown on Figure 5,

3. switch: any frame going into the input of an inter-
face is forwarded to the switch engine which uses a
forwarding table to determine the output interface
leading to the device having the same address as the
frame’s destination address as shown on Figure 6,

4. access point: any frame going into the input of an
interface is forwarded to the switch engine which uses
a forwarding table to determine the output interface
leading to the device having the same address as the
frame’s destination address (see Section 4),

5. infrastructure interface: any frame going into the
input of the access interface is forwarded to the out-
put of the direct interface leading to the mobile

5

VND

INTERFACE 1

INPUT QUEUE

OUTPUT QUEUE

FORWARDING

ENGINE

INTERFACE 2

INPUT QUEUE

OUTPUT QUEUE

INTERFACE 3

INPUT QUEUE

OUTPUT QUEUE

INTERFACE 4

INPUT QUEUE

OUTPUT QUEUE

hub mode

Figure 5: Hub mode.

INTERFACE 1

INPUT QUEUE

OUTPUT QUEUE

INTERFACE 2

INPUT QUEUE

OUTPUT QUEUE

INTERFACE 3

INPUT QUEUE

OUTPUT QUEUE

INTERFACE 4

INPUT QUEUE

OUTPUT QUEUE

switch mode

FORWARDING

TABLE

VND

FORWARDING

ENGINE

Figure 6: Switch mode.

node itself, and any frame going into the input of
the direct interface is forwarded to the output of
the access interface leading to the access point (see
Section 4),

6. ad hoc interface: any frame going into the input
of any interface which is not the direct interface is
forwarded to the output of the direct interface lead-
ing to the mobile node itself, and any frame going
into the input of the direct interface is forwarded
to all the other output interfaces except itself (see
Section 4).

The last four modes only make sense when the data is in-
terpreted as Ethernet frames as MAC addresses are needed.
In order to emulate the IEEE 802.11 protocols, a pseudo
header is added to any frame coming from an access point
or emulated WIC.

The forwarding table is filled as in a hardware switch
having auto-learning capability. When a frame is received
by an interface, the vnd checks if the source MAC address
is associated with this interface. If yes nothing is done, if
no, the vnd stores this association in the forwarding table.
When a frame is transmitted, the engine looks up the des-

VND

INTERFACE 1

INPUT QUEUE

OUTPUT QUEUE

END POINT 1 bind

write

read

Figure 7: Bind between an emulated interface and a network backend
in a vnd .

tination MAC address of the frame in the forwarding table
and forward the frame to the interface associated with that
address. Currently, the forwarding table does not remove
entries depending on a given lifetime and thus the table
must be manually cleared if needed. The vnd supports
port-based VLANs in hub and switch modes. The vnd

does not yet implement the Spanning Tree Protocol, thus
it is up to the user to avoid making loops in the topology
of the virtual network.

3.2. Implementation

In the domain of virtualization, the term network back-

end is often used to designate the software part of an em-
ulator that enables the connection of the emulator to the
other emulators either on the same physical machine or
on different ones. Network backends on UNIX are usu-
ally implemented with TAP interfaces, VDE [13], sockets or
slirp (which provides a full TCP/IP stack implementing a
virtual NATed network).

The vnd currently provides Internet and UNIX local
sockets backends as well as TAP and VDE backends. All
these backends are implemented in an object called endpoint.
To be useful, a network backend must be tied to a virtual
network interface in a machine or a vnd . This tie is im-
plemented in the code of emulators in more or less flexible
ways. In order to support the dynamic features presented
at the beginning of this section, the vnd implements the tie
in a flexible way by separating the virtual interface from
the endpoint. This tie can be dynamically created or de-
stroyed by using the bind command as shown on Figure 7.
Thus the failure of a network backend connection does not
impact a virtual interface except for the loss of traffic. An
endpoint can also be rewired to another interface if needed
although data can be lost in the process.

As NEmu currently only uses QEMU for system em-
ulation, we show on Figure 8 an example of a TCP con-
nection between the network backends of a QEMU virtual
machine and a vnd . QEMU defines a local VLAN object
to associate the virtual eth0 interface to the socket back-
end called socket.0. The difference between the vnd bind

and the QEMU VLAN is that a bind creates a bijection

6

QEMU

OS

virtual

NIC

eth0 vnd

socket.0

vlan 1
interface

endpoint

TCP connection

Figure 8: TCP connection between the network backends of a QEMU
and a vnd .

between an interface and an endpoint whereas a VLAN
can connect several backends to the same interface thus
actually acting as a simple VLAN inside the emulator (ev-
erything is broadcasted inside though).

3.3. Performances

In order to be useful and realistic, the vnd program
must have acceptable performances. We have carried out
several measurements to evaluate its performances and
compare them to other emulators, namely QEMU and Dy-
namips, as they also provide socket-based network back-
ends. The scenario was interconnecting two QEMU vir-
tual machines via a virtual network device (line, hub and
switch) emulated by either a QEMU, a Dynamips or a
vnd process. All network backend connections were TCP
connections made on the loop-back interface of the physi-
cal machine which was an Intel Core 2 equipped desktop
PC. An FTP session was established between the two vir-
tual machines and a 1GB file was transferred and timed to
compute the bandwidth. Table 1 shows the throughput of
the various possible emulations of virtual network devices.
We can see that our vnd program performs at least as well
as the others when emulating any device. We can also see
that QEMU limits the throughput of the virtual machines
at around 34MB/s.

