N
N

N

HAL

open science

TRINI: an adaptive load balancing strategy based on
garbage collection for clustered Java systems

A Omar Portillo-Dominguez, Philip Perry, Damien Magoni, Miao Wang, John

Murphy

» To cite this version:

A Omar Portillo-Dominguez, Philip Perry, Damien Magoni, Miao Wang, John Murphy. TRINI: an
adaptive load balancing strategy based on garbage collection for clustered Java systems. Software:

Practice and Experience, 2016, 46, pp.1705-1733. 10.1002/spe.2391 . hal-01436430

HAL Id: hal-01436430
https://hal.science/hal-01436430
Submitted on 16 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01436430
https://hal.archives-ouvertes.fr

TRINI: An Adaptive Load Balancing Strategy Based on Garbage
Collection for Clustered Java Systems

A. Omar Portillo—DominguezL*, Philip Perryl, Damien Magoni2,
Miao Wang! and John Murphy!

LLero, School of Computer Science and Informatics, University College Dublin, Ireland
2LaBRI, University of Bordeaux, France

SUMMARY

Nowadays, clustered environments are commonly used in high-performance computing and enterprise-
level applications to achieve faster response time and higher throughput than single machine environments.
Nevertheless, how to effectively manage the workloads in these clusters has become a new challenge. As
a load balancer is typically used to distribute the workload among the cluster’s nodes, multiple research
efforts have concentrated on enhancing the capabilities of load balancers. Our previous work presented
a novel adaptive load balancing strategy (TRINI) which improves the performance of a clustered Java
system by avoiding the performance impacts of Major Garbage Collection, which is an important cause
of performance degradation in Java. The aim of this paper is to strengthen the validation of TRINI by
extending its experimental evaluation in terms of generality, scalability and reliability. Our results have
shown that TRINI can achieve significant performance improvements, as well as a consistent behaviour,
when it is applied to a set of commonly used load balancing algorithms, demonstrating its generality. TRINI
also proved to be scalable across different cluster sizes, as its performance improvements did not noticeably
degrade when increasing the cluster size. Finally, TRINI exhibited reliable behaviour over extended time
periods, introducing only a small overhead to the cluster in such conditions. These results offer practitioners
a valuable reference regarding the benefits that a load balancing strategy, based on garbage collection, can
bring to a clustered Java system.

KEY WORDS: Load Balancing; Cluster Computing; Garbage Collection; Java; System Performance

1. INTRODUCTION

In recent years, cluster computing has gained popularity as a powerful and cost-effective solution for
parallel and distributed processing [/1]]. Thus, the usage of clusters is becoming ubiquitous: Modern
high-assurance systems and enterprise-level applications, which usually require both fast response
time and high throughput on a constant basis, are commonly deployed in clustered instances to fulfil
such stringent performance requirements.

One of the most important challenges in cluster computing is how to effectively distribute
the workload among the available clustered instances (as load imbalance can lead to processing
inefficiencies [2]]). To address this challenge, multiple research efforts have aimed to develop more
effective load balancing algorithms and strategies, based on different criteria and heuristics [3H5].

2 A.O. PORTILLO-DOMINGUEZ ET AL

With an estimated business impact of a hundred billion dollars yearly, Java is a predominant
player at enterprise level [6]. Therefore, this technology is commonly used to build clustered
systems. A particular area of performance concern in Java is the Garbage Collection (GC) [7]. Even
though it is a key feature of Java which automates most of the tasks related to memory management,
GC also comes with a cost: Whenever it is triggered, GC has an impact on the system performance
by pausing the involved programs. Although pauses of milliseconds are normally not a problem,
longer GC pauses can severely impact the system performance, affecting the involved business
functions and the overall user experience. This is particularly true for applications requiring fast
response time or high throughput. Furthermore, this issue is more likely to occur with the Major
Garbage Collection (MaGC), which usually causes the longest type of GC pauses [7].

Multiple research works have given evidence of the GC performance costs. For instance, the
authors of [§] identified the GC as a major factor degrading the behaviour of Java Application
Servers (a classic Java business niche) due to the sensitivity of the GC to the workload. In their
experiments, the GC took up to 50% of the total Java Virtual Machine (JVM) execution time
(involving pauses as high as 300 seconds). The MaGC represented more than 95% of those pauses
on the heaviest workload. Likewise, a survey conducted among Java practitioners and experts [9]
identified the GC as a typical area of performance problems experienced in the industry.

Research studies have also shown that it is not possible to have a single “best-fit-for-all”
GC strategy because the GC behaviour is dependent on the application inputs and the system
configuration [[10L|11]. For example, the authors of [12] showed that the GC is particularly sensitive
to the heap size and even small changes, which might appear trivial, could affect its behaviour. Due
to the multiple factors (e.g., increases in workload, usage of huge heaps or non-ideal settings) which
can provoke long MaGC pauses (probably of hundreds of milliseconds or longer), it is commonly
agreed that the GC plays an important role in the performance of Java systems.

This discussion motivates the core research question here: “What techniques can be deployed
so that the occurrence of MaGC events in the application nodes does not affect the performance
of the cluster?”. To address this challenge, our work has centred on enhancing a load balancer
so that it selects the nodes which are not expected to have a MaGC event in the immediate
future. This strategy can therefore help to avoid impacts in the cluster’s performance due to MaGC
events. In our previous work [[13]], we presented TRINI (shown in Figure[I), an adaptive GC-aware
load balancing strategy which automatically self-configures based on the GC characteristics of a
clustered application (typically located within a data centre). Internally, TRINI leverages on MaGC
forecasts to decide on the best way to balance the workload among the application nodes.

NODES

Q I MaGC
[1 FORECAST

Figure 1. TRINI: A GC-Aware Load Balancing Strategy

The behaviour of a load balancing strategy is heavily influenced by the accuracy of its balancing
decisions and the amount of resources it uses [14]]. A deep understanding of these factors is
key to comprehend the practicability of any load balancing strategy. Therefore, the aim of this

TRINI 3

paper is to perform an exhaustive assessment of TRINI in terms of generality, scalability and
reliability. For this purpose, three experiments were performed: Firstly, TRINI was applied to four
load balancing algorithms to assess its generality (as it had previously been applied to only one).
Secondly, TRINI was tested in ten cluster sizes to assess how scalable it is (as it had previously
been tested in only one). Thirdly, TRINI was evaluated in 24-hour test runs to assess its reliability
(as it had previously been tested in 1-hour runs). The obtained results showed that TRINI can offer
significant performance gains under the above conditions, while only introducing a small overhead
to the cluster.
The contributions of this paper are:

1. An extended description of our adaptive GC-aware load balancing strategy (TRINI), whose
goal is to improve the performance of clustered Java systems.

2. A comprehensive practical evaluation of TRINI, consisting of a prototype and three
experiments to assess TRINI in terms of generality, reliability and scalability. These
experiments demonstrate the performance benefits and overhead costs of using TRINI under
those scenarios.

3. Four GC-aware load balancing algorithms which were modified to use MaGC forecast
information for improving their workload distribution.

4. Key findings that could serve as guidelines for practitioners to integrate GC-awareness to a
load balancing algorithm, as well as the conditions under which a GC-aware load balancing
strategy can be useful.

The remainder of the paper is organized as follows: Sections [2| and [3| present the relevant
background and related work, respectively. Section 4| explains the internal workings of TRINI;
while Section [35] discusses the performed experiments and their results. Finally, Section [6] draws
the conclusions of this work and provides pointers to our future work.

2. BACKGROUND

This section recalls the main features and characteristics of the GC process in Java, as well as a
typical load balancing process, which are necessary to understand the rest of the paper.

GC. This form of automatic memory management offers significant software engineering benefits
over explicit memory management. For example, it frees developers from the burden of manual
memory management, avoiding the most common sources of memory overwrites and leaks [|15]], as
well as increasing the developers’ productivity [16]. Despite these advantages, it is widely accepted
that the GC comes with a performance cost (as discussed in Section [I).

Additionally, it is not possible to programmatically force the execution of the GC [[17]]. The closest
action a developer can do is to call the method Runtime.getRuntime().gc() (or its equivalent method
System.gc()) to suggest the JVM to execute a MaGC. Nevertheless, the JVM is not forced to fulfil
this request and may choose to ignore it. The usage of these methods is also discouraged by the
JVM vendors [18] because the JVM usually does a better job on deciding when to do GC.

Generational Heap. The memory area in Java is known as the heap. Nowadays, one of the most
commonly used heap types is the generational heap [19]], where objects are segregated by age into
memory regions known as generations. New objects are created in the youngest generation because
the survival rates of younger generations are usually lower than those of older generations. That
is, younger generations are more likely to contain garbage and can be collected more frequently
than older ones. The GC in the younger generations is known as Minor GC (MiGC). It is usually
inexpensive and rarely causes a performance concern. MiGC is also in charge of moving the live
objects, which are old enough, to the older generations. This means that the MiGC plays a key role
in the memory allocation of older generations. The GC in the older generations is known as MaGC
and it is commonly accepted as the most expensive GC type due to its performance impact [/7/].
Finally, running out of free memory in a generation triggers its respective type of GC event.

GC Strategies. The heap is managed by the GC strategy selected at JVM start-up. Their
availability is usually tied to the heap type. For instance, three of the most widely-used GC strategies

4 A.O. PORTILLO-DOMINGUEZ ET AL

in the industry [20]] work exclusively on generational heaps: The Serial GC (which performs all its
work using a single thread and it is preferable for client JVMs), the Parallel GC (which uses multiple
threads and it is preferable for server JVMs when throughput is more important than response time),
and the Concurrent GC (which does most of its work concurrently with the application threads and
it is preferable for server JVMs when response time is more important than throughput).

Load Balancing. The objective of a load balancing strategy is to optimise the performance of an
application running in a cluster composed of a set of nodes, each one having an identical code image
of the application. The application must be also partitionable into smaller grain-sized tasks (e.g., a
web application, which is normally composed of atomic operations such as login, search, etc.).

The range of existing load balancing algorithms is broad [21]. Nowadays, four algorithms
frequently used in the industry are: round robin, random, weighted round-robin and weighted
random. Round robin selects the nodes iteratively, eventually distributing the workload evenly
across the nodes. In the case of the random, each node is selected at random among the available
ones. Finally, in the weighted versions of these algorithms, the number of times a node would be
selected (as per their respective decision logic) is adjusted using a weight defined per node.

3. RELATED WORK

In this section, we first expand on the recent work in GC optimisation. Then, we discuss the related
work in the area of memory forecasting. Next, we review the state-of-the art work in distributed
systems optimisation, with a special emphasis on load balancing.

GC Optimisation. Multiple research efforts have focused on improving the GC performance.
For example, several works have proposed new concurrent [22] and parallel algorithms [23]] that
have smaller impacts on the performance of the applications. Other works have aimed to develop
algorithms that might have predictable GC performance [24]]. However this predictability comes in
terms of soft-requirements, meaning that the GC might still take more time than expected. Another
explored approach has been to develop algorithms for specific usage scenarios. For instance, [25]
describes an algorithm suitable to Java Application Servers which exploits the different natures of
the local and remote objects. Even though all these works have helped to reduce the frequency and
impact of the GC, it remains a major performance concern due to the diverse factors that affect its
performance (as discussed in Section [I)).

Memory Forecasting. This is another active research area which focuses on the self-
improvement of the JVM, looking for ways to invoke a GC when it is worthwhile. For example, the
work presented in [26] exploits the observation that dead objects tend to group together to estimate
how much space would be reclaimable for a MaGC to avoid low-yield GCs. Meanwhile, the authors
of [27] present an approach to estimate the number of dead objects at any time, information that a
JVM could use to decide when to trigger a MaGC. In all these cases, the memory forecasts help to
determine if it is a good time (in terms of memory gains) to execute a GC. However, they do not
provide enough information to know when the next MaGC would occur. In contrast, our work aims
to forecast the MaGC events, also making this information available outside the JVM so that other
actors (such as a load balancer) could leverage it and take more informed decisions.

Distributed Systems Optimisation. Research has also focused on the optimisation of distributed
architectures, improving them from various viewpoints. For example, the authors of [28]] presented
a method to facilitate the migration of a monolithic Java application to a distributed architecture
through the automated dependency injection of source code. In the case of [29], this work described
a mechanism to achieve high reliability in clustered web services, which was based on its capability
of offering transparent fault-tolerance to different types of transactions. Furthermore, the work
on [30] proposed a resource management solution for distributed systems, offering capabilities such
as the automatic detection of overloaded resources.

Due to its importance, load balancing is a well-studied problem in the areas of parallel and
distributed systems, where a significant body of literature exists [31-35]]. For example, the authors
of [4] proposed a technique to estimate the total workload of a load balancer to utilise this
information in the balancing of new workload. Meanwhile, the work on [31]] proposed an adaptive

TRINI 5

load balancing strategy which aims to fulfil service level agreements based on a set of customer
priorities. Likewise, the authors of [36] presented an agent-based solution to provide dynamic load
balancing capabilities to cloud-based services and resources. Finally, other research efforts have
focused on Java technologies: The authors of [3] developed a load balancing algorithm for Java
web applications which considers the utilisation of the JVM heap, threads and CPU to decide
how to distribute the load. Similarly, the work presented in [5] proposes a function to calculate the
utilisation of an Enterprise JavaBean (EJB) and then uses this information to distribute the incoming
load among the available EJB instances.

In contrast to all the previously discussed works, our research work has enhanced a load balancer
by considering the MaGC forecasts in its decision layer. In such a case, the load balancer can get
additional knowledge about the JVM in order to control the workload of the system, in addition to
other existing load balancing policies that might be applicable.

4. TRINI: AN ADAPTIVE GC-AWARE LOAD BALANCING STRATEGY

In this section, we describe TRINI. First, we provide the context of our solution. Next, we describe
the internal workings of TRINI. Finally, we conclude the section with a discussion of the proposed
algorithms and policies.

4.1. TRINI Overview

The objective of our research work was to define a GC-aware load balancing strategy (TRINI) which
is able to dynamically adjust to the specific GC characteristics of the underlying application. This
strategy would allow the load balancer to forecast the occurrence of the MaGC events with enough
accuracy to exploit that information for improving the performance of a cluster.

In Figure [2| we depict the conceptual view of our solution. TRINI periodically retrieves
information from the application nodes in order to characterise it. Then, it identifies the most suitable
policy based on the GC characteristics of the application running on each node (termed as program
family). Finally, the chosen policy is used to forecast the MaGC events and balance the incoming
workload among the available application nodes.

Unmanaged | cClients Clients Clients Clients
Systems L :
Workload @
Autonomic Manager TRINI
Information — Forecast
Analyse s Plan
Base . <):' Algorithms
Feedback
Program Families) Loop Load
i Balancin
Program Famiy X Monitor === Execute <:' neing
Program Family Y Algorithms
S){stem Workload
Indicators
Managed Application Application
Systems Nodes W Nodes W

Figure 2. TRINI Conceptual View

As defined by multiple authors [37]], self-adaptation provides a system with the capability of
adapting itself autonomously to changes in its environment to achieve particular quality goals in the

6 A.O. PORTILLO-DOMINGUEZ ET AL

face of uncertainty. In our context, it means minimising the performance impacts of the GC within
the cluster. To incorporate self-adaptation to TRINI, we have followed the well-known MAPE-K
adaptive model [38]]. It is composed of the following elements (shown in Figure [2): A Monitoring
element to obtain information from the managed systems; an Analysis element to evaluate if any
adaptation is required; an element to Plan the adaptation, and an element to Execute it.

The fifth element of the MAPE-K model is the Knowledge element, which is responsible of
supporting the other elements in their respective tasks. In TRINI, this role is fulfilled by the set
of identified program families. The encapsulation of the knowledge into families allows TRINI to
be easily extensible and capable of incorporating multiple load-balancing policies, which might
be suitable to different scenarios and application behaviours. In this context, a program family
encompasses a set of programs which can be treated similarly because they share some common GC
characteristics. For example, a set of program families might be defined according to the duration
of the MaGCs. One family can be defined for those programs which tend to suffer MaGCs of small
duration (e.g. a few hundreds milliseconds). This is because these MaGCs do not normally represent
a major performance issue. On the contrary, another family can be defined for those programs which
tend to suffer MaGCs of longer duration.

Each program family has two properties: (1) An evaluation criteria to determine if the GC
behaviour of an application qualifies for that family. In our previous example, a possible evaluation
criterion might be the comparison of the MaGC duration of the monitored application against the
duration ranges of each defined program family. (2) A policy which specifies the rules to perform
the MaGC forecasting and load balancing. Following our previous example, a possible policy might
be the selection of different ranges of historical data (per family) to be considered in the forecast of
MaGCs. These policies also make use of the set of available forecast and load balancing algorithms.
These algorithms are discussed in Sections and respectively.

: Initialisation :
| ‘ Set Initial Policy ‘ |
I R - _____ e ______ 5
| .
| Monitor ! Analyse !
I Yes : :
| \ 4 | |
| _ﬁ Use Chosen Policy ‘ Retrieve a new set of || Evaluate new set of I
| data samples | data samples appropriate? I
| | % ' !
l ‘ Wait Sample Interval ! - == ——— | |
| - | Knowledge I
| . I No |
| P : - Program Families [« -1 - - .]
: | Program Family A :_ : Ai |
Report Exception - | : |
I 4—' Handle Exception ‘ Program Family B | Evaluate Program
| DB ERET X L : | Families '
I rogram Family C | |
| No
| A |
| 1 it bt : |
| e Sl — \\ Execute actions for I et et W
| = «Yes—_ ucceed’?/<— the newly chosen < } :
| to the System ~__ Program Family I Program Family :
| Execute :_ Plan |

Figure 3. TRINI - Core Process

4.2. TRINI Core Process

TRINI has a core process which coordinates its MAPE-K elements. This process (depicted in
Figure [3) is triggered when the load balancer starts. As an initial step, it uses a default policy
(e.g., all the available MiGC history might be used to forecast the MaGCs). This initial policy
considers any additional configuration provided at start-up time (e.g., information base such as
the load balancing algorithm to use) and it is utilised for all the application nodes. Next, the loop

TRINI 7

specified in the monitor and analyse phases starts for all the application nodes (in parallel), until
the load balancing finishes: A new set of data samples is collected, based on the program GC
characteristics used to define the set of available program families (e.g., GC and memory snapshots).
After the collection occurs, the analyser process checks if the current program family suits the GC
characteristics of the underlying program. If it is not the case, the evaluation criteria of the other
program families are assessed to identify the new program family, which is then used until the next
evaluation phase occurs. These actions retrieve their configurations from the database of program
families (represented as dashed arrows in Figure [3). Furthermore, any exceptions are internally
handled and reported.