To measure the maximum throughput of the vnd itself,
we have used two netcat processes interconnected by a vnd

in raw mode. The throughput amounts to 682 Mbps to be
compared with the 910 Mbps obtained by a direct connec-
tion between the two nc. Thus the vnd only achieves 75%
of the throughput achieved by the direct connection. This
loss is due to the pipelining of the two TCP connections
as well as the queueing and the processing time inside the
vnd .

Finally we have also done measurements to evaluate
the accuracy of the vnd bandwidth and delay parameters.
Concerning the bandwidth, we can deduce from the above
results that the vnd can at most emulate 100 Mbps speeds.
We have observed by varying the bandwidth parameter
from 100 kbps to 100 Mbps that the difference between
the value of the bandwidth parameter (set on the interface

Table 1: Throughput of the switch emulators

Network Emulation Measured
Component Program Throughput

Baseline nc to nc link 910 Mbps
vnd (raw connections) 682 Mbps

VLine QEMU to QEMU direct link 272 Mbps
vnd (link mode) 240 Mbps

VHub QEMU hub 160 Mbps
vnd (hub mode) 240 Mbps

VSwitch Dynamips switch 12 Mbps
vnd (switch mode) 156 Mbps

of the vnd by the user) and the value of the measured
bandwidth does not exceed 2%.

4. The Network Mobilizer (nemo)

4.1. Design

NEmu can emulate mobile networks. Thus it is pos-
sible to create a virtual network topology that evolves in
time. In order to manage mobility, NEmu uses a special
mobility engine called nemo. nemo [14] is a lightweight
C++ program which can generate connectivity scenarios
for mobile networks. A connectivity scenario is a time
stamped list of wireless link connection and disconnection
events between mobile nodes. Indeed, nemo is based on
a specific use of the vnd [15] software, which can on-the-
fly create virtual links having dynamically set character-
istics. nemo is able to send orders to NEmu in real time
which enables to emulate the changes of connectivity be-
tween mobile nodes by creating, destroying or changing
the characteristics of the links at the appropriate time.
nemo works behind the scene and is entirely controlled
by NEmu which acts as the user interface. nemo is im-
plemented in C++, contains around 3000 lines of code,
and is using some Boost [16] libraries including the pow-
erful asynchronous input/output library called asio. It is
a lightweight program using around 1MB in RAM and it
is portable thanks to Boost (on the majority of UNIX and
Windows variants). nemo is composed of two parts : one
part based on a simulated time scheduler and another part
based on a real time scheduler. The source code is avail-
able at [14].

4.2. Simulated Time Scheduler

The simulated time scheduler is the heart of the simu-
lation part of nemo. It can generate connectivity scenarios
for the real time scheduler. Three steps are necessary to
generate a connectivity scenario:

• generate a map;

• generate a mobility scenario on this map;

• generate a connectivity scenario from the mobility
scenario.

7

P1(t), V1(t), A1(t)

P4(t), V4(t), A4(t)

P2(t), V2(t), A2(t)

P3(t), V3(t), A3(t)

bps13(t), d13(t)

bps14(t), d14(t)

bps23(t), d23(t)

bps34(t), d34(t)

load

save

generate

load load

save

generate

save

generate

STEP 1: MAP DEFINITION STEP 2: MOBILITY SCENARIO STEP 3: CONNECTIVITY SCENARIO

mobility modeling tool nRT schedulermapping tool

Figure 9: Generation of connectivity scenarios with nemo.

At each step, the results of the step can be saved on
disk in order to be loaded at a later time to avoid recom-
putation. The simulated time scheduler runs the mobility
scenario and at each time interval (set by the user), it com-
putes the distances and the possible wireless connections
between all the pairs of mobile nodes. The steps are il-
lustrated on Figure 9. Being able to generate connectivity
scenarios is an advantage over using a network simulator
interconnecting real applications with taps, because the
latter must compute the mobility at every run and this
computation could be too heavy to enable the real-time
execution of the applications. Up to now, nemo generate
rectangular maps and purely random mobility scenarios.
This is useful for carrying functional tests. nemo is also ca-
pable of importing ns-2 formatted mobility files produced
by tools such as Bonnmotion [17] providing realistic mobil-
ity models such as the Gauss-Markov Mobility Model [18]
or the Reference Point Group Mobility Model [19]. In the
future, nemo will be able to load more elaborate 2D or 3D
maps containing attenuation information.

The simulated time scheduler suffers from several lim-
itations:

• it may require intensive computation of the order of
O(n2) (that is why it is written in C++);

• it requires the user to make a tradeoff between the
temporal precision (the time interval between each
connectivity evaluation), the computation time and
the number of events detected.