4.3. MaGA: A MaGC Forecast Algorithm

A fundamental capability required by TRINI is the ability of accurately predicting when the MaGCs
will occur. To fulfil this need, in [39] we presented MaGA, which is an algorithm to forecast MaGC
events in generational heaps. It works by periodically retrieving GC and memory samples from a
monitored JVM (as per a configurable sample interval) to build the history of memory allocations
(MemAlloc) that occur in the Young and Old Generations through time. Then, the algorithm uses
the most recent historical data, as delimited by a configurable Forecast Windows Size (FWS), to
forecast the next MaGC event. This is done in two steps. Firstly, the algorithm forecasts how
much memory allocation needs to occur in the Young Generation (YoungGen) before the memory
in the Old Generation (OldGen) gets exhausted (hence triggering a MaGC). An example of this
process is shown in Figure [d] Firstly, the algorithm uses the OldGen historical data within the FWS
(represented as a rectangle) to feed a linear regression model (LRM). This is done to predict the
rate of increase in the YoungGen, as a function of the OldGen, and thus extrapolate the data to the
point where the OldGen will exceed its maximum threshold (90 MB in our example) and trigger
a MaGC. This yields a prediction that the next MaGC will occur when the YoungGen reaches
225 MB in our example. Secondly, the algorithm feeds this YoungGen threshold to another LRM
which extrapolates the time series of the YoungGen memory and predicts that a new MaGC event
will occur at a time of 600 ms (as shown in Figure [5). This forecast process continues iteratively
until the monitored application finishes or the forecast is no longer needed.

250

m

= /O 600

o 200

S / 3

£ 150 q - b

[} @ 400 A

= 7 £ /

c L [d

@ 100 —

O o

<) © 200

c =

3 50

>_

<

5 0 0

- 0 20 40 60 80 100 0 50 100 150 200 250

Total OldGen MemAlloc (MB) Total YoungGen MemAlloc (MB)

Figure 4. Forecast of Young MemAlloc Figure 5. Forecast of MaGC Event

4.4. GC-Aware Load Balancing Algorithms

To evaluate the performance gains that can be achieved by adapting the load balancing based on the
MaGC forecast information, we have modified four well-known load balancing algorithms. Among
the range of available algorithms, we selected the four described in Section [2} Round-robin (RR),

8 A.O. PORTILLO-DOMINGUEZ ET AL

random (RAN), weighted round-robin (WRR) and weighted random (WRAN). As the experimental
results will show, the achieved performance improvements are evident for the four algorithms and so
it is expected that TRINI can yield similar results when applied to other load balancing algorithms.

Algorithm 1: GC-WRR
Input: D ={d;,ds,...,d,}, set of application nodes
W = {wy,ws, ..., w,}, set of weights per application node
T € {N}, MaGC threshold
Output: d; € D

1i:=0
2 while load balancing is needed do
3 fTries:=0
4 found := false
5 if isRuntimeWeightsZeroed() then
6 reset RuntimeW eights(W)
7 i:=0
8 while found = false do
9 if i > n then
10 | i:=0
11 if w; > 0 then
12 w; = W; — 1
13 found := true
14 if fTries < n then
15 fTime := getForecast(d;)
16 cTime := getCurrentTime()
17 if (fTime — cTime) < T then
18 found := false
19 w; :=w; + 1
20 1:=1+1
21 fTries:= fTries+1
22 else
23 | i=i+1
24 use d; for the next workload

The main difference of our algorithms (compared against their original counterparts) is that they
perform an additional check in the selection of the next node. That is, if the pre-selected node (as per
their original selection criteria) is about to suffer a MaGC within a specified threshold (time when a
node stops being considered a feasible candidate because the next MaGC is too close), that node is
skipped and the next node is evaluated. Once the MaGC is over, the affected node is again available
for selection. For example, if the time threshold is 5 seconds and the current time is 5:00:00PM, any
nodes that have a MaGC predicted to occur between 5:00:00PM and 5:00:05PM will be skipped
in the load balancing iteration as their forecasts fall within the specified threshold. An additional
change made to the GC-aware algorithms was the inclusion of an escape condition to prevent an
infinite loop in the case that all nodes were about to suffer a MaGC within the defined threshold. If
this occurs, the GC-aware algorithms would behave as their original counterparts.

An example of our proposed algorithms is presented in Algorithm [I] which shows the GC-aware
weighted round robin (GC-WRR). When compared against the original WRR, one can notice the
two applied changes (lines 14 to 21): An additional check to consider the closeness of a MaGC
in the node selection, and an escape condition (the fTries variable) which keeps the count of the
evaluated nodes to prevent the previously discussed infinite loop.

TRINI 9

While integrating GC-awareness to the four chosen algorithms, we identified certain similarities
across the performed changes. This allowed us to abstract the changes into a generic version of
a GC-aware load balancing algorithm, as shown in Algorithm [2| There, it can be noticed how,
after the original load balancing selection occurs (represented by the function originalSelection),
the algorithm performs additional steps to select the next node to be used. This new logic
is encapsulated in the functions IsMaGcClose, getForecast, markAsEval, AreNodesToEval and
resetNodesToEval. The function IsMaGcClose (shown in Algorithm |3)) is responsible of checking
if the next MaGC is “too close” for the tentatively selected node. If it is the case, another node
must be selected. Internally, this function uses getForecast (which is a wrapper of the MaGA
algorithm discussed in Section {.3), and markAsEval (which is responsible of marking, probably
through a data structure like a hash table or a vector, the nodes after they have been evaluated
for the current balancing decision). Meanwhile, the responsibility of AreNodesToEval is to check
if all nodes have been evaluated for the current balancing decision (to avoid a potential never-
ending loop). Finally, the function resetNodesToEval is responsible of clearing the marks after
the decision has been taken. Due to the relative low complexity (and broad spectrum of possible
implementations) of the functions markAsEval, AreNodesToEval and resetNodesToEval, we only
describe their responsibilities, instead of specific implementations.

Algorithm 2: Abstract GC Load Balancing
Input: D ={d;,ds,...,d,}, set of application nodes
T e {N}, MaGC threshold
Output: d; € D
1i:=0
2 while load balance is needed do

3 found := false

4 while found = false do

5 i := originalSelection()

6 found := true

7 if IsMaGcClose(d;, T) & AreNodesToEwval() then
8 L found := false

9 use d; for the next workload

10 resetNodesToFEval()

Algorithm 3: Evaluate Closeness of the MaGC
Input: d; € D, tentatively selected node
T € {N}, MaGC threshold
Output: bMaGceCloseness
fTime := getForecast(d;)
cTime := getCurrentTime()
if (fTime — cTime) < T then
bMaGcCloseness := true
L markAsEval(d;)

else
L bMaGcCloseness := false

return bMaGcCloseness

10 A.O. PORTILLO-DOMINGUEZ ET AL

4.5. MiGC-CV Program Families

Among the alternative strategies to develop policies for TRINI, we initially concentrated on
automating the selection of the FWS. This is because our work at [39] showed that the accuracy of
the MaGA algorithm is particularly sensitive to this configuration. This sensitivity occurs because
the FWS delimits the degree of knowledge (in terms of historical memory data) which is used
to forecast the MaGCs (as explained in Section [4.3). Also, in those experiments no single FWS
achieved the lowest forecast error in all the cases, showing that there is no “best-fit-for-all” FWS.

Meanwhile, the results of our work at [[13]] showed that the MaGA algorithm tends to benefit
from having more historical data available. However, this growth is usually not monotonic. On the
contrary, the optimal FWS might experience troughs. This behaviour is captured by the MiGCey
metric [39] (which measures the coefficient of variation in terms of the number of MiGCs which
occur between MaGCs). This approach makes the MiGC¢cy metric an appropriate criterion to
classify the different program behaviours into families. For example, whenever there is a large
variation in the number of MiGCs that occur between MaGCs (reflected in a high value of
MiGCc¢v), using more historical data is not useful because that history does not properly capture
the dramatic (several orders of magnitude) changes in memory behaviour. On the contrary, if only
the most recent history is used in this scenario (implicitly meaning the usage of a smaller FWS), the
forecast accuracy is significantly improved.

Based on the observed behaviours, three MiGCcy program families were experimentally
identified [13]]: Low (MiGCcv <0.1), medium (0.1<MiGCcyv<1.0), and high (MiGCcv>1.0).
For each family, a FWS trending function was derived, focusing on those MaGCs that benefit from
using the increments in MiGC history (while leaving the outliers out of the trend). The validity of
the derived models was reflected in their calculated coefficient of determination [40]] values, which
were above 0.9 (a threshold commonly accepted in statistics as the minimum value to consider a
trending function representative of the modelled data). These function-based policies then allowed
us to automate the selection of an appropriate FWS on a case by case basis. The results obtained
in [13]] demonstrated that these functions were able to accurately predict a good percentage of the
MaGC events. Those results also showed that the number of outliers tend to decrease in larger
(e.g. gigabytes) heap sizes. This behaviour supported our decision of ignoring the outliers from the
derived functions.

5. EXPERIMENTAL EVALUATION

This section presents the three experiments performed to assess the benefits and costs of using
TRINI. Firstly, we evaluated the generality of TRINI’s behaviour across a set of different load
balancing algorithms. Secondly, we evaluated the scalability of TRINI’s behaviour across a range
of different cluster sizes. Thirdly, we evaluated the reliability of TRINI’s behaviour over extended
time periods. The section concludes with a discussion for practitioners where we summarise our key
findings and observations.

5.1. Experiment #1: Generality Assessment

The objective of this experiment was to evaluate the generality of the benefits and costs of using
TRINI. To achieve this, we compared the behaviour of TRINI applied to four commonly used load
balancing algorithms. The following sections describe this experiment and its results.

5.1.1. Experimental Set-up. In the following paragraphs we present the developed prototype, the
test environment and the parameters that defined the evaluated experimental configurations: The
selected load balancing algorithms, Java benchmarks, and GC strategies. We also describe the
evaluation criteria used in this experiment.

Prototype. It was built on top of the Apache Camel [41], which is a popular light-weight load
balancer. This solution was chosen because it is open source and developed in Java, characteristics
which facilitated its integration with the MaGC forecast logic. Additionally, the architecture of this

TRINI 11

load balancer offers well defined extension points. This characteristic facilitated the implementation
of our GC-aware load balancing algorithms.

Inspired by other works [42] that have aimed to minimize the potential impacts on the monitored
environment, the forecast logic was implemented external (non-intrusive) to the JVM. For this
purpose, we used the Java Management Extension (JMX) [43] to interact with the monitored JVM.
JMX was chosen because it is a standard Java technology which can retrieve all the information
needed for predicting the MaGC events (e.g., memory usages or GC snapshots).

Environment. All the experiments were performed in an isolated test environment, so that the
entire load was controlled. This environment was composed of fifty two virtual machines (VM):
A cluster of fifty application nodes with one load balancer, and one load tester node (as shown
in Figure [). All the VMs had the following characteristics: 4 virtual CPUs at 2.20GHz, 3GB of
RAM, and 50GB of HD; running Linux Ubuntu 12.04L, and OpenJDK JVM 7u25-2.3.10 with a
1.6GB heap. Each JVM was configured to initialise its heap to its maximum size, and the calls to
programmatically request a MaGC were disabled. The load tester node also used an Apache JMeter
2.9 [44] (a leading open source tool used for application performance testing), and the application
nodes ran an Apache Tomcat 6.0.35 [45] (a popular open source Web Application Server for Java).

The VMs were located on two Dell PowerEdge M620 servers inside a Dell PowerEdge VRTX
chassis. Each server was equipped with 2 Intel Xeon E5-2660 v2 CPUs at 2.20GHz (10 cores/20
threads), 192 GB of RAM, a 10 GbE network card, and VMware ESXi 5.5.0 as hypervisor.
Additionally, the chassis provided 12.3 TB of SAS storage (composed of a hard-drive backplane
with 14 hard drives) through a 6 Gbps PERC adapter.

}/ Cluster 50 application nodes

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/

Figure 6. Test Environment

Load Balancing Algorithms. The four algorithms discussed in Section [2| were tested: Round
robin (RR), random (RAN), weighted round robin (WRR) and weighted random (WRAN); as
well as their developed GC-aware counterparts (GC-RR, GC-RAN, GC-WRR, GC-WRAN). Two
types of runs were performed: The first type used the original version of each algorithm and was
considered the baseline in the analysis of the results. The second type of run used the GC-aware
version of each algorithm. Regarding the MaGC forecast algorithm (which is internally used by
the GC-aware algorithms, as explained in Section [.4)), the FWS was automatically selected by the
function-based policies described in Section @ Additionally, a value of 100 ms was selected as
the sampling interval, assuming that no more than one MiGC would occur within that timeframe
(hence not missing any MiGC).

Benchmarks. Two of the Java benchmarks most widely-used in the literature (DaCapo 9.12 [46]
and SPECJVM 2008 [47]) were chosen because they offer a wide range of 23 different programs
to test. Unlike other benchmarks (which are synthetically generated), these are real-life programs
from different business domains and which are widely used in the industry. Appendix A presents a
summary of these benchmarks and their respective set of programs.

12 A.O. PORTILLO-DOMINGUEZ ET AL

In order to be able to call a program from within a JMeter HTTP test script (so that multiple
concurrent calls could be invoked per application node), a wrapper JSP was developed and installed
in the Tomcat instance of each application node. For each program, a JMeter test script was created,
adding some controlled diversity to the workload. For the DaCapo programs, it involved varying the
workload size between program calls (using the available pre-defined workload sizes of DaCapo).
In the case of the SPECJVM programs, the controlled diversity involved varying the execution time
(in the range of 30 to 90 seconds). Each JMeter test run lasted 60 minutes and used 500 concurrent
users. Finally, each individual program call was considered a transaction.

GC Strategies. The three strategies discussed in Section [2] were used: Serial GC (sGC), Parallel
GC (pGC), and Concurrent GC (cGC). This was done with the aim of diversifying more the
evaluated GC behaviours (as the GC strategy is a major factor affecting the GC behaviour [12]).

Evaluation Criteria. In terms of performance, our main metrics were throughput per second (tps)
and response time (ms). Concerning response time, lower values are better; while for throughput,
higher values are better. These metrics were collected with JMeter. In terms of overhead, our main
metrics were CPU (%) and memory (MB) utilisations. In both cases, lower values are better. These
metrics were collected with the fop command [48]].

Regarding the forecast accuracy, the following three metrics were calculated:

1. The forecast error (FE) [39]. This metric is the ratio of the absolute forecasting error (the
difference between the forecast time and the time of the real MaGC event) as a proportion
of the time elapsed since the previous MaGC. It is usually expressed as a percentage to be
comparable among different programs, where lower values are better. Alternatively, the FE
can be expressed as forecast accuracy (FA), which is the difference between the maximum
possible accuracy (100%) and the FE. In terms of FA, higher values are better.

2. The average number of MiGCs that occurred between two MaGC events (MiGCay) [39].
This metric captures the relationship between the heap size and the memory allocation
required by an application (major factors influencing the GC, as proved in [49] and [10],
respectively). The smaller the MiGC 4y ¢ is, the more MaGCs are triggered, in which case
the application more frequently exhausts its old generation memory. If the value is close to
zero (e.g., 5 or lower), the application is close to an out-of-memory exception. On the contrary,
a value far from zero (e.g., 1000 or higher) indicates that the old generation is infrequently
exhausted.

3. The coefficient of variation (MiGCcy) [39]. This metric is the standard deviation of the
MiGC sy ¢ expressed as a percentage of the average, and allows the comparison of different
applications in terms of their variability in memory usage.

5.1.2. Experimental Results. In this section we present the results obtained from this experiment in
terms of the relevant performance and overhead metrics.

Performance Improvements. As an initial step to understand the behaviour of TRINI across
the evaluated experimental configurations, we focused our analysis on assessing the performance
improvements that TRINI achieved. In this context, a performance improvement for a particular
metric (e.g., response time) is the difference between an experimental configuration using a GC-
aware load balancing algorithm (e.g., GC-WRR) and its counterpart using the corresponding
original algorithm (e.g., WRR). In terms of throughput, a performance improvement implies a
positive difference (as higher throughput is better) and has a value greater than 0%. In terms of
response time, a performance improvement implies a negative difference (as lower response time is
better) and has a value in the range between 0% and 100%.

The overall results showed that TRINI worked well, as all the GC-aware experimental
configurations achieved performance improvements. More importantly, the behaviours of the four
tested GC-aware load balancing algorithms were similar, as they achieved comparable performance
improvements. Figure[/|shows the results in terms of average response time (R7 4y). There, it can
be observed the achieved average performance improvements, which ranged between 28% and 31%.
It should be noted that these results are aggregated across the full set of benchmark applications,
which have a wide range of memory behaviours, so that the observed standard deviations ranged

TRINI 13

40% 40%
$30% $30%
5 5
£ 20% £ 20%
() ()
> >
o o
g— 10% g— 10%
= =
[} (&)
o 0% a 0%
N R N gR N R N gR
GC—?\ oC oC WR Gc.\N GCP\ cC GC,\N?\ GC’\N
LB Algorithm LB Algorithm
Figure 7. RT 4y ¢ - Perf. Improv. per LB Figure 8. RT\s 4 x - Perf. Improv. per LB
80% 40%
70%
S60% | < 309
Q\o, 60% Q\O/ 30%
% 50% r %
g 40% qE,) 20%
5 30% | §
Q 5nop | Q. 1o
g 20% g 10%
o 10% | o«
& 0% 8_) 0%
cGC pGC sGC
LB Algorithm GC Strategy
Figure 9. T4y ¢ - Perf. Improv. per LB Figure 10. RT 4y ¢ - Perf. Improv. per GC
40% 140%

120%

100%

80%

60%

40%

20%

0% 0%
¢cGC pGC sGC ¢cGC pGC sGC

GC Strategy GC Strategy

w
o
X

N
]
X

=
2
>

Perf. Improvement (%)
Perf. Improvement (%)

Figure 11. RTy; 4 x -Perf. Improv. per GC Figure 12. Tsy ¢ - Perf. Improv. per GC

14 A.O. PORTILLO-DOMINGUEZ ET AL

-

© o

Q Q

> >
v

80%

70%

60%

50%

Forecast Accuracy (%)

40% :
0.001 0.01

0.1 1 10
MiGCqy,
Figure 13. Forecast Accuracy vs. MiGCcoy

between 21% and 24%. Figures [§| and [9] depict the obtained results in terms of maximum response
time (RTs4x) and average throughput (T 4y). There, it can be noticed that both metrics also
experienced behaviours which were similar across all the tested load balancing algorithms.