4.3. Real Time Scheduler

The real time scheduler is the heart of the emulation
part of nemo. It executes the connectivity events at their
exact time stamp, set with respect to the start of the sce-
nario. The temporal precision used in the real time sched-
uler is equal to the one set during the processing of the
mobility scenario by the simulated time scheduler. The
interaction of the real-time scheduler with NEmu is illus-
trated on Figure 10. It shows that NEmu plays the role
of a central controller for the other processes. In a virtual
mobile network, one vnd is used to emulate each wireless
network interface card (WIC). Thus there is one vnd per
virtual mobile node and inside it are instanciated the real
network backend links (i.e., TCP or UDP tunnels). NEmu

transmits the orders of the user (e.g., start, stop, etc) to
nemo. When the real time scheduler is running, NEmu

also recovers the connectivity events generated by nemo

and retransmit them to the various vnd corresponding to
the WICs of the virtual mobile nodes in order to make the
network topology evolve. The real time scheduler can be
paused and resumed at any moment by the user.

The real time scheduler suffers from several limitations:

• as opposed to NEmu, nemo is centralized;

• it is better to execute all the sessions and nodes on
a unique physical host to avoid reducing the perfor-
mances;

• the sockets used to connect the vnd introduce delays
and reduce the temporal precision. The latter will
be at best of the order of the millisecond.

8

VND2
adhoc

mode
VM3

VND3
adhoc

mode
VM2

VM1

VND1
adhoc

mode

NEmu

NEMO

wireless

link

control connections

wireless

link

RT scheduler

nemo

direct

link

direct

link

direct

link

RT orders
NEmu

commands

Figure 10: Emulation of virtual mobile networks with nemo.

5. Experimentation

We present the results of two experiments that we repli-
cated in order to show the accuracy of NEmu. The first
experiment was initially done with the Mininet container-
based emulator, the second was done with the JBotSim
simulator. In both cases, we were able to accurately repli-
cate the results with NEmu.

5.1. Mosh Experiment Replication

In order to validate the accuracy of experimentation
results obtained with NEmu, we reproduce a performance
benchmark of Mosh [20]. Mosh is a remote terminal appli-
cation which is more tolerant to connectivity break than
SSH by using the SSP protocol and a predictive algorithm.

The experimentation consists in measuring the average
keystrokes response time for Mosh and SSH. This experi-
ment has been previously carried out on Mininet [5], an-
other network emulator which is well known for its degree
of realism in experimental conditions [21].

We reproduce the exact experimentation described in a
Stanford network lecture [22] and which has been officially
supported by Mosh developers. In this experimentation
the client is connected to a switch through an emulated
3G network, and the server through an emulated Wi-Fi
network. Authors consider the following experimental net-
work conditions:

• 3G:

– packet loss rate: 0.01;

– bandwidth: 1 Mbps;

– delay: 450ms.

• Wi-Fi:

– packet loss rate: 0.08;

– bandwidth: 25 Mbps;

– delay: 30ms.

Figure 11: Original Mosh results obtained by mininet.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.5 1 1.5 2 2.5

C
D

F

Keystroke Response Time (seconds)

Mosh
SSH

Figure 12: Mosh results obtained by NEmu.

Thanks to our vnd program, we configure the network
properties as detailed above. Original results are presented
in Figure 11. Our results are illustrated in Figure 12. We
can notice that both results are nearly identical. Those re-
sults imply that NEmu can offer a similar degree of realism
than Mininet.

5.2. AMiRALE Experiment Replication

In order to validate the accuracy of experimentation
with mobile devices performed with NEmu, we replicate
performance results obtained by simulation of a multi-
agents system called AMiRALE [23]. Emulation is per-
formed with NEmu while simulations are carried out with
JBotSim [24], a Java library which enables the design of
low and high level communication scenarios and behaviors
of heterogeneous mobile nodes.

AMiRALE is a distributed system which enables sev-
eral autonomous vehicles to perform common tasks col-
laboratively. The application scenario consists in a team
of ground robots which has to collect a given number of
garbage in a park, each one being a target for the clean-
ing robots. We evaluate the output data rates generated
by AMiRALE as a function of the number of targets to

9

 0

 20

 40

 60

 80

 100

180 360 720 1440

D
at

ar
at

es
 (

kb
it/

s)

Number of targets

Theoretical
Simulation
Emulation

Figure 13: AMiRALE results obtained by JBotSim and NEmu.

process. Each robot is specialized which means that it
can only clean one kind of garbage. When a robot finds
a garbage which it is not able to collect itself, it gener-
ates a new mission in order to inform other robots of the
existence of this garbage. This strategy enables a robot
to clean a garbage which has been discovered by another
robot.

Figure 13 shows the results of our experiment as a func-
tion of the number of targets. Standard deviation values
are also shown on the plots. Since all missions are broad-
cast without any restriction, we can calculate the theoret-
ical data rates by multiplying the number of missions by
the size of an unique mission and divide the result by the
frequency of broadcasts. This result is provided by the
theoretical plot. The emulation plot shows results from
the NEmu experiments while the simulation plot shows
results from the JBotSim simulations. This figure shows
that theoretical, simulation and emulation results are very
similar which implies that NEmu provides coherent per-
formance results for this mobile devices’ scenario.

6. Related Work

6.1. Node Emulation Systems

Currently, NEmu uses QEMU virtual machines as vir-
tual network nodes. Despite the fact that a lot of solu-
tions of host virtualization exist, we chose QEMU which
is a generic and open source machine emulator and virtu-
alizer [4]. QEMU runs without any administrative rights
and emulates a lot of various hardware architectures [25].
Therefore, instantiating a QEMU virtual machine as a vir-
tual node allows the user to configure freely its hardware
and software layers which fills perfectly with the flexibility
and heterogeneity properties of a NVE.