The next round of our analysis focused on evaluating the sensitivity of TRINI with respect to
the different GC strategies used. These results are presented in Figures[I0](RT av), [[T|(RTaax)
and (Tave)- There, it can be seen that the average performance improvements achieved by TRINI
were relatively close across the three GC strategies, meaning that TRINI worked well irrespectively
of the GC strategy. The biggest gains occurred when using the sGC as this GC strategy experienced
the most time-consuming MaGC events (hence having the largest potential gain to exploit).

The previous two analyses were useful to obtain a high-level view of the achieved performance
improvements. However, these analyses did not capture the differences in memory behaviours
across the tested applications (reflected in the relatively high standard deviations obtained after
consolidating the results). Therefore, additional investigation, from a more memory/GC-oriented
perspective, was required.

As a next step, we focused on understanding the reasons behind the achieved performance gains.
For this purpose, we analysed the results in terms of MiGCcy behaviour, as illustrated in Figure[T3]
There, a clear relationship can be observed between the forecast accuracy achieved by TRINI and
the MiGCcy of the different application behaviours. In general, the lower the variability, the
more accurate TRINI is. More importantly, the forecast accuracy reaches practically 100% when
the variability is below 0.1. This behaviour persisted irrespective of the chosen load balancing
algorithm or GC strategy. These results show how MiGC¢y is an appropriate metric to characterise
the program behaviours into families.

In our experiments, we also identified that the performance improvements yielded by TRINI are
mainly driven by two factors:

1. The total time spent on MaGC in all the application nodes (MaGCp), as it captures the
amount of potential gain that can be obtained.

2. The forecast accuracy (FA) of TRINI, which is the actual enabler that allows the potential
gains to be converted into actual gains (by diverting the workload from any node which is
suffering a MaGC).

In general terms, the performance improvements tend to be bigger when the MaGCp is long
(as there is more potential gain to exploit). However, the actual benefits depend on the amount of
MaGC)p that is actually addressed (A-MaGCp). This behaviour is depicted in Figure [I4] which
shows the achieved performance improvements (in terms of RT 4y) with respect to the A-MaGCp
and the FA. The A-MaGCp is expressed as a percentage of the total execution time. The FA is
grouped in three levels: Low (30% <FA<50%), medium (50%<FA<80%), and high (FA>80%). In

TRINI 15

40%
A-MaGCp
[0-5%] peeemem
. (5-10%) vz
o
S o | (10-15%)] pemmsm
< 30% o
— (15-20%)] ===
GC) (20-25%) wzzzzm
= (25-30%)] Ty
D L (35-40%]
0,
3 % | (50-55%] =
= N
o N
N
S N
— \
« 10% |
5 \
N
o |
|
N
N
N
0% =
Low Medium High
Forecast Accuracy Levels
Figure 14. RT 4y ¢ - Perf. Improvements per FA and A-MaGCp
100%
80%]
(] R
K
XXX
g8
totosese
—_
) sl
=S s
~ 60% o5 fis25554 1
[a) i
R oretatote
O B st
o
5 B
] 5
5 s
= 40% B]
' 5
< 5 K
;
K R roseese
% £ ogseteores
st
) B 5
20% 1
B 55
BB
R gzl
55
i s
%
.

0%
40% 50% 60% 70% 80% 90% 100%

Forecast Accuracy (%)
Figure 15. A-MaGC'p per Forecast Accuracy Level

Figure 4] it can be seen how the improvements for a particular level of FA (e.g., high), tend to be
bigger when the A-MaGCp is longer. It can also be noticed how the A-MaGCp highly influences
the achieved performance improvements. For example, the biggest improvements were achieved by
those configurations which experienced the longest A-MaGCp, even though they only achieved a
medium level of FA.

In this context, a MaGC was considered addressed if it was forecasted accurately enough that
it was possible to prevent sending transactions to the affected node during the MaGC occurrence.
Under these conditions, the only transactions affected by the MaGC event were those in the pipeline
to be processed by a node which suffered the MaGC.

This behaviour is further explained by Figure [I5] which shows how the FA translates into A-
MaGCp. In general terms, the higher the FA, the bigger the amount of A-MaGCp. However, the
relationship is not entirely linear. This is because the amount of A-M aGCp depends not only on the
number of MaGCs which were not addressed (as measured by the FA), but also on the durations of
those MaGC:s. For instance, it is not the same performance impact to inaccurately forecast a MaGC

16 A.O. PORTILLO-DOMINGUEZ ET AL

4% 2.0%
’3 0, ? 0,
S 3% R 1.5%
A N
Q)
= Z
S 2% f s 10%
o I}
O S
T 0.0%
N R N 3
C,RP‘ o /\NQP NR
LB Algorithm LB Algorithm
Figure 16. App.nodes - ACPU sy ¢ Figure 17. App.nodes - AMEM av
35% 10.0%
30%
S 25%] S
] > 6.0% |
o 15% 1 W 400!
< 20w
0% 0.0%
N \3 N R N R N \3
R R R/ W R R R/ W
oC cC GC’/\N G oC oG GC’/\N cC
LB Algorithm LB Algorithm
Figure 18. LB node - ACPU sy ¢ Figure 19. LB node - AMEM sy ¢

that lasts two minutes, than a MaGC that lasts two seconds (even though both MaGC events are
equally captured by the FA metric).

Overhead. We also studied the costs of using TRINI. For this analysis, we categorised the
possible overhead in two types: The overhead introduced in the application nodes, and the overhead
in the load balancer node.

In the application nodes, TRINI proved to be light-weight in terms of CPU and memory across
all the load balancing algorithms. The increment in average CPU usage (AC'PU sy) across all
tested applications was 1.46%, with a standard deviation of 0.43%j; while the increment in average
memory usage (AM EM sy) was 0.55%, with a standard deviation of 0.35%. These increments
were caused by the data gathering process, which collects information from the different application
nodes (performed through JMX, as explained in Section [5.1.1)). These results are presented in
Figures[I6]and [I7} which show the ACPUy ¢ and AM EM 4y ¢, respectively.

In the load balancer node, the introduced overhead was higher (compared to the application
nodes), but still within a reasonable level for a 50-node cluster. The ACPU sy was 27.88%,
with a standard deviation of 1.30%; while the AM EM 4y was 6.34%, with a standard deviation
of 0.71%. Additionally, the four load balancing algorithms performed similarly, suggesting that
the level of introduced overhead was independent of the algorithm. These results are presented
in Figures [I8] (ACPUv) and [I9) (AMEM sy). The ACPU v was mainly caused by the

TRINI 17

forecast algorithm, as it continuously generates an updated MaGC forecast for each application
node. Regarding the memory consumption, approximately 4% of the AM EM 4y was caused by
the initialisation of TRINI. The remaining increment was due to the historical data that was kept for
forecasting purposes.

Summary. This experiment demonstrated the performance gains that TRINI can bring to a
cluster. By avoiding the impact of most of the MaGC events in the individual nodes, the performance
of the clustered applications was significantly improved. More importantly, the improvements were
achieved irrespectively of the used load balancing algorithm or GC strategy, proving the generality
of TRINI. Regarding the overhead, the increments in CPU and memory usage in the application
nodes were minimal, hence not affecting their normal operation. Even though the level of tolerable
overhead in the load balancer node would depend on the particular usage scenario, the obtained
increments were considered acceptable because the load balancer node was far from exhausting
its resources (especially considering the relative modest characteristics of the load balancer node,
described in Section[5.1.1).

5.2. Experiment #2: Scalability Assessment

Here the objective was to evaluate the scalability of TRINI by assessing its behaviour in different
sizes of clusters. The following sections describe this experiment and its results.

5.2.1. Experimental Set-up. The set-up was similar to that used in experiment #1 (presented in
Section [5.1.1)), with the following differences: The cluster size was variable, covering the range of
[5..50] application nodes in increments of 5. The minimum value was the size used in our previous
works [[1339], while the maximum value was constrained by our available computational resources.
The number of concurrent users was increased proportionally to the cluster size (e.g., the 5-node
cluster used 50 users, the 10-node cluster used 100 users, and so on) so that the workload was
increased accordingly. As experiment #1 proved that TRINI works well irrespective of the load
balancing algorithm, we centred on the WRR because it is currently the most widely-used load
balancing algorithm [31]]. Likewise, we concentrated on the Serial GC strategy because it tends
to suffer the longest pauses [7]], hence benefiting more from our work. Finally, we focused on 5
programs which were representative of the program classification that we presented in our previous
work [[13]]. This configuration allowed us to test a diverse set of GC behaviours with a smaller set
of experimental configurations. That classification (shown in Table [I)) grouped the programs of the
DaCapo and SPECJVM benchmarks according to their GC characteristics (the MaGCp and the
MiGCcy). In Table[l] the programs underlined are the ones used in this experiment.

Table I. DaCapo/SPEC Program Classification per GC behaviours

: MaGC D
MiGCov Short Medium Long
avrora, compress,
compiler, | fop, luindex, lusearch,
Low . .
jython mpegaudio, tomcat,
startup, sunflow, xalan
Medium batik, crypto, eclipse, h2, scimark,
pmd, tradebeans tradesoap, xml
High derby, serial

5.2.2. Experimental Results. In this experiment, our analysis focused on two main aspects:
Evaluating the performance improvements yielded by TRINI in different sizes of clusters; and
assessing the behaviour of the overhead in such clusters.

Performance Improvements. Our hypothesis was that the performance improvements should
not degrade when the cluster size increases, as each forecast process is independent of each other

18

A.O. PORTILLO-DOMINGUEZ ET AL

100%
° derby —— sunflow - jython --=--
eclipse —*— scimark —&
80%
)
é o = m| = | 8 o
B3
— (=] ()
% 60%
e
()
>
(@)
P —
o
E
4
E 20%
(1]
o ¥ * * ¥ * - ¥ * % *
P T - Sl e - N u L I]
0% [m , "
5 10 15 20 25 30 35 40 45 50
Cluster Size

Figure 20. RT 4 ¢ - Performance Improvements per cluster size

(hence not affected by the number of monitored application nodes). This was confirmed by the
results of the experiment. Even though there were some minor variances in the percentage of
performance improvements that TRINI achieved, the improvements were closely similar, across the
different cluster sizes, per tested program. Figure [20]shows the obtained performance improvements
in RT sy . There, it can be noticed how the improvements were relatively constant, per program,
through the different cluster sizes. Furthermore, the differences in improvements among the tested
programs were due to their diversities in memory/GC behaviour. For example, the scimark program
obtained the biggest improvements because it experienced the longest M aGCp and also achieved
a high forecast accuracy (above 90%). On the contrary, the jython program obtained the smallest
improvements because it suffered the shortest MaGCp (meaning it had the smallest potential
gains). For the sake of brevity, we only present the improvements in R7T 4y . However, similar
trends were observed in terms of R ax and Tqy .

Overhead. Two main findings were identified in terms of overhead. First, the cost in the
application nodes of using TRINI was minimal and relatively constant and independent of the cluster
size. As previously explained, the forecast process for each application node is independent of each
other. Thus, the same principle applies to the data gathering that occurs in the nodes. This can be
noticed in the results of the analysis of the ACPU sy ¢ and AM EM 4y ¢ in the application nodes
per cluster size (shown in Figures 2] and [22] respectively). There, it can be observed how the
increments in utilisation of both resources were very low. Additionally, they presented a relatively
uniform distribution across all the tested cluster sizes.

Second, the overhead in the load balancer node was dependent of the cluster size, following a
relatively smooth growth trend. In the case of the AC' PU 4v ¢, these increments were mainly caused
by the increase in the number of concurrent forecast processes (as there was one forecast process per
monitored application node). This explains the relatively linear nature of the growth. These trends
are shown in Figure 23] In the case of the AMEM 4y ¢, the observed increments were mainly
caused by the amount of data that was gathered from the application nodes for forecasting purposes.
Under these circumstances, if the application triggers a considerably high number of MaGCs and/or
MiGCs, the amount of memory required to keep this historical data might become significant. This
behaviour can be observed in Figure 24] which presents the AM EM 4y ¢ trending per application.
There, it can be noticed how the derby program presented a relatively higher slope (compared to
the other programs). This is because derby generated not only the largest amount of GC historical
data, but it was also considerably bigger (several orders of magnitude) than the other programs. It is

TRINI 19

4% 2.0%
— —~
< 3% S 15%
~— N—r
V]
: :
S 2% S 1.0%
[a (1]
) =
Q1% g 0.5%
0% 0.0%
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Cluster Size Cluster Size
Figure 21. App.nodes - ACPU 4y ¢ per size Figure 22. App.nodes - AM EM 5y ¢ per size
0,
derby —— 10% derby ——
eclipse —— eclipse ——
30% jython -x 8% jython --x
< scimark o o °7% || scimark —s
= sunflow -——a-—— e < sunflow -——a-——
Q.00 : Q 6%
>20% : 2 o
) S i
o L
©) =
10% ="
< < 2%
0% 0%
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Cluster Size Cluster Size
Figure 23. LB node - ACPU 5y ¢ per size Figure 24. LB node - AM EM 5y ¢ per size

worth mentioning that, despite the relatively high slope, the amount of memory required by TRINI
to support derby was still below 10% of the total available memory (on the load balancer node), even
with 50 application nodes. This level of utilisation leaves a considerable amount of idle resources to
support many more application nodes.

Summary. In conclusion, the results of this experiment showed how TRINI can scale gracefully
for larger clusters. The achieved performance improvements did not degrade when increasing the
size of the cluster, while also the computational resources used by TRINI did not significantly
increase.

5.3. Experiment #3: Reliability Assessment

Here the objective was to evaluate the reliability of TRINI by assessing its behaviour in longer
(24-hour) experimental test runs. The following sections describe this experiment and its results.

5.3.1. Experimental Set-up. The set-up was similar to that used in the experiment #2 (presented in
Section [5.2.1), with two differences: First, the evaluated cluster was composed of 50 application
nodes (same size as experiment #1, described in Section [@ Second, the duration of the test runs
was increased from 1 to 24 hours to evaluate TRINI on a longer, more realistic duration.

20 A.O. PORTILLO-DOMINGUEZ ET AL

100% 100%
~ ~
S o\°
~ 80% I ~ 80%
a 2
3 @
E 60% E 60%
Qo ()
3 3
S 40% S 40%
(=% =%
E E
= 20% | = 20% |
<) ()
o [a
0% — % : 0%
OO RO e de“(’;]é\“\a‘
Programs Programs
Figure 25. RT 4y ¢ - Perf. Improv. on 24-hr runs ~ Figure 26. RT; o x - Perf. Improv. on 24-hr runs
100%
<
é 80%
B 0
c
(&)
c 60%
)
>
o
S 40% |
E
= 20%
)
o
0%

g \“\’\\O\N . w\‘(\()“ec\'\‘)se ée(‘ozd\m%ﬁ\‘

Programs
Figure 27. T 4 ¢ - Perf. Improv. on 24-hr runs

5.3.2. Experimental Results. In this section we present the results obtained from this experiment in
terms of the relevant evaluated metrics.

Performance Improvements. To understand the performance improvements achieved by TRINI
through the experiment, we carried out a breakdown of the behaviour of each experimental
configuration on an hourly basis. The results of this analysis showed no serious degradation in the
obtained improvements during the 24-hr test runs, proving that the behaviour of TRINI (in terms
of performance improvements) remains stable through time (reflected in a low standard deviation).
Among the tested programs, the largest standard deviation occurred in the scimark program. This
behaviour was compensated by the performance improvements achieved (e.g., an average of 69% in
terms of RT 4y), which were the highest among the tested programs. Figure 25] shows the results
in terms of RT 4y . Similar results were obtained in terms of RTh;4x and Tay ¢ (as shown in
Figures [26|and [27] respectively).

Overhead. The results of our analysis showed that TRINI does not degrade the behaviour of
the application nodes through time. This is because TRINI only causes a minimal (and relatively
constant) overhead to them. The ACPU sy across all tested applications was 1.02%, with a
standard deviation of 0.38%; while the AM EM 4y ¢ across all tested applications was 0.42%, with
a standard deviation of 0.15%.

In the load balancer node, the results of our analysis showed that the ACPU sy ¢ caused by
TRINI remained quite steady during the whole experimental test runs (25.57% with a standard
deviation of 2.15%). This is because the main contribution to this increase is the number of forecast
processes, which is not influenced by time but by the size of the cluster. In terms of memory, the
AMFEM sy across all tested applications was 6.08%, with a standard deviation of 0.86%. This

TRINI 21

increment remained within a well-defined band during the 24-hour test runs. This stability in the
memory footprint of TRINI is the result of an efficient management of the historical data (e.g.,
MiGC events) which is temporarily stored by TRINI. This data is closely monitored and controlled,
so that whenever it becomes older than the required FWS (which delimits the history that is used
for forecasting), the data is automatically purged.

Summary. The results of this experiment demonstrated the reliability of TRINI through time, as
TRINI was capable of improving the performance of a clustered system without suffering from
a degradation in its behaviour. In terms of overhead, TRINI experienced a relatively uniform
ACPU vy ¢ during the whole test runs. Similar behaviour was observed in terms of AMEM sy ¢
in the application nodes. Finally, TRINI experienced a minimum increase in terms of AM EM 4y ¢
in the load balancer node. This was due to the historical data that TRINI temporarily preserved for
forecasting purposes.