Others systems such as VMware [26] or Xen [27, 28]
have better I/O performances but can only emulate x86
and x64 architectures [29, 30] which compromises the legacy
support defined in Section 2. Moreover, Xen is too close

to the system which means that it requires administrative
rights to be configured properly.

Virtualization systems such asVirtualBox [31] and Hyper-

V [32] are also limited to x86 and x64 architecture emu-
lation.

Regarding UML [33], the software is now unmaintained
and only can emulate Linux operating systems.

OpenVZ [34] can be see as the successor of UML but
also only supports Linux operating systems.

LXC [35] is a Linux kernel system which can encap-
sulate several process and a sub-file system in a virtual
container. This solution cannot be consider as a real vir-
tualization system and does not enable any hardware con-
figuration.

Dynamips [36] is an emulation system dedicated to
CISCO systems. Therefore, it cannot emulate standard
user machines.

6.2. Link Emulation Systems

6.2.1. Virtual Switches

NEmu uses a program called vnd in order to emulate
customized virtual links. Nevertheless, other systems en-
able to inter-connect several virtual machines.

VDE [13] is a virtual switch which inter-connects vir-
tual machines through the shared memory system inside
the Linux kernel. Such a system cannot be distributed
on several physical machines. Moreover, VDE does not
include any mechanism in order to manipulate link prop-
erties like bandwidth, delay, etc.

Open vSwitch [37] is an open source project which en-
ables to instantiate virtual switches with a high customiza-
tion of virtual links. However, this software relies on vir-
tual network interfaces inside the Linux kernel which can
only be created by a system administrator of the physi-
cal infrastructure. The accessibility defined in Section 2
would be impossible with Open vSwitch.

Vnet [38] is a distributed inter-connection system which
enables to link several virtual machines which lay on dif-
ferent physical hosts. Even if the system is distributed, it
does not provide any link customization mechanism.

Click [39] is a Linux kernel framework which allows to
create software defined routers (i.e. at network layer 3).
Therefore, this solution is not suitable for our needs.

6.2.2. Link Properties Manipulation

Our program vswitch includes the link properties cus-
tomization in order to configure bandwidth, delay, jitter
and bit error rate. Several other solutions exist in order to
make this job. For instance NetEm [40], which relies on the
Linux kernel tools Traffic Control [11], enables to manip-
ulate same properties. However, it requires root privileges
on the real infrastructure.

Dummynet [41] enables to create some customizable
virtual links between two entities. Therefore, it cannot
play the role of a multi-point device like a hub or a switch.
Moreover, this solution operates directly in the kernel which
is not compliant with the accessibility target.

10

A similar project called netpath [42] uses the Click li-
brary in order to create customize virtual links.

Another project called Trickle [43] can be used without
any administrative rights in order to fix the maximum date
rates for a process. However, it can only fix this property
for the entire process. Thus our virtual switch is much
more configurable.

6.3. Network Virtualization Environment

Dynagen [44] is for Dynamips, the equivalent of NEmu

for QEMU. Dynagen manages fleet of Dynamips machines
and their inter-connections. However, the dynamicity of
the topology is strongly limited, adding network services
is quite impossible and there is not any community aspect.

GNS [45] is an open source software which allows to
build a virtualized network topology with Dynamips, Vir-
tualBox and QEMU virtual machines. However, it does
not provide the possibility to build a community network
and adding network services is as complicated as Dynagen.
Finally GNS is hardly usable without any graphical inter-
face making difficult the creation of a complex network.

Velnet [46] is a virtual environment dedicated to teach-
ing which uses VMware virtual machines. The complete
topology can only run on a single host which implies strong
limitations on the size of the virtual network.

ModelNet [47] emulates a distributed virtual network
but this one remains static at runtime. Thus, the dynam-
icity is not ensured with ModelNet. Further, the man-
agement of this system is fully centralized on an unique
physical machine which disables the community aspect.

Vagrant [48] uses VirtualBox virtual machines in order
to emulate virtual network. The topology is hosted on a
single physical machine and remains static at runtime. Fi-
nally, the inter-connections are built inside the host kernel
making a flat network, i.e. a network which not relies on
standards ways of addressing and routing.

VINI [49] is a distributed virtual network which over-
hangs the PlanetLab testbed [50] which is an international
distributed cluster system. VINI uses UML virtual ma-
chines which strongly limits operating systems for nodes.
Moreover, connections between nodes are made with vir-
tual networks interfaces inside the kernel of the physical
machine which makes the configuration impossible with-
out administrative rights.

Violin [51] is similar to VINI but provides some virtual
routers which hosted different services like NEmu. How-
ever the use of UML and the need of an existing overlay
limits the use scope of this solution.

NetKit [52] relies also on UML and VDE switches which
do not require any administrative rights. Such a system
cannot be distributed.

Marionnet [53] is a virtual environment dedicated to
teaching. It provides several network services and the com-
munity aspect but relies on UML.

Virconel [54] uses OpenVZ virtual machines which also
strongly limits operating systems for nodes. Moreover,

The topology is static during runtime and the intercon-
nections between virtual machines are made in the host
kernel which requires special rights on the physical sys-
tem.

VNUML [55] is a static virtual system relying on UML
and which requires administrative rights.

VNX [56] is the successor of VNUML is a compatible
with other virtualization systems. However, as VNUML,
it requires administrative rights and does not include any
link property mechanism.

Cloonix [57] is a dynamic virtual network environment.
Nevertheless, it does not include link property mechanism.

Mininet [5] is a Container-Based Emulator which al-
lows to create a custom and dynamic topology on a unique
physical host. The second version of this system is highly
demanding about fairness of experimentation conditions
[21].

CORE [58] is a graphic tool which enables to emulate
virtual mobile networks. This system relies on a frame-
work called IMUNES [59] which runs over the FreeBSD
[60] operating system. Nodes and links are managed inside
the operating system kernel which implies strong limita-
tions in terms of flexibility.

MobiEmu simulates mobile networks through ns3 for
the mobility and LXC containers for nodes. This tool does
not enable NVE possibilities.

OpenNebula [61] provides a powerful solution to man-
age a virtual cloud on a wide physical infrastructure with
an important number of nodes. OpenNebula manages the
whole cloud domain from a single access point. Storage
medias are centralized and are accessible through the net-
work which implies the use of a NAS or NFS.

NET [62] is a powerful hardware-based infrastructure
which allows to perform realistic experimentation on mo-
bile networks. However, this solution uses real network
inter-connection devices (i.e. switches, etc.) in order to
build the virtual network.

PdP [63] is partial NVE implementation which focuses
itself on flexibility, isolation, high-speed data rates and low
cost. It uses OS level virtualization nodes such as OpenVZ.

Onelab2 [64] is a well known emulation tool over Plan-
etLab. It also relies on DummyNet which strongly limits
the flexibility of this solution.

IP-TNE [65] is an original solution which enables hosts
and real network to interact with a virtual mobile network.
It is not really an emulation solution since it provides only
the mobility properties of nodes and not the real node
virtualization.

Research platforms such as PlanetLab [50], GENI [66]
and FEDERICA [67] supply virtual infrastructure built on
the top of slices of third parties owned hardware. This
approach leads to the concept of Testbed as a Service
(TaaS), exemplified by FanTaaStic [68]. Federations of
testbeds have also been recently emerging, such as the
EU-driven OpenLab federation [69] as well as the OneLab

federation [70], managed by UPMC. In all these cases, the
user needs a specific account, must comply to specific us-

11

age policies and has to use the tools, services and APIs of
these testbeds.

Table 2 exhibits several properties of those previous so-
lutions compared to NEmu. We see that NEmu can cover
all usages (test and proof, performance evaluation as well
as learn and teach). It can achieve a high realism as a
research tool by managing dynamic virtual networks and
by being able to be distributed over several physical ma-
chines. Furthermore, it can be easily used and deployed
as no special rights are required on the physical machines.
The creation of a complex network is facilitate by the im-
portant number of available network services and the easy
way to add another ones. Finally, it offers a new fea-
ture called community aspect that enables several users to
merge their virtual networks together in order to build a
single larger network.

Table 2: Comparison of network virtualization tools.

T
es
t
a
n
d
p
ro
o
f

E
va

lu
a
ti
o
n

T
ea
ch

in
g

D
y
n
a
m
ic

D
is
tr
ib
u
te
d

M
o
b
il
it
y

C
o
m
m
u
n
it
y
a
sp

ec
t

N
et
w
o
rk

se
rv
ic
es

R
eg
u
la
r
p
ri
v
il
eg
es

C
o
n
fi
g
u
ra
b
le

li
n
k
s

N
V
E
+

co
m
p
li
a
n
t

Dynagen • ◦ • ◦ • ◦ ◦ • • ◦ ◦

GNS3 • ◦ • ◦ • ◦ ◦ • • ◦ ◦

Velnet ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦

ModelNet • • ◦ ◦ • ◦ ◦ ◦ • • ◦

Vagrant • ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦

VINI • • ◦ • • ◦ ◦ ◦ ◦ • ◦

Violin • • ◦ • • ◦ ◦ • • • ◦

NetKit • ◦ • • ◦ ◦ ◦ • • ◦ ◦

Marionnet • ◦ • • ◦ ◦ • • • ◦ ◦

Virconel • • • ◦ • ◦ ◦ • ◦ ◦ ◦

VNUML • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

VNX • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦

Cloonix • • • • ◦ ◦ ◦ ◦ • ◦ ◦

Mininet • • • • ◦ ◦ ◦ ◦ • • ◦

CORE • • ◦ • ◦ • ◦ • ◦ • ◦

MobiEmu • • • • ◦ • ◦ ◦ ◦ • ◦

NET • • ◦ • • • ◦ ◦ ◦ • ◦

PdP • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦

Onlab2 • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦

NEmu • • • • • • • • • • •

• Yes ◦ No

7. Conclusion

NEmu and its associated programs vnd and nemo en-
able the creation and management of dynamic, heteroge-
neous and mobile virtual networks. They provide a good
compromise between ease of use, low cost and realism.
Such virtual networks can be distributed over several phys-
ical hosts and be controlled without any administrative
rights. They can also evolve in real time with nemo by
following a pre-calculated connectivity scenario.