5.4. Final Discussion for Practitioners

The presented experimental results have demonstrated how adding GC-awareness to a load
balancing strategy can significantly improve the performance of a cluster. In the following
paragraphs we provide guidelines for practitioners to indicate the conditions under which TRINI
can yield improvements and discuss the wider applicability of the technique.

e To estimate the forecast accuracy that TRINI can achieve in a particular usage scenario, the
MiGC¢y has proven to be a useful metric. In general terms, the lower the GC variability, the
more accurate TRINI can be. Specifically, the highest forecast accuracy is obtained when the
GC variability is very low (MiGCcy<0.1). Under these conditions, the forecast accuracy
reaches practically 100%. This means that basically all the MaGC events are forecasted
accurately enough that it is possible to prevent sending transactions to the affected nodes
during the occurrence of the MaGC events. Thus, minimising the impact that the GC has
on the overall cluster performance. In cases of higher GC variability, the accuracy tends to
decrease. However, it remains within reasonable levels. For instance, in our experiments,
the programs which experienced the highest variability (MiGC¢y >1.0) obtained an average
forecast accuracy around 55%. This means that even in such volatile conditions, more than
half of the MaGCs were accurately forecasted.

o In terms of potential performance improvements, more GC intensive applications (in terms
of the amount of time the application spends doing MaGC - MaGCp -), can benefit most
from TRINI. Even though the level of forecast accuracy is important to estimate the amount
of MaGC which is actually addressed, our results have shown that even a medium level of
forecast accuracy (50% <FA<80%) can offer significant performance improvements in cases
where the MaGCp is long (MaGCp>25%). This scenario is more likely to occur when
using huge (e.g., gigabytes) heaps because they tend to experience longer MaGC pauses, in
comparison to smaller heaps (e.g., megabytes or lower). Additionally, the biggest performance
improvements are obtained when an application experiences a long M aGCp as well as a low
GC variability. Under these conditions, TRINI is able to mitigate most of the performance
costs caused by the GC. As these costs are also considerable (hence offering a lot of potential
gains), TRINI can convert them into actual performance gains. It is also worth mentioning
that performance improvements can usually be expected, regardless of the exact amount of
MaGCp. This is because the GC is a fundamental feature of Java and, given enough time,
any Java application will eventually experience one or more MaGC events (as part of its
automatic memory cleaning process).

e In our experimental evaluation, we selected three of the most widely-used GC strategies in
the industry. As our results have shown, the achieved performance improvements are evident
for all three GC strategies, and so it is expected that TRINI can yield similar results when
using other GC strategies. Likewise, it is expected that TRINI should be applicable to other
object-oriented languages which rely on GC principles and strategies similar to those used by
Java (e.g., Python or C#).

22 A.O. PORTILLO-DOMINGUEZ ET AL

e In our experimental evaluation, we selected four of the most frequently used load
balancing algorithms in the industry. As our results have shown, the achieved performance
improvements are similar across all the tested load balancing algorithms. Therefore, it is
expected that TRINI can yield similar results when using other GC-aware load balancing
algorithms. To support practitioners in the task of adding GC-awareness to other algorithms,
we have discussed (in Section [4.4) the changes required to make a load balancing algorithm
GC-aware, as well as presented an abstract version of a GC-aware load balancing algorithm.

e In terms of the overhead introduced by TRINI to the application nodes, our results have
shown that the increments in CPU and memory utilisations are minimal, hence not affecting
the normal operation of the application nodes. Nonetheless, if this level of overhead is
not tolerable for a particular usage scenario, the overhead can be decreased. This can be
done by adjusting the sampling interval to a higher value (e.g., in our experiments we used
100ms). This change would have the effect of decreasing the frequency of the sampling in
the application nodes (hence decreasing the amount of resources used), at the expense of
increasing the probability of missing to sample a MiGC event. For this reason, we recommend
that the sampling interval should not be higher than the average time elapsed between
MiGC events.

e In terms of the overhead introduced by TRINI to the load balancer node, our results have
shown that the overhead usually follows a relatively linear growth with respect to the
cluster size. For this reason, our results can be used as a valuable input information for a
capacity planning process. This would allow practitioners to estimate the CPU and memory
characteristics required by a load balancer node to support a particular cluster size.

e Based on the previously discussed points, we conclude that a GC-aware load balancing
strategy can offer significant benefits to a clustered system. Given the broad spectrum
of GC behaviours that an application might experience, such GC-aware load balancing
strategy should not rely on a static configuration. On the contrary, it should use an adaptive
configuration which can self-adjust based on the GC characteristics of the underlying
application (as TRINI does). Moreover, there are similarities in the GC behaviours that
certain applications share (e.g., the identified MiGC¢y program families) and which can
be leveraged to make a more robust GC-aware load balancing solution.

6. CONCLUSIONS AND FUTURE WORK

One of the most important challenges in cluster computing is how to efficiently distribute the
workload among the cluster’s nodes. To address this challenge, in our previous work we presented
TRINI, a novel adaptive GC-aware load balancing strategy which enhances the performance of
clustered Java systems by avoiding the performance impacts of the MaGC (which is a common
cause of performance degradation in Java systems). The aim of this paper was to comprehensively
evaluate TRINI in terms of generality, scalability and reliability in order to offer practitioners a
valuable reference regarding the behaviour of TRINI in such circumstances. For this purpose, three
experiments were performed. Firstly, TRINI was applied to four commonly used load balancing
algorithms to assess the generality of its performance improvements and overheads. Secondly,
TRINI was evaluated in different sizes of clusters to assess how scalable our solution was. Thirdly,
TRINI was evaluated in 24-hour test runs to assess its reliability over extended time periods.

Our experimental results have demonstrated that TRINI can significantly improve the response
time and throughput of a cluster. These performance improvements were achieved independent
of the used load balancing algorithm, proving the generality of TRINI. The results also showed
that TRINI is scalable across different cluster sizes, and reliable through time, as the obtained
performance improvements did not noticeably degrade when either the cluster size or the length of
the test run increased. In terms of overhead, TRINI introduced a minimal overhead to the application
nodes of the cluster. Additionally, the overhead in the load balancer was low, especially considering

TRINI 23

the modest characteristics of the used load balancer node. From the above results, we conclude that
a GC-aware load balance strategy can bring significant benefits to a clustered Java system.

In our future work, we will continue investigating which other GC characteristics might be
suitable in order to deepen our classification of program behaviours into families. We plan to use
this additional knowledge to develop more portable load balancing policies. We will also explore
how to extend TRINI to address other types of performance issues and build a more sophisticated
load balancing solution. As a first step in that direction, we plan to explore the feasibility of using
the outputs of performance diagnosis tools (e.g., the IBM WAIT [50]]) to monitor the health of the
application nodes. Then, leverage that information (in addition to the MaGC forecasts), to decide
how best to balance the workload distribution within a cluster.

ACKNOWLEDGEMENTS

This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish
Software Engineering Research Centre (www.lero.ie). The authors thank the editor and the anonymous
reviewers for their helpful comments and suggestions. Likewise, the authors appreciate the many discussions
about this paper with Vanessa Ayala-Rivera.

REFERENCES

1. Lee WY, Hong SJ, Kim J, Lee S. Dynamic load balancing for switch-based networks. Journal of Parallel and
Distributed Computing 2003; 63(3):286-298.

2. Bahi J, Couturier R, Vernier F. Synchronous distributed load balancing on dynamic networks. Journal of Parallel
and Distributed Computing 2005; 65(11):1397-1405.

3. Carmona AB, Roca-piera J, Capel CH, Alvarez bermejo JA. Adaptive Load Balancing between Static and Dynamic
Layers in J2EE Applications. Next Generation Web Services Practices 2011; :61-66.

4. Rupprecht L, Reiser A, Kemper A. Dynamic load balancing in data grids by global load estimation. International
Symposium on Parallel and Distributed Computing 2012; :243-250.

5. Liu Y, Wang L, Li S. Research on self-adaptive load balancing in EJB clustering system. Intelligent System and
Knowledge Engineering 2008; :1388-1392.

6. Java: 2.5 Years After the Acquisition. International Data Corporation (2012) 2012; .

7. Memory Management in the Java HotSpot Virtual Machine. Sun Microsystems (2006) 2006; .

8. Xian F, Srisa-an W, Jiang H, Hall A. Garbage Collection : Java Application Servers’ Achilles Heel. Science of
Computer Programming Feb 2008; 70(2):89-110.

9. Snatzke RG. Performance survey. Codecentric AG (2009) 2009; .

10. Mao F, Zhang EZ, Shen X. Influence of program inputs on the selection of garbage collectors. SIGPLAN Virtual
Execution Environments 2009; :91-100.

11. Lengauer P, Mossenbock H. The taming of the shrew: increasing performance by automatic parameter tuning for
java garbage collectors. International Conference on Performance Engineering 2014; :111-122.

12. Blackburn SM, Cheng P, Mckinley KS. Myths and Realities: The Performance Impact of Garbage Collection.
SIGMETRICS Performance Evaluation Review 2004; 32(1):25-36.

13. Portillo-Dominguez AO, Wang M, Murphy J, Magoni D. Adaptive gc-aware load balancing strategy for high-
assurance java distributed systems. International Symposium on High Assurance Systems Engineering, IEEE, 2015;
68-75.

14. Willebeek-LeMair MH, Reeves AP. Strategies for dynamic load balancing on highly parallel computers. IEEE
Transactions on Parallel and Distributed Systems 1993; 4(9):979-993.

15. Wilson PR. Uniprocessor Garbage Collection Techniques. International Workshop of Memory Management, 1992;
1-42.

16. Phipps G. Comparing Observed Bug and Productivity Rates for Java and C++. Software Practice and Experience
1999; 29(4):345-358.