We have compared NEmu to Mininet with regard to
the Mosh experiment and have shown that the results are

nearly identical thus demonstrating that NEmu can be
used for similar purposes. The advantage being that it
can be distributed over several physical machines unlike
Mininet. This is important as NEmu uses full system
emulation and not container based emulation. We have
compared NEmu to JBotSim with regard to the AMi-
RALE experiment and the obtained results are similar,
thus validating its use for virtual mobile devices’ exper-
imentation. NEmu can therefore overcome the cost of a
physical testbed infrastructure while enabling the evalua-
tion of real applications thanks to its low level emulation
of network and system components. NEmu can also emu-
late mobile ad hoc networks which, as far as we know, is
a unique feature among network emulators.

As envisioned by Conti et al. [71], the Internet of the
future will be polymorphic, i.e., it will allow various spe-
cific networking environments to coexist, thanks to virtu-

alization and federation. The extended concepts of NVE
presented in this paper clearly embrace those two prop-
erties. Our software is a first step towards building such
virtual networks. Its current use is mainly for research
experimentation and teaching but its long term use could
include production. The variety of supported backends

could indeed lead our software to provide new network
services.

Several next steps are already planned for our future
work on NEmu. They consist in the following tasks by
order of priority:

• the integration of migration capabilities for virtual
machines in order to enable load balancing;

• the integration of new services inside the virtual router;

• the implementation of more sophisticated map gen-
eration algorithms;

• the improvement of the accuracy of the vnd .

8. References

[1] T. Henderson, M. Lacage, G. Riley, C. Dowell, J. Kopena, Net-
work simulations with the ns-3 simulator, ACM SIGCOMM
demonstration.

[2] A. Varga, et al., The omnet++ discrete event simulation sys-
tem, in: Proceedings of ESM, Vol. 9, 2001.

[3] B. Yamini, D. Selvi, Cloud virtualization: A potential way to re-
duce global warming, in: Proceedings of IEEE RSTSCC, 2010,
pp. 55–57.

[4] F. Bellard, QEMU, a fast and portable dynamic translator,
in: Proceedings of USENIX Annual Technical Conference,
FREENIX Track, 2005, pp. 41–46.

[5] B. Lantz, B. Heller, N. McKeown, A network in a laptop: Rapid
prototyping for software-defined networks, in: 9th ACM SIG-
COMM Workshop on Hot Topics in Networks, 2010, pp. 19:1–
19:6.

[6] V. Autefage, D. Magoni, Network emulator: a network virtu-
alization testbed for overlay experimentations, in: 17th IEEE
International Workshop on Computer-Aided Modeling Analysis
and Design of Communication Links and Networks, 2012, pp.
38–42.

12

[7] N. Chowdhury, R. Boutaba, Network virtualization: state of the
art and research challenges, IEEE Communications Magazine
47 (7) (2009) 20–26.

[8] KVM, Virtio, http://www.linux-kvm.org/page/Virtio.
[9] NBD, Network Block Device, http://nbd.sourceforge.net.

[10] Graphviz, Graph Visualization Software, http://www.

graphviz.org (1988).
[11] B. Hubert, G. Maxwell, R. Van Mook, M. Van Oosterhout,

P. Schroeder, J. Spaans, Linux advanced routing & traffic con-
trol, in: Ottawa Linux Symposium, 2003, pp. 213–222.

[12] R. Shingledecker, TinyCore Linux, http://tinycorelinux.net
(2008).

[13] R. Davoli, Vde: Virtual distributed ethernet, in: Proc. of the
First International Conference on Testbeds and Research Infras-
tructures for the DEvelopment of NeTworks and COMmunities,
2005, pp. 213–220, http://vde.sourceforge.net.

[14] D. Magoni, Network Mobilizer, http://www.labri.fr/perso/

magoni/nemo (2012).
[15] D. Magoni, Virtual Network Device, http://www.labri.fr/

perso/magoni/vnd (2012).
[16] B. Dawes, al., Boost C++ Libraries, http://www.boost.org.
[17] N. Aschenbruck, E. Gerhards-Padilla, M. Gerharz, M. Frank,

P. Martini, Modelling mobility in disaster area scenarios, in:
10th ACM/IEEE International Symposium on Modeling, Anal-
ysis and Simulation of Wireless and Mobile Systems, 2007, pp.
4–12.

[18] B. Liang, Z. J. Haas, Predictive distance-based mobility man-
agement for pcs networks, in: Proceedings of IEEE INFOCOM,
1999, pp. 1377–1384.

[19] X. Hong, M. Gerla, G. Pei, C.-C. Chiang, A group mobility
model for ad hoc wireless networks, in: Proceedings of the 2nd
ACM MSWiM, 1999, pp. 53–60.

[20] K. Winstein, H. Balakrishnan, Mosh: An interactive remote
shell for mobile clients, in: USENIX Annual Technical Confer-
ence, 2012, pp. 177–182.

[21] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKeown,
Reproducible network experiments using container-based emu-
lation, in: 8th International Conference on Emerging Network-
ing Experiments and Technologies, 2012, pp. 253–264.

[22] A. Aljunied, Evaluation of Mosh performance results, http://
reproducingnetworkresearch.wordpress.com/2013/03/13/

cs244-2013-evaluation-of-mosh-mobile-shell-performance-results.
[23] V. Autefage, S. Chaumette, D. Magoni, A mission-oriented

service discovery mechanism for highly dynamic autonomous
swarms of unmanned systems, in: Autonomic Computing
(ICAC), 2015 IEEE International Conference on, 2015, pp. 31–
40.

[24] A. Casteigts, Jbotsim: a tool for fast prototyping of distributed
algorithms in dynamic networks, in: Proceedings of the 8th
International Conference on Simulation Tools and Techniques,
2015.

[25] A. Ribiere, Emulation of obsolete hardware in open source vir-
tualization software, in: Proceedings of the 8th IEEE INDIN,
2010, pp. 354–360.

[26] EMC, VMware, http://www.vmware.com (2004).
[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, A. Warfield, Xen and the art of vir-
tualization, in: Proceedings of the 19th ACM SOPS, 2003, pp.
164–177.

[28] M. Bourguiba, K. Haddadou, G. Pujolle, Packet aggregation
based network i/o virtualization for cloud computing, Computer
Communications 35 (3) (2012) 309–319.

[29] J. Che, Y. Yu, C. Shi, W. Lin, A synthetical performance evalu-
ation of openvz, xen and kvm, in: Proceedings of IEEE APSCC,
2010, pp. 587–594.

[30] P. Domingues, F. Araujo, L. Silva, Evaluating the performance
and intrusiveness of virtual machines for desktop grid comput-
ing, in: Proceedings of IEEE IPDPS, 2009, pp. 1–8.

[31] Oracle, VirtualBox, https://www.virtualbox.org (2007).
[32] Microsoft, Hyper-V, www.microsoft.com/hyper-v-server

(2008).

[33] J. Dike, A user-mode port of the Linux kernel, in: Proceedings
of Linux Showcase and Conference, Vol. 2, 2000.

[34] Parallels, OpenVZ Linux Containers, http://wiki.openvz.org
(2006).

[35] D. Lezcano, LXC, http://lxc.sourceforge.net (2008).
[36] C. Fillot, Dynamips, https://github.com/GNS3/dynamips

(2007).
[37] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado,

S. Shenker, Extending networking into the virtualization layer,
Proceedings of ACM HotNets workshop.

[38] A. I. Sundararaj, A. Gupta, P. A. Dinda, Dynamic topology
adaptation of virtual networks of virtual machines, in: Pro-
ceedings of the 7th LCR Workshop, 2004, pp. 1–8.

[39] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek,
The click modular router, ACM Transactions on Computer Sys-
tems 18 (3) (2000) 263–297.

[40] S. Hemminger, et al., Network emulation with netem, in: Linux
Conf Au, 2005, pp. 18–23.

[41] M. Carbone, L. Rizzo, Dummynet revisited, SIGCOMM Com-
puter Communications Review 40 (2) (2010) 12–20.

[42] S. Agarwal, J. Sommers, P. Barford, Scalable network path em-
ulation, in: Proceedings of the 13th IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS ’05, IEEE, 2005, pp.
219–228.

[43] M. Eriksen, Trickle: A userland bandwidth shaper for unix-like
systems, in: Proceedings of USENIX Annual Technical Confer-
ence, FREENIX Track, 2005, p. 43.

[44] G. Anuzelli, Dynagen, http://dynagen.org (2006).
[45] GNS3, Graphical Network Simulator, http://www.gns3.net

(2007).
[46] B. Kneale, A. Y. De Horta, I. Box, Velnet: virtual environment

for learning networking, in: Proceedings of the 6th Australasian
Conference on Computing Education, Vol. 30, 2004, pp. 161–
168.

[47] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kosti,
J. Chase, D. Becker, Scalability and accuracy in a large-scale
network emulator, in: The 5th ACM SIGOPS Operating Sys-
tems Review, 2002, pp. 271–284.

[48] M. Hashimoto, J. Bender, Vagrant, http://vagrantup.com

(2010).
[49] A. Bavier, N. Feamster, M. Huang, L. Peterson, J. Rexford, In

vini veritas: realistic and controlled network experimentation,
in: Proceedings of ACM SIGCOMM, 2006, pp. 3–14.

[50] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, M. Wawrzoniak, Operating
system support for planetary-scale network services, in: Pro-
ceedings of the 1st USENIX NSDI, 2004, pp. 253–266.

[51] X. Jiang, D. Xu, Violin: Virtual internetworking on overlay
infrastructure, in: Proceedings of the 2nd Springer ISPA, 2003,
pp. 937–946.

[52] M. Pizzonia, M. Rimondini, Netkit: easy emulation of complex
networks on inexpensive hardware, in: Proceedings of the 4th
IEEE TridentCom, 2008, pp. 1–10.