17. Manning W. Scjp sun certified programmer for java 6 exam. Emereo Pty Ltd, London 2009; .

18. Developing Java Applications. URL http://docs.oracle.com/cd/E13150_01/jrockit_jvm/
jrockit/geninfo/devapps/codeprac.html, last accessed: 2015-11-10.

19. Memory Management in the Java HotSpot Virtual Machine. URL http://www.oracle.com/
technetwork/java/javase/memorymanagement—-whitepaper—150215.pdf, last accessed:
2015-11-10.

20. Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning. URL http://www.oracle.com/
technetwork/java/javase/gc—tuning—6-140523.html} last accessed: 2015-11-10.

21. Beniwal P, Garg A. A comparative study of static and dynamic load balancing algorithms. International Journal of
Advance Research in Computer Science and Management Studies 2014; 2(12):1-7.

22. Pizlo F, Petrank E, Steensgaard B. A study of concurrent real-time garbage collectors. ACM SIGPLAN Notices
2008; 43(6):33-44.

23. Siebert F. Limits of parallel Garbage Collection. International Symposium of Memory Management 2008; :21-29.

http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/devapps/codeprac.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/devapps/codeprac.html
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

24

24.
25.
26.

217.

28.
29.
30.

31.

32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42.

A.O. PORTILLO-DOMINGUEZ ET AL

Kalibera T. Replicating real-time Garbage Collection for Java. International Workshop on Java Technologies for
Real-Time and Embedded Systems 2009; :100-109.

Xian F, Srisa-an W, Jia C, Jiang H. AS-GC : An Efficient Generational Garbage Collector for Java Application
Servers. European Conference on Object-Oriented Programming, 2007.

Wegiel M, Krintz C. Dynamic prediction of collection yield for managed runtimes. SIGPLAN Notices Feb 2009;
44(3):289-300.

Xian F, Srisa-an W, Jiang H. Fortune Teller: Improving Garbage Collection Performance in Server Environment
using Live Objects Prediction. Object-Oriented Programming, Systems, Languages, and Applications 2005; :246—
248.

Mateos C, Zunino A, Campo M. m-jgrim: a novel middleware for gridifying java applications into mobile grid
services. Software: Practice and Experience 2010; 40(4):331-362.

Aghdaie N, Tamir Y. Coral: A transparent fault-tolerant web service. Journal of Systems and Software 2009;
82(1):131-143.

Kalogeraki V, Melliar-Smith P, Moser LE, Drougas Y. Resource management using multiple feedback loops in soft
real-time distributed object systems. Journal of Systems and Software 2008; 81(7):1144-1162.

Boone B, Van Hoecke S, Van Seghbroeck G, Joncheere N, Jonckers V, De Turck F, Develder C, Dhoedt B. Salsa:
Qos-aware load balancing for autonomous service brokering. Journal of Systems and Software 2010; 83(3):446—
456.

Hui CC, Chanson ST. Flexible and extensible load balancing. Software: Practice and Experience 1997;
27(11):1283-1306.

Ho KS, Leong HV. Improving the scalability of the corba event service with a multi-agent load balancing algorithm.
Software: Practice and Experience 2002; 32(5):417-441.

Sanghi D, Jalote P, Agarwal P, Jain N, Bose S. A testbed for performance evaluation of load-balancing strategies
for web server systems. Software: Practice and Experience 2004; 34(4):339-353.

Chae HS, Park JG, Cui JF, Lee JS. An adaptive load balancing management technique for rfid middleware systems.
Software: Practice and Experience 2010; 40(6):485-506.

Mohamed N, Al-Jaroodi J. Midcloud: an agent-based middleware for effective utilization of replicated cloud
services. Software: Practice and Experience 2015; 45(3):343-363.

Weyns, Danny J M Usman Iftikhar. Do external feedback loops improve the design of self-adaptive systems? a
controlled experiment. International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
2013; 3-12.

Kephart JO, Chess DM. The vision of autonomic computing. Computer 2003; 36(1):41-50.

Portillo-Dominguez AO, Wang M, Magoni D, Perry P, Murphy J. Load balancing of java applications by forecasting
garbage collections. International Symposium on Parallel and Distributed Computing, 2014; 127-134.

Coefficient of Determination (R2). URL http://www.businessdictionary.com/definition/
coefficient-of-determination—r2.html, last accessed: 2015-11-10.

Apache Camel. URL http://camel.apache.org/, last accessed: 2015-11-10.

Altman E, Arnold M, Fink S, Mitchell N. Performance analysis of idle programs. SIGPLAN Notices 2010;
45(10):739-753.

. Java Management Extensions (JMX) Technology. URL http://www.oracle.com/technetwork/java/

javase/tech/javamanagement-140525.html, last accessed: 2015-11-10.

. Apache JMeter. URL http://jmeter.apache.org/| last accessed: 2015-11-10.

. Apache Tomcat. URL http://tomcat .apache.org/| last accessed: 2015-11-10.

. The DaCapo Benchmark Suite. URL http://dacapobench.org/, last accessed: 2015-11-10.

. SPECjvm 2008. URL|http://www.spec.org/jvm2008/} last accessed: 2015-11-10.

. Linux Ubuntu Manual - Top Command. URL http://manpages.ubuntu.com/manpages/oneiric/

manl/top.1.html, last accessed: 2015-11-10.

. Singer J, Jones RE, Brown G, Lujan M. The economics of garbage collection. International Symposium on Memory

Management, 2010; 103—-112.

. IBM WAIT Tool. URL https://wait.ibm.com/, last accessed: 2015-11-10.

http://www.businessdictionary.com/definition/coefficient-of-determination-r2.html
http://www.businessdictionary.com/definition/coefficient-of-determination-r2.html
http://camel.apache.org/
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://jmeter.apache.org/
http://tomcat.apache.org/
http://dacapobench.org/
http://www.spec.org/jvm2008/
http://manpages.ubuntu.com/manpages/oneiric/man1/top.1.html
http://manpages.ubuntu.com/manpages/oneiric/man1/top.1.html
https://wait.ibm.com/

TRINI

APPENDIX A: JAVA BENCHMARKS

Nowadays, DaCapo and SPECJVM are two of the Java benchmarks most widely-used in the literature. The
following paragraphs briefly describe the versions of these benchmarks which were used in this paper.

DaCapo 9.12. This benchmark has been developed by the DaCapo research project, which has been
sponsored by companies such as IBM, Intel, and Microsoft; and institutions such as the Australian Research
Council. The benchmark is composed of 14 different programs. They are all open source, real-world
applications, and with non-trivial memory loads [46]]. Table [II] lists these programs and briefly describes

their functionality.

Table II. DaCapo Programs

Name

Description

avrora

A program that simulates a set of programs
running on a grid of microcontrollers.

batik

A program that processes a set of vector-
based images.

eclipse

A program that executes a set of perfor-
mance tests in an eclipse development envi-
ronment.

fop

A program that generates PDF files based
on a set of XSL-FO files that are parsed and
formatted.

h2

A program that executes a set of bank-
ing transactions against a database-centric
application.

Jjython

A program that executes a set of python
scripts in Java.

luindex

A program that indexes a set of documents.

lusearch

A program that performs a set of keyword
searchs over a corpus of data.

pmd

A program that reviews a set of Java
classes, looking for bugs in their source
code.

sunflow

A program that renders a set of images.

tomcat

A program that executes a set of queries
against a Tomcat server.

tradebeans

A program that executes a set of stock
transactions, via Java Beans calls, using an
Apache Geronimo/h2 backend.

tradesoap

A program that executes a set of stock
transactions, via SOAP calls, using an
Apache Geronimo/h2 backend.

xalan

A program that transforms a set of XML
files into HTML files.

SPECJVM 2008. This benchmark has been developed by the Standard Performance Evaluation Corp
(SPEC), and companies such as HP, IBM and Sun have contributed to it. The benchmark is composed of 10
different programs. They are a mixture of real-life applications and specialised benchmarks focused on the
core java functionality [47]. Table[I]lists these programs and briefly describes their functionality.

26

A.O. PORTILLO-DOMINGUEZ ET AL

Table III. SPECJVM Programs

Name Description
compiler A front-end compiler that compiles a set of
java source files.
compress A data compressor that uses an universal
loss-less data compression algorithm.
crypto A program that encrypts and decrypts a set
of files using a set of encryption protocols.
derby An open-source database written in pure
Java.
MPEGaudio | A program that uses a mp3 decoder in a set
of audio files.
scimark A program that executes a set of floating
point operations.
serial A program that serialises and deserialises a
set of objects and primitives.
startup A program that executes each other
program one time.
sunflow A program that executes a set of graphics
visualization operations.
XML A program that transforms and validates a

set of XML documents by applying a set of
style sheets.

	Introduction
	Background
	Related Work
	TRINI: An Adaptive GC-Aware Load Balancing Strategy
	TRINI Overview
	TRINI Core Process
	MaGA: A MaGC Forecast Algorithm
	GC-Aware Load Balancing Algorithms
	MiGC-CV Program Families

	Experimental Evaluation
	Experiment #1: Generality Assessment
	Experimental Set-up.
	Experimental Results.

	Experiment #2: Scalability Assessment
	Experimental Set-up.
	Experimental Results.

	Experiment #3: Reliability Assessment
	Experimental Set-up.
	Experimental Results.

	Final Discussion for Practitioners

	Conclusions and Future Work