[53] J.-V. Lodo, L. Saiu, Marionnet, http://www.marionnet.org

(2007).
[54] Y. Benchaib, A. Hecker, Virconel: A network virtualizer, in:

Proceedings of the 19th IEEE MASCOTS, 2011, pp. 429–432.
[55] DIT, VNUML, http://dit.upm.es/vnumlwiki (2003).
[56] DIT, VNX, http://dit.upm.es/vnxwiki (2008).
[57] V. Perrier, Cloonix, http://clownix.net (2007).
[58] J. Ahrenholz, C. Danilov, T. Henderson, J. Kim, Core: A real-

time network emulator, in: Proceedings of IEEE MILCOM,
2008, pp. 1–7.

[59] Z. Puljiz, M. Mikuc, IMUNES, http://imunes.tel.fer.hr

(2003).
[60] FreeBSD, FreeBSD, http://www.freebsd.org (1993).
[61] C. Labs, OpenNebula, http://www.opennebula.org.
[62] S. Maier, D. Herrscher, K. Rothermel, Experiences with node

virtualization for scalable network emulation, Computer Com-
munications 30 (5) (2007) 943–956.

13

http://www.linux-kvm.org/page/Virtio
http://nbd.sourceforge.net
http://www.graphviz.org
http://www.graphviz.org
http://tinycorelinux.net
http://vde.sourceforge.net
http://www.labri.fr/perso/magoni/nemo
http://www.labri.fr/perso/magoni/nemo
http://www.labri.fr/perso/magoni/vnd
http://www.labri.fr/perso/magoni/vnd
http://www.boost.org
http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-2013-evaluation-of-mosh-mobile-shell-performance-results
http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-2013-evaluation-of-mosh-mobile-shell-performance-results
http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-2013-evaluation-of-mosh-mobile-shell-performance-results
http://www.vmware.com
https://www.virtualbox.org
www.microsoft.com/hyper-v-server
http://wiki.openvz.org
http://lxc.sourceforge.net
https://github.com/GNS3/dynamips
http://dynagen.org
http://www.gns3.net
http://vagrantup.com
http://www.marionnet.org
http://dit.upm.es/vnumlwiki
http://dit.upm.es/vnxwiki
http://clownix.net
http://imunes.tel.fer.hr
http://www.freebsd.org
http://www.opennebula.org

[63] Y. Liao, D. Yin, L. Gao, Network virtualization substrate with
parallelized data plane, Computer Communications 34 (13)
(2011) 1549–1558.

[64] M. Carbone, L. Rizzo, An emulation tool for planetlab, Com-
puter Communications 34 (16) (2011) 1980–1990.

[65] R. Simmonds, B. W. Unger, Towards scalable network emula-
tion, Computer Communications 26 (3) (2003) 264–277.

[66] N. Van Vorst, M. Erazo, J. Liu, Primogeni: Integrating real-
time network simulation and emulation in geni, in: Proceedings
of IEEE PADS, 2011, pp. 1–9.

[67] C. GARR, FEDERICA, http://www.fp7-federica.eu (2008).
[68] A. Willner, S. Albrecht, S. Covaci, F. Schreiner, T. Magedanz,

S. Avessta, C. Scognamiglio, S. Fdida, U. Bub, Fantaastic:
Sustainable management of future internet testbed federations,
in: Network Operations and Management Symposium (NOMS),
2014 IEEE, 2014, pp. 1–4. doi:10.1109/NOMS.2014.6838379.

[69] S. Fdida, T. Korakis, H. Niavis, S. Salsano, G. Siracusano, The
express sdn experiment in the openlab large scale shared exper-
imental facility, in: Science and Technology Conference (Mod-
ern Networking Technologies) (MoNeTeC), 2014 International,
2014, pp. 1–7. doi:10.1109/MoNeTeC.2014.6995584.

[70] L. Baron, C. Scognamiglio, M. Rahman, R. Klacza, D. Ci-
calese, N. Kurose, T. Friedman, S. Fdida, Onelab: Major
computer networking testbeds open to the ieee infocom com-
munity, in: Computer Communications Workshops (INFO-
COM WKSHPS), 2015 IEEE Conference on, 2015, pp. 3–4.
doi:10.1109/INFCOMW.2015.7179314.

[71] M. Conti, S. Chong, S. Fdida, W. Jia, H. Karl, Y.-D.
Lin, P. Mhnen, M. Maier, R. Molva, S. Uhlig, M. Zuk-
erman, Research challenges towards the future internet,
Computer Communications 34 (18) (2011) 2115 – 2134.
doi:http://dx.doi.org/10.1016/j.comcom.2011.09.001.

14

http://www.fp7-federica.eu
http://dx.doi.org/10.1109/NOMS.2014.6838379
http://dx.doi.org/10.1109/MoNeTeC.2014.6995584
http://dx.doi.org/10.1109/INFCOMW.2015.7179314
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2011.09.001

	Introduction
	Description of NEmu
	Overall Design
	Network Elements
	Virtual Node
	Virtual Link

	Management of Virtual Networks
	Session
	Manager

	Example of a Topology
	Accuracy and Scalability

	The Virtual Network Device (vnd)
	Architecture
	Implementation
	Performances

	The Network Mobilizer (nemo)
	Design
	Simulated Time Scheduler
	Real Time Scheduler

	Experimentation
	Mosh Experiment Replication
	AMiRALE Experiment Replication

	Related Work
	Node Emulation Systems
	Link Emulation Systems
	Virtual Switches
	Link Properties Manipulation

	Network Virtualization Environment

	Conclusion
	References

